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Abstract 
 
Infectious disease control measures often require collective compliance of large numbers of 
individuals to benefit public health.  This raises ethical questions regarding the value of the public 
health benefit created by individual and collective compliance. Answering these requires 
estimating the extent to which individual actions prevent infection of others.  We develop 
mathematical techniques enabling quantification of the impacts of individuals or groups 
complying with three public health measures: border quarantine, isolation of infected individuals, 
and prevention via vaccination/prophylaxis.  The results suggest that (i) these interventions 
exhibit synergy: they become more effective on a per-individual basis as compliance increases 
and (ii) There is often significant “overdetermination” of transmission: if a susceptible person 
contacts multiple infectious individuals, an intervention preventing one transmission may not 
change the ultimate outcome (thus risk imposed by some individuals may erode the benefits of 
others’ compliance). These results have implications for public health policy during epidemics.  
 
Introduction 
 
Public health policies for infectious diseases often require collective action.  Among other things, 
this is because the actions of one individual can impact whether others are exposed to infection.  
Further, the protective impact of one individual’s actions on others may be augmented or 
undermined by the actions of others. 
 
Increased population compliance with effective measures against infectious disease can lead to 
larger health benefits.  However, few studies have examined the relationship between individual 
compliance and public health benefits.  Yet ethical assessments of community infection control 
measures (especially those that are mandated for individuals) arguably depend in part on the 
extent to which individual actions contribute to collective benefits.  There has, to date, been 
relatively little mathematically-informed ethical analysis of public health policy (1, 2). 
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According to established principles of public health ethics,  policies are more ethically justifiable 
to the extent that they are expected to produce net public health benefits (outweighing the burdens 
or harms of the interventions) (3–5)  Further, policies that involve limitations on individual 
freedom might be more justifiable to the extent that the behavior restricted by policy is likely to 
result in harm to others (5).  It can also be ethically relevant to consider the causal pathways by 
which harm results (e.g. due to infectious disease transmission), in part because more complex 
causal pathways might have implications for the extent to which individual actions prevent harm 
that otherwise would not have occurred (6).  Thorough assessments of these ethical considerations 
arguably require a quantitative methodology that estimates the (beneficial or harmful) impact of 
the actions of a single individual. 
 
Significant mathematical modeling efforts have focused on health and economic impacts of 
SARS, pandemic influenza, and COVID-19 as well as the impacts of public health interventions 
(7, 8).  However, although numerous ethical considerations are directly relevant to the 
justification of epidemic control policies (9, 10) investigations of the ethical implications of 
pandemic response in general and the COVID-19 response in particular have typically focused on 
allocation of scarce resources (9, 11–14), disparities in health outcomes (15), and issues of 
research ethics (16, 17), as opposed to quantitatively-informed ethical analysis of the benefits and 
harms of control policies and individual compliance with public health measures. 
 
This article examines mathematical modeling techniques we have developed to explore how 
individual and collective behavior changes can affect two specific outcomes: 

• The probability an epidemic becomes established in a population. 
• The total number of infections that occur once an epidemic is established. 

 
Our modeling approaches allow us to quantify the impact of a single individual’s behavior on 
these population outcomes.  The models are designed to measure the impact of ethically salient 
aspects of transmission dynamics, including overdetermination and superspreading. 

• Overdetermination occurs when a given outcome has more than one sufficient cause.  
For example, whether (i) an epidemic becomes established in a population or whether (ii) 
a specific individual becomes infected in an epidemic may be “overdetermined” when, 
respectively, (i) there are multiple introductions into a population (each of which would 
have been sufficient to cause an epidemic) and (ii) an individual is exposed to multiple 
infectious people (where each exposure would have been sufficient to infect the individual 
in question).  This might be ethically salient because where overdetermination is 
significant (e.g., where there are multiple introductions into a population or in high 
transmission settings where each susceptible person experiences multiple exposures to 
infection), one (potentially) infectious person changing their behavior to reduce their risk 
of infecting others might make less difference to harmful outcomes because these 
outcomes will be more likely to occur in any case, due to the risk imposition of others. 

• Superspreading diseases, including COVID-19, are characterized by the tendency for a 
small fraction of infected individuals to cause a large proportion of all transmissions, 
while most cause few or even no transmissions (18–22).  Among other things, this affects 
the probability that a single introduction leads to established transmission in the 
population (22, 23).  Because most individuals cause very little transmission, the disease 
typically only becomes established if there is an early superspreading event. We therefore 
explore the impact of superspreading (or `dispersion’ of the offspring distribution) by 
comparing the expected spread of an epidemic where superspreading is uncommon with 
an epidemic where the average number of transmissions is the same, but superspreading 
accounts for a high proportion of the transmissions. 
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Our primary goal is to examine the development and application of mathematical models to 
investigate the impact of individuals’ compliance with infectious disease control measures.  We 
measure the effectiveness of relevant behaviors in terms of their impact on (i) the probability of 
an epidemic occurring (i.e., a chain of transmission begins and spreads widely in the population) 
and (ii) the total number of infections caused in an epidemic (we assume that morbidity and 
mortality and other costs are directly proportional to the number of infections, so total infections 
is a reasonable proxy of impact).  These are both affected by overdetermination and 
superspreading, both of which are closely connected to random (stochastic) events.  The methods 
we develop allow us to understand how stochasticity influences outcomes.  The specific behaviors 
we investigate are isolating to prevent an epidemic from starting, and—if an epidemic is 
established—behavior changes to avoid infection or onwards transmission. 

 

The model 

We briefly describe the model and define some terminology.  More detail is in the Methods 
section.  Our focus is on the impact of a decision made by an individual or a group to adopt some 
control measure, in a very large population.  Prior to this decision, we assume that some 
background control measures are in place.  We assume throughout that these background control 
measures will be maintained throughout the epidemic, and we are analyzing the impact of 
additional behavior changes.   

The offspring of an infected individual are those who are directly infected by the individual.  The 
descendants are those who are infected through a chain of transmissions starting at the individual.  

The offspring distribution is the distribution of the number of transmissions infected individuals 
cause before recovery under whatever background control measures are in place.  The variation in 
individual infectiousness is captured through choosing the appropriate distribution.  We assume 
that the distribution does not change, except that once an individual has been infected, receiving 
additional transmissions has no impact (immunity following infection is complete).  The average 
of the offspring distribution is the reproduction number under control cR .  The population is 
assumed to be very large such that a large number of individuals must change behavior to have 
any impact on the average of the offspring distribution. 

We study two offspring distributions, a Poisson distribution for which superspreading does not 
play an important role, and a negative binomial distribution for which superspreading is 
significant. 

The probability of an epidemic P  is the probability that the introduced disease does not go 
extinct at early times.  This depends on the offspring distribution.  If an epidemic occurs, it grows 
until depletion of the susceptible population limits its spread.  The attack rate A  is the fraction of 
the population infected in an epidemic.  In a population with homogeneous susceptibility, A  
depends on the average of the offspring distribution cR  (23, 24). 

 
In the remainder of this paper, we begin by describing the major results of our model, showing 
that individual actions produce benefits, in particular by avoiding transmission of infection to 
others. We find evidence for a synergistic effect: as more individuals comply with an 
intervention, the per-individual population benefit is increased. We also find evidence for the 
inverse effect: the potential benefits of some individual actions are undermined by the risk 
imposition of others, especially at high levels of transmission when overdetermination of 
infection is more common. We end the paper with a description of the mathematical tools that we 
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have developed which allow us to quantify the benefit from behavior change at the individual 
scale. 
 
We began this analysis in 2019, focusing on the role of Measles vaccine mandates and contact 
tracing, but with a goal of understanding the broader implications of public health measures and 
individual actions on infectious disease.  Thus, this paper is intended to develop ideas and 
mathematical methods for a broad range of diseases.  Our results have implications for newly 
emerging diseases such as SARS-CoV-2, Monkeypox, Ebola, or Zika, as well as for most 
childhood vaccine-preventable diseases.  Because of the obvious context of SARS-CoV-2, we 
address nuances related to applying our results to SARS-CoV-2 in the discussion section (e.g., 
how immune-evading variants affect the applicability of our results). 
 
Results  
 
We focus on the impact of three behaviors: 
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• Border Quarantine: Changing the behavior of individuals arriving to a population to 
prevent an epidemic from occurring 

• Case isolation: Changing the behavior of newly infected individuals during an epidemic to 
prevent transmission to others. 

• Vaccination or Prophylaxis: In an ongoing epidemic, some individuals may take extra 
actions such as vaccination or prophylaxis to reduce their own risk of becoming infected 
and thereby reduce their risk of transmitting to others. 

As a general rule, we find that the per-individual impact of multiple individuals changing 
behavior generally increases as more individuals change behavior.  Motivated by this, for each of 
these three interventions we address three questions: 

• What is the expected impact if a single individual adopts the behavior while everyone else 
continues as normal? 

• What is the average impact per individual if a certain fraction of the population adopts the 
behavior? 

• What is the marginal impact if one more individual were to adopt (or abandon) the 
behavior after a fraction has adopted it? 

In all cases we consider how (or if) results are affected by the choice of offspring distribution, 
comparing how Poisson distributions compare with negative binomial distributions having the 
same mean.  

Border Quarantine 

 
Many communities have historically had restrictions to prevent the introduction of individuals 
with infections from one geographic area or (sub-)population to another.  Recently quarantines 
have been widely used in response to COVID-19.  If an infected individual enters the population 
either by evading quarantine or due to ineffective quarantine, there is a chance that an epidemic 
may result (that is the outbreak becomes established and grows until depletion of susceptibles 
prevents its spread).  However, by random chance, the infected individual perhaps would not 
cause any transmissions or only start a small chain of infections that quickly dies out. Conversely, 
if multiple introductions occur, averting transmission from any one infected individual may not 
prevent an epidemic (i.e., the outcome of an epidemic is overdetermined). 
 
We start by analyzing how an individual’s isolation impacts the probability of an epidemic.  
Mathematically, this requires some results of probability generating functions (23).  Our analysis 
allows us to investigate the role of overdetermination on the establishment of an epidemic, and to 
introduce the framework by which we later evaluate individual actions to reduce epidemic spread. 
 
To quantify the impact of quarantining new arrivals, we begin by considering the introduction of 
a single infected individual into a large completely susceptible population.  Based on assumed 
knowledge about the offspring distribution we calculate the probability that this single 
introduction results in an epidemic (i.e., it does not go extinct until susceptible depletion becomes 
important).  From this it is a straightforward calculation to look at what happens if multiple 
introductions occur. 
 
Given a known offspring distribution, the probability P  that a single introduction into a large 
completely susceptible population results in an epidemic can be calculated using probability 
generating functions (22, 23).   
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Figure 1: The probability a single infected individual entering a completely susceptible 
population causes an epidemic, assuming no other introductions.  The offspring distribution 
follows either a Poisson distribution or a negative binomial distribution with a dispersion 
parameter of 0.16. 

Figure 1 shows the probability that a single infected individual entering a completely susceptible 
well-mixed population would cause an epidemic, as a function of cR , for our two offspring 

distributions.  For 1c <R  we find 0=P , while for 1c >R  we find 0>P .  The value of P  

increases with cR  but decreases as the offspring distribution becomes more heterogeneous.  It 
should be noted however, that in the case of higher heterogeneity, the early growth of those 
outbreaks that do become established epidemics is typically higher than expected on average 
because they are likely to be seeded by superspreading events (23). 
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Figure 2 The benefit measured as the reduction in probability of an epidemic.  We use a Poisson 
offspring distribution and a negative binomial offspring distribution with dispersion 0.16.  We 
assume that L  infected individuals enter the population of whom M  isolate.  Left (note different 
vertical scales): The reduction in epidemic probability if 1M = (only one isolates) as a function 
of the number ( 1L − ) who do not isolate.  Due to overdetermination, this decreases as L  
increases.  Right (note different horizontal scales): The reduction in probability if M isolate out 
of 50L = introduced cases.  This shows the total reduction in epidemic probability (solid line), 
the reduction averaged across the M  isolating individuals (dashed line), and the marginal 
benefit of the 1M + th isolating individual, (i.e., the change in probability from the next  
individual isolating) (dash-dot line).  Each additional individual who isolates increases the 
average impact of all isolating individuals, as a consequence of declining overdetermination. 
 
When there are multiple introduced infections, each may be separately sufficient to spark an 
epidemic (the establishment of an epidemic may be overdetermined). If there are multiple 
sufficient introductions, then isolating any one particular infected individual produces little to no 
public health benefit.  The impact of a single isolating infectious individual on epidemic 
probability depends on the number of total infectious individuals introduced ( M ) and how many 
of them isolate ( L ) as shown in Figure 2.  Overdetermination plays a large role in the trends in 
these figures.  Each individual who does not isolate has an independent chance of triggering an 
epidemic.  If even a single individual does trigger an epidemic, then those who isolate have no 
impact on the epidemic probability.   
 
More specifically, if the probability that a single infected individual would trigger an epidemic is 
larger (larger cR ), only a small number of non-isolating infected individuals are needed to 
effectively eliminate the impact of all those who isolate, shown in the left panels of Figure 2.  
Thus, border quarantine to prevent an epidemic is unlikely to be effective unless almost all 
infected individuals isolate (it should be noted that although it is a low probability event the 
societal benefit would be large).  Since almost all infected individuals must isolate, in the absence 
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of an effective screening test the quarantine must apply broadly, significantly increasing the costs 
and burden. 
 
As overdetermination declines with greater compliance, we find evidence of synergy: the per-
individual effectiveness of those who do isolate is increased as the number that isolate increases.  
Each additional isolating infected individual increases the effectiveness of the others who 
quarantine.  The per-isolating individual impact grows with increasing numbers of infected 
individuals isolating.  We see this in the right panels of Figure 2 where the average benefit per 
isolating infected individual increases as more isolate. 
 
If even a few infected individuals fail to abide by border quarantine, however, this may 
significantly undermine the efforts of those who quarantine.  As greater numbers of individuals 
comply, the benefits of an additional individual’s compliance and the population-level risks 
attached to one’s noncompliance both become greater.    
 
Public health measures during an epidemic 
 
We now analyze the impact of behavior changes on the total number of infections in a population 
assuming an epidemic is established.  We consider two different actions an individual could take:  

• Isolation after infection to avoid transmitting further (such as isolation after a rapid test) 
which does not affect one’s own probability of becoming infected but does protect others, 
or  

• Preventative actions taken in advance to avoid infection and hence also onwards 
transmission (such as vaccine or prophylactic medication). 

Isolation following infection 

We begin here focusing on the mathematically simpler situation, isolation of a newly infected 
individual.  As before, we look first at the effect of a single individual and then the effect of a 
collective behavior change.  We assume the control measures remain constant for the duration of 
the epidemic. 
 
We now consider the expected (average) number of averted infections from a single individual 
isolating after she is exposed (and develops infection), but before she becomes infectious.  So we 
assume that her probability of infection is unaffected, but that if compliant with effective isolation 
measures she causes 0 additional infections. This represents the ideal situation and addresses the 
benefit from identifying a single individual prior to her infectious period.  Clearly if an individual 
is identified after onset of infectiousness or only partly isolates, the expected benefit will be 
smaller. 
 
We denote the expected total number of averted infections from a single newly infected 
individual isolating by ( )cF R .  We account for overdetermination when calculating ( )cF R .  

That is, in calculating ( )cF R  we exclude those who would be infected through another 
transmission chain (overdetermination), but otherwise consider all “descendants”, i.e., cases 
linked by a chain of transmission from an infected individual.  For 1c >R , overdetermination 

plays a role and the impact of overdetermination grows with cR .  For 1c ≤R , overdetermination 

is negligible (for large well-mixed populations).  Our results show that the value of F  is 
independent of the details of the offspring distribution, it depends only on the average, cR .  It 
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turns out [see methods for derivation] that if 1c <R  then ( )
1

c
c

c

=
−
R

F R
R

.  However if 1c >R , 

then ( )
1

c
∞

∞
=

−
R

F R
R

 where (1 ) c∞ = −R A R  is the effective reproduction number at the end of 

the epidemic (equal to the final proportion susceptible 1− A  times the reproduction number cR ). 
 

 
Figure 3 The expected number of averted infections, ( )cF R , due to a single infected individual 

isolating after infection and not transmitting, after accounting for overdetermination.  The result 
is independent of the specific offspring distribution.  This depends only on the average, cR .  Note 

the divergence to ∞  as the reproduction number 1c →R , and the decay to 0 as cR decreases 

towards 0 or increases towards ∞ . 

 
Figure 3 illustrates that close to 1c =R  the value of ( )cF R  is very large, approaching infinity in 

the limit.  So the expected number of infections averted if one newly-infected individual 
successfully isolates and avoids causing any infections is very large if cR  is close to 1.  However, 

it becomes quite small if cR  is either large (because of overdetermination) or small (because 

there is little transmission).  In practical terms, this analysis will be valid for large or small cR , 

but when cR  is close to 1, this analysis will break down if ( )cF R  is comparable to the 

population size.  If ( )cF R  is less than 1% of the population size, we expect this to approximate 

the average number of averted infections per isolation. In any finite population, the prediction 
close to 1c =R  is not attainable.  Eventually a large enough fraction of the population is infected 
that independence assumptions in the analysis break down, and so the true number of averted 
infections will be smaller.  Additionally, the transmission chains near 1c =R  are very long and so 
results near this limit will also be more affected by seasonal changes or time-varying 
interventions. 
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Figure 4: The distribution of the number of if a single individual isolates after infection.  
Calculated for Poisson and negative binomial distribution (with dispersion parameter 0.16).  For 

1c =R  the result is a power law distribution.  If cR is larger or smaller than 1, the distribution 

falls off quicker.  For a given cR , both distributions have the same mean, but the negative 

binomial distribution results in a more heterogeneous outcome (both 0 infections averted or many 
infections averted become more common in distributions with a heavier tail). 
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In addition to the expected number of infections averted, ( )cF R , it is possible to calculate the 

distribution of the number of infections averted.  This is shown in Figure 4 for the Poisson and 
negative binomial distributions.  Although the averages ( )cF R  are the same, the distributions are 

different.  In the negative binomial case (and more generally for heavier tailed distributions) it is 
more common that either 0 infections are averted or a large number of infections are averted as 
compared to the Poisson case with the same cR .  As is often seen in systems at a critical 
threshold, when 1c =R  the distributions are given by powerlaws.  This figure shows that although 

it is rare for the number of averted infections to be large, the large events are frequent enough to 
produce a large average, ( )cF R , near 1c =R . 

 
If the individual does not isolate immediately and so is infectious for a short time, then obviously 
the expected benefit is smaller.  If the expected number of transmissions is reduced to cφR  where 

0 1φ< < , then the expected number of infections averted is )(1 () cφ− F R .   

 
Having analyzed the impact of a single individual who isolates following infection, let us now 
consider what happens if some nonzero fraction of the infected individuals isolate.  If the number 
is not large enough to materially affect cR , then each isolation is effectively independent, and to 

find the expected benefit, we can simply multiply ( )cF R  by the number who isolate.  However, 

if a nonvanishing fraction isolate this will alter cR .  Then we see an increasing marginal benefit 

of collective compliance until cR  reaches 1.  Each additional individual who isolates increases 

the effectiveness of those who have already isolated by reducing the level of overdetermination. 
 

Figure 5: Measuring the effectiveness of many individuals isolating.  Left The average impact 
assuming that other interventions set a starting value of cR , but an additional fraction of the 

infected individuals isolate.  Calculations are done in the limit of an infinite population.  As the 
fraction of infections isolating increases, the size of the epidemic decreases.  Eventually a larger 
fraction isolating translates to a smaller absolute number isolating due to the smaller epidemic.  
When enough isolate to drive the resulting cR  close to 1 almost all infections are averted while 

only a small fraction of the total population isolate, so the number of infections averted per 
isolating individual diverges.  Beyond this threshold (white region), epidemics are impossible and 
the number of infections averted per infected individual is infinite.  Right The marginal benefit of 
one more infected individual isolating.  That is, given the fraction isolating and the initial cR , 

this gives the number of infections averted if one additional infected individual who would not 
isolate is successfully identified and isolated. 
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Figure 5 shows a similar trend to Figure 2, with a synergistic effect: if a larger fraction of infected 
individuals isolate, the expected number of infections averted per isolating individual grows.  So, 
their combined impact grows faster than linearly in the fraction isolating. If cR  is large and very 
few infected individuals are isolating, then those who do have little impact.  However as the 
fraction of infectious individuals who isolate increases, the average impact grows.  As the system 
nears the epidemic threshold the average impact grows large, and the impact of each additional 
infected individual isolating diverges.  Past the threshold where epidemics become impossible, 
the average impact is infinite (in the large-population limit) because only a small number of 
individuals isolate, but in doing so they eliminate the epidemic.   

Preventing infection 
 
Above we considered individuals acting to prevent onwards transmission only after their 
infection.  This has no direct benefit to the individual.  Now we instead consider an individual 
acting to avoid infection.  This protects the individual and prevents onwards transmission.  This 
would require the individual to either receive a vaccine or prophylaxis which prevents infection.  
 
We first consider the impact of a single individual taking proactive actions to prevent her 
infection.  We assume these actions are fully effective.  The probability that she would be infected 
if she did not take those actions is equal to the fraction of the population infected in the epidemic 
(often called the attack rate).  Assuming that the population is well-mixed and susceptibility is 
uniform across the population, the attack rate A  depends only on the mean of the offspring 
distribution, not on any other details of the distribution.  It can be calculated from the implicit 
final size relation (24–26) 

 1 ce−= − R AA  
We can think of the attack rate as a function of cR , that is ( )c=A A R .   

If an individual makes no behavior change, her probability of being infected is ( )cA R .  So, if she 
takes perfectly effective measures to eliminate her chance of being infected, then the direct 
benefit to herself is a reduction of her infection probability by ( )cA R .  However, this also 
prevents transmissions from her to those who would otherwise have been infected by her (her 
“descendants”).  So, if she would have been infected, this reduces the expected number of 
descendants by an amount ( )cF R .  The total reduction in expected infections is 

( )[1 ( )]c c+A R F R .  The first factor ( )cA R  represents the probability that the vaccine or other 

effective disease-avoidance measure prevents her infection.  The second factor, 1 ( )c+ F R  is the 
expected number of infections that she would have occurred had she been infected, but now do 
not occur: the 1 represents her own infection, while ( )cF R  represents the expected infections 
averted in her descendants due to the lack of onwards transmission.   
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Figure 6: The expected total number of infections averted by an individual taking sufficient action 
(such as a vaccine or prophylactic medication) to prevent her own infection (top blue curve) for 

1c >R .  This is partly from the probability that she prevents her own infection [bottom orange 
curve, equal to ( )cA R ] -- note that the probability of averting her own infected equals the 

expected number of her own infections averted.  The other part of the total benefit is because 
some of her descendants end up uninfected, shown in the difference between the two curves 
(shaded yellow) ( ) ( )c cF R A R . 

Figure 6 tells a surprising story.  We consider an individual in the population who avoids 
infection through vaccine, prophylactic medication, or some other method.  When she takes this 
action, we have no prior knowledge of whether she would be infected or otherwise.  The 
probability her action prevents her own infection is equal to the probability she would have been 
infected without the action, in other words it is the attack rate ( )cA R , shown in the orange curve.  

So the expected direct benefit to the individual is the probability the individual’s infection is 
prevented (this can be thought of as the expected number of infections of the individual that are 
prevented).  This increases from 0 at 1c =R  to near 1 at 4c =R  (and approaches 1 as cR  

increases further). 

The total number of infections averted includes the possible infection averted of the treated 
individual as well as the avoidance of infection of some who would have been descendants of this 
individual.  The expected number of infections averted in descendants is the yellow region, and is  

( ) ( )c cF R A R  representing the expected number of infections averted in descendants if she would 
have otherwise become infected times the probability she would have otherwise become infected.  
The combined effect (blue curve) shows the expected number of infections averted in the entire 
population, including the direct effect to the treated individual and the indirect effect to her 
descendants.  Interestingly, the combined effect is always larger than 1 for 1c >R . 

Because ( )cF R  is small for large cR , due to a high attack rate and significant overdetermination, 

the expected number of additional infections averted in descendants is very small.  So, for large 
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cR , the expected combined number of infections averted (including her own) is just above 1, with 
her own benefit constituting almost all of that. 

For smaller cR  approaching 1 however, the probability that the action prevents her infection (

( )cA R ) drops and approaches 0.  At the same time, the expected number of additional infections 

averted if infected ( ( )cF R ) grows to infinity.  The combined effect is larger for smaller cR .  For 

values of cR  near 1, the expected number of additional infections averted approaches 2, even as 

the probability that any infections are averted goes to 0.  A key additional observation is that for 
any 1c >R , the expected number of infections prevented by a 100% effective vaccine 

administered is greater than 1.  

To make this clearer, consider the example of 1.01c =R .  The probability a given vaccination 

directly protects the recipient is small, equal to 0.0197≈A  (bottom curve of Figure 6).  However, 
in those rare cases in which the recipient does become infected, the number of additional 
infections comes from a distribution as in Figure 4.  From Figure 3, the expected number of 
additional infections would be ( ) 99.66c ≈F R .  The expected number of individuals whose 

infections are averted due to indirect protection from the vaccine is 1.9670≈AF  (shaded part of 
Figure 6).  The combined benefit is about 70.0197 1.967 1. 60 98≈+  (top curve of Figure 6). 

Figure 7: Measuring the impact of many individuals taking actions (such as a vaccine or 
prophylactic medication) to avoid infection without prior knowledge of whether they would be 
infected otherwise.  Left: The marginal reduction in infections from one more individual 
changing behavior.  The marginal benefit increases until the epidemic threshold is reached.  Near 
the epidemic threshold, on average each additional individual acting prevents about 2 infections.  
Above the critical fraction avoiding infection (purple region), each additional individual has no 
net impact.  Right: The number of infections averted over the entire population taking protective 
action.  Until enough individuals take action to prevent an epidemic, the average is greater than 
1, and the average increases until the threshold is reached after which it begins to fall. 

In Figure7 we see the impact of multiple individuals taking a vaccine or prophylactic medication 
or otherwise avoiding infection.  A key observation is that as more individuals take self-protective 
actions, the marginal benefit of the next individual to act increases (left plot), until the epidemic 
threshold is crossed and epidemics are eliminated.  Likewise, the average per-individual benefit 
increases as more individuals act until the threshold is crossed (right plot).  After this, the 
marginal benefit is 0 and the average impact drops.  Remarkably, until the epidemic threshold is 
reached, each individual that acts prevents (on average) greater than 1 infection.   
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Discussion  
 
This is the first paper to model the implications of overdetermination and synergistic collective 
actions for the outcome which has important implications for evaluating the ethical acceptability 
of public health measures. We have analyzed the impact of individual and collective behavior 
modifications related to several important public health measures to control spread of infectious 
disease, namely quarantine of arrivals, isolation of infected individuals, and the use of 
vaccines/prophylaxis to prevent infections.  A common theme of our results is that there is a 
synergistic impact: as a larger proportion of the population adopt a protective behavior, the 
benefit created per individual changing behavior increases. 
 
We now discuss some implications our observations have for ethical policy design. 
 
Quarantine to prevent epidemic 
Border quarantines can prevent the introduction of infection into a population.  However, they are 
costly and rarely perfectly effective.  Since our results show that the benefits of quarantine are 
almost entirely lost if the disease manages to successfully establish itself within the community, 
the policy cannot allow even one single successful incursion (i.e., an introduction that results in 
sustained transmission). Our analysis also shows that any single individual’s compliance with 
quarantine will only have a large impact where there is near perfect compliance amongst others.  
This is because, if an epidemic will happen anyways, then the impact of an additional introduction 
from a quarantine breach is generally minimal.  The impact of a quarantine leak once disease 
spread is already established in the population is equivalent to having an infected individual who 
could isolate failing to isolate, which is discussed below. 
 
It should be noted that if we assume that the community will be able to introduce interventions 
that would successfully eliminate the introduction, then the balance changes somewhat.  In this 
case the risk of introductions (provided they occur during a period of elimination) is additive, and 
so each individual who does not comply with the intervention poses a separate risk to the 
population. 
 
Isolation to avoid transmission 
We find that isolation after infection can be a highly efficient intervention. The high efficiency is 
for two reasons.   

• First, as a larger fraction of the infected individuals isolate, the total number infected 
drops, which tends to limit the number that need to isolate.  Once the fraction isolating 
becomes large enough, the drop in total cases is sufficient that the number who isolate also 
drops. 

• Second, the intervention only targets those who are infected, and only when they are 
infected.  This means that those who are never infected are not burdened by the 
intervention (although they benefit from the compliance of infected individuals). 

Isolation is most efficient on a per-individual basis when the reproduction number is close to 1, or 
if a large enough fraction is already isolating to reduce the reproduction to near 1.  Near the 
epidemic threshold each individual who isolates prevents, on average, the infection of a large 
number of people (though still small compared to the population size).  At the epidemic threshold, 
the distribution of number of infections prevented is a power-law (a straight line on a logarithmic 
plot).  In these situations, large outbreaks are rare, but they are not so uncommon that we can 
ignore them – though they are very rare, their very large size means that the average outbreak is 
large. 
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Isolation of newly infected individuals requires the ability to quickly identify infected individuals, 
perhaps through the use of rapid tests or effective contact tracing.  In cases where there is 
asymptomatic or presymptomatic transmission, this will generally be more difficult (27, 28)   
 
Actions taken to avoid individual infection 
An individual may avoid infection in several ways.  If an effective vaccine or prophylactic 
medication is available, then he may be able to use these to avoid infection.  Alternately, the use 
of personal protective equipment (PPE), or behavior changes can reduce the probability of 
infection.  If the measures taken are less than 100% effective, the expected impact is scaled by the 
corresponding factor.   
 
These options to avoid infection may impose costs on an individual even though we do not know 
in advance whether he would ever be infected without them.  This cost can be mitigated in part by 
changing the level of protection based on local prevalence, e.g., by wearing PPE only when the 
risk of infection is high.   
 
A key observation is that for an intervention such as a perfect vaccine, unless the control 
threshold is crossed and the epidemic is eliminated, every vaccine prevents on average more than 
one infection.  Our analysis allows us to quantify how that benefit is distributed.  Most of the 
benefit goes to the vaccine recipient if cR  is large.  In contrast, if cR  is near 1, the protective 
measure has almost no impact on the individual’s probability of infection, but it has a large 
indirect effect on others in those rare cases where an individual does become infected.  This is 
because overdetermination is reduced in low transmission settings, so that the net expected 
number of infections averted approaches 2.  For the example of 1.01c =R  shown in the results 
section, the probability that vaccine prevents infection of the recipient is about 2%.  But when this 
happens, on average about 100 subsequent infections are prevented.  So on average about 
2% 100 2× =  infections are averted, but about 99%  of the benefit is due to indirect protection of 
those not vaccinated. 
 
Ethical and policy implications 
Some of our results are relatively unsurprising: if compliance with a quarantine is low, then 
restricting the liberty of those subject to quarantine is hard to justify if the goal is to prevent an 
epidemic.  However, some of our other results may be more counterintuitive.  Specifically, when 

cR  is just a little above 1, individual actions have more impact than when cR  is well above 1 
(due to significant overdetermination at high transmission). 
 
In the case of isolating after infection, the expected benefit can be very large if cR  is close to 1.  
However, that benefit is enjoyed by someone other than the one enduring isolation.  In the case of 
perfect vaccination/prophylaxis the expected number of infections averted is always at least 1 if 

1c >R .  However, when cR  is close to 1 the benefit is almost entirely experienced by those not 
receiving the intervention.  These observations provide quantitative data to inform ethical policy 
design for interventions in cases where the cost of compliance is borne by individuals who receive 
little or no benefit from compliance. 
 
As a general rule, we see that these interventions are most effective on a per individual basis 
when the reproduction number is close to 1.  When more individuals comply with an intervention, 
this acts to reduce the overall reproduction number, and the public health benefits per individual 
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affected by the intervention increase – each additional individual complying increases the average 
effectiveness of those already complying (due to reductions in overdetermination). 
 
Our results speak to the benefit provided by additional individuals complying with policies to 
isolate/vaccinate/etc., but this requires that the policies exist with resources available so that, for 
example, an individual can be tested with a high-accuracy test.  This may have implications for 
the level of resources devoted to areas such as providing paid leave for infected individuals, to 
hiring additional contact tracers, or to the provision of rapid testing to the general population.  If 
the background reproduction number is close to 1, then the benefit of these interventions will be 
much higher than if it is far from 1. 
 
Punitive policies are often unjustifiable 
Our observations lend support to the argument that for a highly infectious disease, if compliance 
is not high, then there is little ethical rationale to punish individuals for imposing risks. In high 
transmission contexts, each individual makes little difference to overall population-level harm 
beyond their own infection status and outcome (although we are ignoring health system capacity 
constraints in this analysis). While some might think that punitive or coercive policies might be 
justified by the goal of raising compliance, it may be more productive to communicate the 
benefits of collective action. 
 
Promoting collective action 
Population benefits of collective compliance increase with greater compliance.  One implication 
might be that public health messaging should promote high levels of compliance as a good to 
society rather than stigmatize those who fail to comply.  It is perhaps not widely recognized that 
large numbers of people acting together to reduce transmission of an infectious disease result in 
synergistic public health benefits.  To the extent that individuals are aware of such patterns and 
act on this knowledge, this might reinforce behavior that improves epidemic control through 
higher compliance. 
 
Our modeling illustrates that the public health consequences directly related to an individual’s 
noncompliance with interventions is largest when cR  is near 1, for which overdetermination is 
rare and the epidemic might seem under control.  Communicating the benefits of collective action 
might help to improve public cooperation with control measures, especially by making people 
aware that in a highly susceptible population it is all the more important that people (continue to) 
contribute to control measures as they drive cR  close to 1, where someone might reasonably 
conclude his individual incentive to comply is low (as his risk of infection is negligible) (Figure 3 
and Figure 6). 
 
Support for individuals who isolate 
A key consequence of our results is that there is a disparity in who receives the benefits from 
individual actions.  Near 1c =R  an individual’s action produces much more public benefit than 
private benefit.  This suggests the need for policies based on reciprocity that provide support for 
individual compliance (e.g., sick leave or isolation payments) are likely to improve the ethical 
acceptability and effectiveness of public health measures to reduce transmission. 
 
Limitations and future work: 
 
There are a number of limitations to this work that should be addressed in future analysis. 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 15, 2022. ; https://doi.org/10.1101/2021.12.02.21267207doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.02.21267207
http://creativecommons.org/licenses/by-nc-nd/4.0/


Mathematically, we have studied a relatively simple model of disease – using an SIR model 
without any incubating or asymptomatic stages and once recovered individuals remain immune.  
We treat the population as fully mixed, with all individuals equally susceptible and ignore 
variable risks of severe outcomes.  We have focused our attention on measuring the benefit of an 
intervention – the costs should be explicitly measured as well to balance against those benefits.  A 
more nuanced model will be needed to investigate issues related to more complex disease and 
population structure.  Additionally, our focus has been on basic measures of impact, namely the 
prevention of an epidemic and reduction in infections.  Typically, we expect the number of 
infections to be a good proxy for morbidity and mortality, with a constant proportion of infections 
having severe outcomes, though a more realistic model would account for differences within 
distinct subgroups having different mixing patterns.  We have not considered the fact that infected 
individuals may occupy health care resources that prevent others from accessing care.  Nor have 
we considered issues such as the importance of minimizing the epidemic peak as a separate issue 
from minimizing total infections. 
 
We have assumed that the background conditions are constant.  The interventions are assumed to 
be unchanging, while in reality they may change in response to the epidemic dynamics.  In a real-
world scenario we might expect that treatment methods might improve over time; thus a delayed 
infection might be less severe than an earlier infection.  We might also anticipate that a vaccine 
may be developed, thus a delayed infection may actually end up being a prevented infection or a 
less-severe infection.  On the other hand, we have also assumed that the disease remains 
unchanged.  In reality more transmissible variants may emerge, and so delaying early 
transmission may come at the cost of a significantly larger later epidemic.   
 
Although this analysis is intended to be widely applicable to diseases which induce immunity, 
obviously, many readers will focus specifically on the implications for SARS-CoV-2.  To avoid it 
being overinterpreted in that context, we discuss applications and limitations for applying it to the 
SARS-CoV-2 pandemic.  The most significant limitation is that our model does not include the 
role of multiple variants.  The variants have driven much of the later phases of the pandemic 
through avoiding immune response.  Thus, our results are most appropriately applied to just a 
single wave.  Once the Delta variant was replaced by the Omicron variant, the effectiveness of the 
original monovalent vaccine against transmission dropped significantly (29).  Inasmuch as the 
indirect benefit to others from vaccine blocking transmission is reduced, our results about the 
benefit of effective prophylactic measures no longer apply to the original monovalent vaccines. 
 
Our results showing that the benefit of a single individual’s actions drop as cR  rises remain valid 
for each later wave, either because of changes in the background interventions or changes in the 
infectiousness of the virus.  Our modeling results imply that the ethical implications of an 
individual’s behavior are significantly reduced by overdetermination in waves which have higher 

cR  whether this is because the disease might be more transmissible or because a significant 
proportion of other individuals are not taking protective measures.  
 
Materials and Methods 
In this section we derive our mathematical approaches and perform some of the technical analysis 
of the model.  We begin by briefly describing the model assumptions and providing two small 
examples demonstrating key features of stochastic infection spread. We then derive the 
mathematical approaches.  Finally, we perform some of the analysis, ending with a rigorous 
derivation of the observation that as 1c

+→R  the expected number of infections prevented by a 
completely effective vaccine approaches 2. 
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Model Assumptions 
 
We assume a stochastic model of infection spread, based on the standard Susceptible-Infected-
Recovered (SIR) model (30, 31).  Each infected individual potentially transmits to k  others, 
chosen uniformly at random from the population, where k  is chosen from some prescribed 
distribution.  If the recipient of a transmission is susceptible, an infection event occurs.  If not, the 
transmission has no effect.  The distribution of the number of transmissions k  is known as the 
offspring distribution, with kp  denoting the probability of k  transmissions.  After transmitting to 
its offspring the infected individual recovers with immunity. 
 
If there are no interventions in place, then the average of the offspring distribution is the basic 
reproduction number 0R .  If interventions are in place, then the average of the offspring 

distribution after accounting for those interventions is the reproduction number under control cR

.  We assume that cR  remains constant for the duration of the epidemic.  Because transmissions 
have no effect when the recipient has already been infected, we also introduce the effective 
reproduction number eff ( )tR  which measures the average number of successful transmissions 

from an infected individual.  effR  accounts for both the intervention and the immunity that the 

population has developed.  We use ∞R  to denote eff ( )∞R .  It is less than 1 and equals cR times 

the proportion of the population that is susceptible at the end of the epidemic 1 ( )c− A R . 
 
It is known that the probability an epidemic becomes established is sensitive to the frequency of 
superspreading, the tendency that a small fraction of the infected individuals cause a large fraction 
of the transmissions (19, 21–23).  To investigate the significance of superspreading in our 
analysis, we consider the impact of a Poisson offspring distribution and a negative binomial 
distribution.  The Poisson distribution is parametrized by a single variable, the mean cR , and 
individuals who transmit significantly more than average are negligibly rare.  The negative 
binomial distribution is parametrized by the mean cR  and a dispersion parameter, which we take 
to be 0.16, which includes significant superspreading.  This is consistent with estimates for SARS 
(22) and allows us to clearly show what impact (if any) superspreading has.  More recent 
estimates for SARS-CoV-2 suggest that the dispersion parameter may be larger (21); however our 
goal is to investigate the qualitative impact of superspreading rather than making exact 
predictions for a particular disease. 
 
Example Outbreaks 
 
In Figure 8, we show transmission chains in two outbreaks in populations of 50  individuals.  The 
two populations have 1.5c =R  and 2.5c =R .  Each infected individual transmits independently 

to each of the other 49  individuals with probability / 49cR , resulting in a distribution that is 

approximately Poisson with mean cR .  In both cases, the outbreak successfully establishes and 
only terminates because eventually a significant number of transmissions go to previously 
infected individuals.  In a larger population, those blocked transmissions would have gone to 
other susceptible individuals, resulting in a large-scale outbreak, that is, an epidemic. 
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Figure 8 Two sample outbreaks with 1.5c =R  (top) and 2.5c =R  (bottom), each starting from a 

single infection in a population of 50 individuals.  Only the eventually infected nodes are shown.  
The red lines denote successful transmissions while the gray lines denote transmissions from an 
infectious individual to one who had already been infected.  Note that given the transmissions in 

the 1.5c =R  case, had individual 36 (second row on right) been the initial infection, only 

individuals 36, 4, and 8 would have been infected.  Additionally, had individual 49 (fifth row on 
right) isolated after infection (or been effectively protected from infection), this would have 

prevented the infections of 32, 39, 40, and 17.  In the 2.5c =R  case, there are many more 

(potential) transmission chains: more infections occur, transmission chains tend to be longer, and 
removing one individual tends to protect fewer others. 

 
Figure 8 shows that although many epidemics spread far and are limited only by the population 
size, outbreaks starting from some individuals would not spread far.  For example, in the top plot 

if the infection introduced in individual 42(second node in third level) rather than individual 0 or 

if in the bottom plot infection started with 28 (last node in third level), these would not lead to 
long transmission chains.  However, many of the other individuals would spark large-scale 
transmission through the population.  So, if multiple introductions occur, it is likely that more 

than one of them is sufficient to spark an epidemic.  This is more likely for larger cR .  This 

illustrates how epidemics can be overdetermined, which plays an important role in our analysis. 
 
Additionally, we see that individual cases of infection may or may not be overdetermined. If we 
blocked transmission from some individuals it would provide effective protection to others.  For 

example, in the top plot preventing transmissions from individual 49  (lower right) would be 

sufficient to prevent the infection of 32, 39, 40, and 17 .  However, many infections are 
overdetermined because there are alternate transmission routes.  For example, in the top plot 

preventing transmissions from 10  (first node in second level) would prevent the infection of 25 , 
but all other descendants would eventually be infected through alternate chains of transmission.  
The existence of multiple transmission chains to the same individual becomes more likely for 

larger cR . 
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In a practical setting we do not know a priori which transmissions would occur.  Based on the 
offspring distribution, we can calculate the probability that an introduced infection results in an 
epidemic.  We can also calculate the distribution of the number of infections averted by one 
individual’s behavior change.  However, due to the stochasticity inherent in the system, for a 
specific infected individual introduced to a population, we cannot know in advance whether he 
would spark an epidemic, or in an ongoing epidemic, we do not know exactly how many 
infections another individual might avert by changing her behavior.  Thus, our analysis will focus 
on the expected (i.e., the average) impact over many realizations. 
 
The key quantities we focus on are: 

• The expected impact of a single infected individual acting alone or multiple infected 
individuals acting together to isolate prior to entering a community to prevent an 
epidemic. 

• The expected impact of a single individual acting alone or multiple individuals acting 
together to reduce the total number of infections occurring in an epidemic. 

 
Mathematical Methods 
We now build up the mathematical methods used to analyze the sort of outbreaks that can occur.  
We will assume throughout that the population size is very large.  Under this assumption two 
typical outcomes occur in large populations: either an outbreak remains small and dies out 

quickly or it becomes an epidemic that grows until it is limited by the population size.  If 1c <R  

only small outbreaks occur.  If 1c >R  large epidemics can occur, but small outbreaks are still 
possible.  The size distribution of the number infected in small outbreaks is independent of the 
population size but does depend on the offspring distribution.  In contrast, in a large epidemic the 
proportion infected is independent of the population size (so the number infected is proportional 
to the population size) and the proportion is independent of the offspring distribution. 
 
Probability Generating Functions 

In this section we briefly introduce some properties of probability generating functions (PGFs).  
More complete details can be found in (23, 32).  

 

The number of outgoing edges from a particular node is chosen from the offspring distribution.  If

0p , 1p , … represent the probability of zero, one, … offspring, then the PGF of the distribution 
(32) is defined to be 
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In many cases it may be difficult to find the coefficients of a PGF ( )xμ  directly, but it is possible 

to calculate the values of ( )xμ  to high precision on the unit circle in the complex plane.  Then we 

can use a Cauchy integral to find arbitrary coefficients of ( )xμ  [see section A.1 of (23)] (in fact if 

we parametrize the unit circle by the angle θ , then ( )xμ  becomes a complex-valued Fourier 

Series in θ , and the Cauchy integral becomes the formula for the coefficients of a Fourier Series).  

In the context of disease spread, if ( )x∞Ω  is the PGF for the final size distribution when the 

reproduction number is less than 1, using approaches shown below, it is possible to calculate 
( )x∞Ω  at arbitrary values of x .  Then this approach can be used to find the coefficients of the 

series expansion of ( )x∞Ω  (23). 
 
The final size relation 
We have assumed homogeneous susceptibility in a well-mixed large population.  It is well-known 
that the final size of epidemics under these assumptions depends on cR , the average of the 
offspring distribution, but it does not depend on finer details of the offspring distribution.  Here 
we briefly derive the final size relation following  (24, 25) [see also (26) for related results].  We 

let ( )cA R  denote the expected proportion of the population infected in an epidemic.  Taking N  

to be the (large) population size, the total number of infections is ( )c NA R .  Since on average 

they each produce cR  transmissions, the total number of transmissions that occur in the epidemic 

is well-approximated by ( )c c N⋅ ⋅R A R .  On average each member of the population thus 

receives ( )c c⋅R A R  transmissions.  In a large well-mixed population, we can reasonably assume 
independence of these events.  This means that the number of transmissions received is Poisson-

distributed with mean ( )c cR A R .  The probability of receiving no transmissions is ( )c ce− ⋅R A R .  
However, because this is the probability of not being infected it also equals the proportion of the 
population that remains susceptible.  We arrive at the final size relation 

 ( )( 1) c c
c e−= − R A RA R  

This can be solved iteratively by setting 1=1- e c g

g

−
+

R AA  with 0 1=A . 

Calculating epidemic probability 
To calculate the epidemic probability, we consider a process known as the Galton-Watson process 
(or birth-death process).  Let α  denote the probability that a given individual in a branching 

process has a finite number of descendants.  Then 1 α−  is the probability of an infinite number of 
descendants.  The number of descendants is finite exactly when every single offspring has a finite 
number of descendants.  Since each offspring has a finite number of descendants also with 
probability α  we find 
 ( )i

i
i

pα α μ α==∑  

Thus, the probability of an infinite number of descendants can be calculated by finding the roots 

of ( )α μ α=  where ( )xμ  is the PGF.  One root is always 1α=  corresponding to never having an 
infinite number of descendants, but if there is another root, it will lie between 0 and 1, and it is the 
correct root to choose.  This other root exists when 1c >R . 
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In practice we can find α  by setting 0 0α =  and letting 1 ( )g gα μ α+ = , until the values found for 

gα  converge.  In this approach, gα  can be interpreted as the probability that the outbreak 

terminates by generation g. 
 
Calculating the impact of isolation after infection. 
 

 
Figure 9: A schematic showing the descendants of u  with filled circles showing those whose 
infections would be averted if u  isolates after infection.  Dashed hollow circles denotes infected 
individuals that are not descendants of u  who provide additional transmission paths to some 
descendants of u .  Hollow circles with solid boundaries denote the individuals whose infection is 
overdetermined. 

 
To determine the expected impact of isolation of u  after becoming infected, we need to calculate 
the expected number of descendants an individual who would not be infected through some 
transmission path not through u , as shown in Figure 9.  To determine this, we consider the 
residual offspring distribution, that is the distribution of the number of direct offspring who 

would not be reachable along any other transmission chain.  If an individual would cause i 
transmissions, a fraction ( )cA R  of them go to individuals who would otherwise be infected 

through a different chain, as would all their descendants, and so only a fraction 1 ( )c− A R  are 
successful. 
 

The average of the residual offspring distribution is ( )][1 c c∞ = −R A R R , which is the initial 

reproduction number multiplied by the fraction who remain susceptible at the end.  This is the 

“effective reproduction number” at the end of the epidemic.  If 1c ≤R , then ( ) 0c =A R  and we 

find c∞ =R R .  However, if 1c >R , then 10 ( )c << A R , and it turns out that ∞R  is less than 1 

(otherwise the epidemic would never stop growing).  The expected number of infections averted 

among those who are reachable from a path of g generations from u  ends up being g
∞R .  

Summing this over all g, we find that the initial infected individual’s isolation prevents 
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1

( )
1

g
c

g

∞
∞

∞
= ∞

= =
−∑
R

F R R
R

 

infections, where [1 ( )]c c∞ = −R A R R  is the effective reproduction number at the end of 

transmission in a population having reproduction number under control of cR .  Note that when 

∞R  is close to 1, this is large.  This happens when cR  is close to 1. 
 
To go further, we can calculate the distribution of the total number of infections averted.  The 

PGF for the residual distribution is ( 1- )xμ ∞ ∞+R R .  Following methods derived in (23), the PGF 

for the size distribution of the number of infections averted is ( ) (1 ( ))xxx μ∞ ∞ ∞ ∞Ω Ω= − +R R .  

This can be calculated for arbitrary values of x  by iterating 1 ( +( ) 1 ( ))g gx x xμ+ ∞ ∞Ω = − ΩR R , 

starting with 0( ) 1xΩ = .  Iterating for values of x  on the complex unit circle until the results 

converge gives us ( )x∞Ω  at those values.  Numerically approximating a Cauchy integral, this 

allows us to calculate the individual coefficients of ( )x∞Ω , from which we know the distribution 
of the total number of infections averted. 
 
To calculate the impact of multiple individuals isolating, we note that if a fraction ρ of the 

population isolate after infection, then the offspring distribution is modified.  With probability ρ 

an infected individual isolates and causes no infections, while with probability 1 ρ−  they cause a 

number of infections chosen from the original distribution.  This means that cR  is effectively 

multiplied by 1 ρ− .  We can redo the calculations for final size and individual impact above 

using (1 ) cρ− R  instead of cR . 
 
Calculating the impact of avoiding infection 
If an individual either gets a 100% effective vaccine or prophylactic medication, she can avoid 

infection.  Doing so, she prevents her own infection with probability ( )cA R , as it has no effect if 

she would have avoided infection anyways.  When she prevents her own infection, the total 

number of infections averted due to this is 1 ( )c+F R  where the 1 accounts for protection of 

herself and ( )cF R  accounts for protection of others.  Combining this reduction with the 
probability that the reduction occurs, we find that the expected reduction in infections due to a 

single individual taking measures to prevent her own infection is ( )[1 ( )]c c+A R F R . 
 
To calculate the impact of multiple individuals getting vaccinated or otherwise avoiding infection, 
we note that if a fraction ρ of the population is immune to infection, then the offspring 

distribution is modified.  With probability ρ a random transmission is blocked by the protection 

to the recipient.  This means that cR  is effectively multiplied by 1 ρ− , though for a different 

reason than before.  We can redo the calculations for final size and individual impact above using 
(1 ) cρ− R  instead of cR . 
 

We now derive the expected number of infections averted for the limit approaching 1c =R  from 
above, showing that it matches the apparent limit of 2 shown by the numerics.  We need to 
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calculate 
1

lim )(1
c

+→
+

R
A F  where 1 ce−= − R AA  and / (1 ) [1 ] / (1 [1 ] )c c∞ ∞− = − − −=F R R A R A R .  

To find this value, we invert the relationship between A  and cR  (for 1c >R ), writing 
1

ln(1 )c = − −R A
A

.  We now take the limit  

 
1 0

0

lim (1 ) lim (1 )

(1 )
lim 1

1 (1 )

c

c

c

+ +

+

→ →

→

+ = +

⎛ ⎞−+⎜ ⎟−⎝ ⎠
=

−

R A

A

A F A F

A R
A

A R

 

Substituting for 
1

ln(1 )c −= −R A
A

, we get 

 
0 0

0

(1 ) (1 ) ln(1 )
lim 1 lim

1 (1 ) (1 ) ln(1 )

(1 ) ln(1 )
lim

(1 ) ln(1 )

c

c
+ +

+

→ →

→

⎛ ⎞− − −+ = +⎜ ⎟− − − − − −⎝ ⎠

− −=
− − − −

A A

A

A R A A A
A A

A R A A A

A A A

A A A

 

Taking one round of L’Hopital’s rule yields 

 
0 0 0

(1 ) ln(1 ) (1 2 ) ln(1 )
lim lim 1 lim

(1 ) ln(1 ) ln(1 ) ln(1 )+ + +→ → →

− − − − −= = −
− − − − − −A A A

A A A A A A A

A A A A A
 

Applying L’Hopital’s rule again yields 

 
0 0 0

1
1 lim 1 lim 1 lim (1 )

1ln(1 )
1

+ + +→ → →
− = − = + −

− −
−

A A A

A
A

A
A

 

which is 2. 
 
Extensions to multigroup populations 
 
It is natural to consider a population with multiple subgroups having different mixing patterns and 
different disease impacts (e.g., this might be multiple age classes).  Although we do not attempt 
that here, the generalization of the methods we have used is straightforward.  The application of 
probability generating functions to a multi-type branching process is described in (23).  This 
would allow us to address the probability of an epidemic when quarantine is considered. 
 
To analyze the expected impact an individual has on the number of infections, we would first 
calculate the final size of the epidemic in each subgroup, as described in (24).  Then we would 
need to generalize ∞R  to a matrix that captures the transmissions between and within groups at 
the end of the epidemic.  This would allow us to calculate the expected number of descendants 
accounting for overdetermination, that is, through the residual population after allowing the rest 
of the epidemic to spread. 
 
Finally to find the distribution of the number of descendants (after accounting for 
overdetermination), we would again use the final size of the epidemic in each subgroup, and then 
we would follow (23) to find a distribution of the multi-type branching process through the 
residual population. 
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