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Abstract

Against a backdrop of widespread global transmission, a number of countries have successfully
brought large outbreaks of COVID-19 under control and maintained near-elimination status.
A key element of epidemic response is the tracking of disease transmissibility in near real-time.
During major outbreaks, the reproduction rate can be estimated from a time-series of case,
hospitalisation or death counts. In low or zero incidence settings, knowing the potential for the
virus to spread is a response priority. Absence of case data means that this potential cannot be
estimated directly.

We present a semi-mechanistic modelling framework that draws on time-series of both be-
havioural data and case data (when disease activity is present) to estimate the transmissibility
of SARS-CoV-2 from periods of high to low – or zero – case incidence, with a coherent transi-
tion in interpretation across the changing epidemiological situations. Of note, during periods of
epidemic activity, our analysis recovers the effective reproduction number, while during periods
of low – or zero – case incidence, it provides an estimate of transmission risk. This enables
tracking and planning of progress towards the control of large outbreaks, maintenance of virus
suppression, and monitoring the risk posed by re-introduction of the virus.

We demonstrate the value of our methods by reporting on their use throughout 2020 in
Australia, where they have become a central component of the national COVID-19 response.

Introduction

The first 12 months of the COVID-19 pandemic led to overwhelmed health systems and enor-
mous social disruption across the globe. Government strategy and public responses to COVID-
19 have been highly variable. Prior to the global circulation of the Delta variant, a small number
of jurisdictions had achieved extended periods of elimination through 2020 and into early 2021,
including Taiwan, Thailand, New Zealand and Australia [1, 2, 3]. Meanwhile, parts of Europe
and the Americas were heavily impacted by COVID-19 [4, 5], with health systems overwhelmed
by multiple explosive outbreaks. The Delta variant — with its increased transmissibility —
has recently led to epidemic activity, now likely to be sustained, in a number of previously low
prevalence settings [6, 7].
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A key element of epidemic response is the close monitoring of the rate of disease spread, via
estimation of the effective reproduction number (Reff) — the average number of new infections
caused by an infected individual in the presence of public health interventions and where no
assumption of 100% susceptibility is made. Methods are well-established for near real-time
estimation of this critical value and estimates are routinely assessed by decision-makers through
the course of an epidemic [8, 9, 10, 11, 12]. When Reff is above 1, the epidemic is estimated to
be growing. If control measures, population immunity, or other factors can bring Reff below 1,
then the epidemic is estimated to be in decline. Accurate and timely estimation of Reff , and the
timely adjustment of interventions in response to it, is critical for the sustainable and successful
management of COVID-19.

However, when incident cases are driven to very low levels — as occurred in Australia
following the first wave of COVID-19 from February to April 2020 — established methods for
estimating Reff are no longer informative. Yet the virus remains a threat, as evidenced by
multiple instances of re-introduction and subsequent additional waves in Australia throughout
2020 and early 2021. Independent of whether local (and temporary) elimination is achieved,
knowledge of SARS-CoV-2’s potential transmissibility and the risk of resurgence is a response
priority.

Here, by making use of social and behavioural data, we demonstrate a novel method for
estimating the ability of the virus to spread in a population, which is informative even when
case incidence is very low or zero. In the absence of cases, our method estimates the ability
of the virus, if it were present, to spread in a population, which we define as the ‘transmission
potential’. We use the word ‘potential’ to distinguish this quantity from an estimate of actual
transmission. When the virus is present, our method recovers the effective reproduction number
and, additionally, the deviation between the Reff and the transmission potential. Applying this
method in real-time provides an estimate of the transmissibility of SARS-CoV-2 in periods of
high, low, and even zero, case incidence, with a coherent and seamless transition in interpretation
across the changing epidemiological situations.

Our innovative methods and workflows address a major challenge in epidemic situational
awareness: assessing epidemic risk when case numbers are driven to low levels or (temporary)
elimination is achieved, as frequently occurred in Australia through 2020–21 [3]. We have
routinely applied this method to all Australian states and territories and reported the outputs to
peak national decision-making committees on a weekly basis since early May 2020. The concepts
of transmission potential and Reff have been incorporated into key instruments of government,
including Australia’s national COVID-19 surveillance plan [13]. The transmission potential and
Reff are reported to the public through the Australian Government’s weekly Common Operating
Picture [14]. While not addressed in this article, our methods have recently been updated to
include consideration of variants of concern [3] and the effect of vaccination [14] on reducing
the ability of the virus to spread in the population.

Novel method for estimating temporal trends in the transmissi-
bility of SARS-CoV-2

The effective reproduction number is the product of the number of contacts an infectious person
makes and the per contact probability of infection (the latter of which depends on the nature
and duration of contact) [15]. Both quantities are impacted by changes in behaviour, which are
in turn driven by changes in policy, such as stay-at-home orders and handwashing advice, and
the population’s perception and evaluation of risk, among other factors. The new techniques
introduced here provide an estimate for how observed changes in rates of social contact and the
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per contact probability of infection translate to changes in the ability of the virus to spread.
We estimate the time-varying ability of SARS-CoV-2 to spread in a population using a

novel semi-mechanistic model informed by data on cases, population behaviours and health sys-
tem effectiveness (see Materials and Methods). We separately model transmission from locally
acquired cases (local-to-local transmission) and from overseas acquired cases (import-to-local
transmission). We model local-to-local transmission (Reff) using two components (Figure 1):
the average population-level trend in Reff driven by interventions that primarily target trans-
mission from local cases, specifically changes in physical distancing behaviour and case targeted
measures (Component 1, the ‘transmission potential’ or TP); and short-term fluctuations in Reff

to capture stochastic dynamics of transmission, such as clusters of cases and short periods of
lower-than-expected transmission (Component 2, the ‘deviation’ between TP and Reff). During
periods of low or zero transmission, TP provides an evaluation of the ability of the virus to
spread, informing risk-assessments and supporting public health planning and response [16].

To estimate Component 1, we use three sub-models (Figure 1, labelled a, b and c). We
distinguish between two types of physical distancing behaviour:

(a) macro-distancing, defined as the reduction in the average rate of non-household contacts,
and assessed through weekly nationwide surveys of the daily number of non-household
contacts; and

(b) micro-distancing, defined as the reduction in transmission probability per non-household
contact, and assessed through weekly nationwide surveys from which we estimate the
proportion of the population reporting always keeping 1.5 metre physical distance from
non-household contacts.

By synthesising data from these surveys and numerous population mobility data streams
made available by technology company Google, we infer temporal trends in macro- and micro-
distancing behaviour (sub-models a and b). Furthermore, using data on the number of days
from symptom onset to case notification for cases, we estimate the proportion of cases that are
detected (and thus advised to isolate) by each day post-infection. By quantifying the temporal
change in the probability density for the time-to-detection (sub-model c), the model estimates
how earlier isolation of cases — due to improvements in contact tracing, expanded access to
testing, more inclusive case definitions, and other factors impacting detection rates — reduces
the ability of SARS-CoV-2 to spread.

Transmission potential (Component 1) reflects the average potential for the virus to spread at
the population level. During times of disease activity, Component 2 measures how transmission
within the sub-populations that have the most active cases at a given point in time differs
compared to that expected from the population-wide TP. The combination of Components 1 and
2 recovers the estimated Reff (see Equation (10) in Materials and Methods), as per established
methods [9, 10, 11]. When Component 2, the deviation between TP and Reff , is positively biased
(Reff > TP), it may indicate that transmission is concentrated in populations with higher-than-
average levels of mixing, such as healthcare workers or meat processing workers. If negatively
biased (Reff < TP), it reflects suppressed transmission compared to expectation. This may
be due to an effective public health response actively suppressing transmission (e.g., through
test, trace, isolation and quarantine), or other factors such as local depletion of susceptible
individuals, and/or the virus circulating in a sub-population with fewer-than-average social
contacts.
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Figure 1: Depiction of the relationship between data sources, model components, and reported
quantities.

Assessing epidemic activity and risk in Australia

To demonstrate the utility of our method, we report on its application to Australian data on
cases, population behaviour and health system effectiveness from the first 12 months of the
COVID-19 pandemic. We focus on the period from early March 2020 to late January 2021
prior to emergence of variants of concern in Australia (first Alpha, then Delta) and vaccination
roll out (refer to our recent technical report for details on our approach to variants of concern
[3]). We describe our results in the context of the COVID-19 epidemiology and public health
response in Australia during this period, noting that the methods were developed and applied
during the pandemic and contributed to government response efforts. We report retrospective
estimates (using data as of 24 January 2021 and our model as of September 2021). Where
relevant, we also report estimates made at the time of analysis in 2020, which may differ as a
result of updates to the case data and methodological improvements to our model over time, as
well as minor statistical variation and smoothing.

Across its eight states and territories, Australia has managed a number of distinct phases of
the pandemic — from an initial wave of importations (February–April 2020), to sustained peri-
ods of zero local case incidence (April–June 2020 and October–December 2020) to widespread
community transmission (June–October 2020). Like elsewhere in the world, key interventions
have included quarantine of overseas arrivals, restrictions on mobility and gathering sizes, ad-
vice on personal hygiene, and case targeted interventions. The specific measures, and the level
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Table 1: Definitions and interpretation of key estimated quantities from the model of SARS-
CoV-2 transmissibility in different epidemiological contexts. Reff = the effective reproduction
number. TP = transmission potential. C2 = model component 2.

Interpretation
Metric Definition Community transmission Local elimination

TP
Expected reproduction
number of a pathogen in
the general population

If established in the
general population,
whether the epidemic is
expected to grow (TP > 1)
or decline (TP < 1)

Suitability for the
pathogen, if it were
present, to establish and
maintain community
transmission (TP > 1) or
otherwise (TP < 1).

Reff

Average number of new
infections caused by an
infectious individual drawn
from the active cases

Whether the epidemic is
growing (Reff > 1) or in
decline (Reff < 1)

Not applicable

C2
Deviation between TP and
Reff

Whether the virus is
spreading faster (C2
positively biased) or slower
(C2 negatively biased)
among active cases than
expected

Not applicable

of control of SARS-CoV-2 transmission, has varied between states and over time, according to
changing epidemiology and response objectives, among other factors. The model has proven
informative across vastly different and rapidly changing phases of the pandemic.

To highlight these different epidemiological situations and the insights gained from our
model-based analysis, we draw on exemplar events from the Australian epidemic when describing
our results below. In Table 1, we summarise the key types of information provided by estimated
quantities under different epidemiological situations. Further, in Supplementary Figures S1–S7,
we provide time-series estimates of each metric and model sub-component from early March
2020 to late January 2021 for each Australian state and territory.

i) Initial wave of importations

Australia took an early and precautionary approach to managing the risk of importation of
SARS-CoV-2. On 1 February 2020, when China was the only country reporting uncontained
transmission, Australia restricted all travel from mainland China to Australia. Only Australian
citizens and residents were permitted entry from mainland China. These individuals were
advised to self-quarantine for 14 days from their date of arrival. From 20 March 2020, Australia
closed its borders to all foreign nationals, and from 27 March, shifted to mandatory state-
managed quarantine for returned citizens and residents, with weekly quotas on the number of
arrivals. These policies remained in place at the time of writing.

During the first half of March 2020, i.e., prior to the border closure, daily case incidence
increased sharply. Although more than two thirds of these cases had acquired their infection
overseas, pockets of local transmission were reported in Australia’s largest cities of Sydney
(New South Wales) and Melbourne (Victoria) [17] (Figure 2, panels A and E). From 16 March
2020, state governments progressively implemented — in rapid succession — a range of physical
distancing measures to reduce and prevent community transmission. These measures were part
of a coordinated national response strategy. By 31 March, Australians were strongly advised
to leave their homes only for limited essential activities and public gatherings were limited to
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two people (known as “stay-at-home” restrictions). Health authorities also advised individuals
to keep 1.5 metres distance from non-household members from mid-March [18].

Through the second half of March 2020, we estimate that transmission potential across states
and territories decreased substantially and rapidly from well above 1 to just below 1 (Figure
2, panels B and F). This reflected a marked increase in macro-/micro-distancing behaviour
(Figure 3, panels B, C, F and G) and a decrease in time-to-case-detection (Figure 3, panels
D and H). Our method, with its ability to distinguish between import-to-local and local-to-
local transmission, estimates that the local Reff dropped below 1 on 20 March in Victoria and
19 March in New South Wales — prior to the activation of stay-at-home restrictions (Figure
2, panels C and G). Physical distancing measures were implemented proactively — prior to
the establishment of widespread community transmission — suggesting that the effect of these
measures, in combination with border measures and case-targeted interventions, led to the
definitive control of a first epidemic wave.

ii) Successful suppression, re-opening of society

By early April 2020, local case incidence had been driven to very low levels in all Australian
states and territories. Substantial numbers of infections continued to be detected in quaran-
tined international arrivals. However, no breaches of quarantine of significant consequence were
reported until late May in the state of Victoria [19].

Despite physical distancing measures remaining in place through April, levels of macro-
distancing and micro-distancing behaviour steadily waned following peak levels of adherence in
the first week of April (Figure 3, panels B, C, F and G). This resulted in a steady increase in
estimated transmission potential, although it remained below 1 suggesting that the establish-
ment of community transmission was unlikely throughout this period (Figure 2, panels B and
F).

From May through to December 2020, the epidemiology of COVID-19 across Australia was
characterised by sustained periods of zero case incidence and intermittent, localised outbreaks
(with the exception of the state of Victoria, see below). With the gradual easing of restrictions
from May, levels of macro- and micro-distancing behaviour continued to decrease. Accordingly,
transmission potential steadily increased and by early June it had exceeded 1 in most states and
territories (Figure S1), suggesting that conditions were suitable to sustain onward transmission
if there were an undetected importation event or a breakdown in infection control for managed
active cases/identified importations.

During the period from late June to mid-October 2020, Australia’s most populous state
of New South Wales effectively controlled a series of localised outbreaks (the largest of which
involved hundreds of cases). This was achieved during a period where society remained relatively
open, though some restrictions on population movement and social gatherings were in place.
For example, household and public gatherings were limited to 20 people. Throughout this
period, as estimated at the time and now in this retrospective analysis, state-level transmission
potential hovered just above 1 (Figure 2, panel B), indicating that levels of population mixing
were sufficient to allow escalation of epidemic activity in the general population in the absence
of active public health measures to control outbreaks.

We estimate that Reff oscillated around 1 throughout this period (Figure 2, panel C). It
increased to above 1 at the onset of each incursion and subsequently dropped below 1 as each
cluster was contained, with no discernible change in state-level transmission potential (model
Component 1) in response to each cluster. These oscillations — strong positive and then
negative deviations from the transmission potential — are captured by model Component 2
and are clearly evident in the time-series (Figure 2, panel D). Each of the positive deviations
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from the transmission potential are consistent with heightened transmission among clusters
of cases. Each of the subsequent negative deviations from the transmission potential indicate
that the number of offspring from each case of the cluster was fewer than expected given the
transmission potential and estimated levels of population mixing. We interpret (and interpreted
at the time) this as likely reflecting a strong public health response (i.e., early detection and
isolation of cases associated with the cluster as a result of contact tracing and quarantine).
This was consistent with weekly reporting on the performance of contact tracing systems in
New South Wales, with 100% of cases interviewed within 24 hours of notification and 100% of
close contacts, identified by the case, contacted by public health officials within 48 hours of case
notification, from early July through to late October [14].

In mid-November 2020, a sustained period of very low case incidence (i.e., zero local cases
on all but 10 days in the previous 6 months) in the state of South Australia was disrupted by
a breach of mandatory quarantine which led to a cluster of more than 20 cases. At the time,
society was largely open with only minimal social restrictions in place. We estimate transmis-
sion potential to have been 1.71 [95% CrI: 1.47–2.01] as of 14 November in the retrospective
analysis (cf. 1.27 [95% CrI: 1.14–1.41] at the time) (Figure S1), suggesting that the risk of
establishing an epidemic was reasonably high (relative to the chance of stochastic extinction),
and that once established, transmission would be rapid. Supported by our real-time analysis,
authorities imposed a strict three-day lockdown across the entire state to enable contact tracers
to comprehensively identify and quarantine primary and secondary contacts of cases. Estimated
transmission potential declined dramatically around the time of activation of restrictions, and
quickly rebounded when restrictions were eased three days later (Figure S1). The incursion
was rapidly contained — as result of changes to transmission potential (driven by social re-
strictions), an effective public health response (i.e., active case finding and management) and
plausibly some favourable stochastic fluctuations — with South Australia returning to zero local
case incidence from mid-December 2020.

iii) Resurgence of epidemic activity in one large state

In late May 2020, a breach of mandatory quarantine seeded a second epidemic wave in Aus-
tralia’s second most populous state of Victoria (approximately 6.7 million people). At the time
that the epidemic was seeded, many first wave restrictions were still in place. For example,
gatherings within households, outdoor spaces, and dining venues were capped at 20 people, and
working from home was strongly advised. Transmission potential is estimated to have been 1.07
[95% CrI: 0.88–1.22] at 25 May 2020, suggesting that levels of physical distancing may have
been insufficient to prevent escalation of epidemic activity in the general population (Figure 2,
panel F).

Furthermore, from the earliest stages of the epidemic, our model estimated a strong positive
deviation from the transmission potential (Component 2 positively biased, Figure 2, panel H),
corresponding to an estimate for the Reff > 1 (95% chance of Reff exceeding 1 by 1 June 2020 in
the retrospective analysis) reflecting heightened transmission. Demographic and socio-economic
assessments of the outbreak [20, 21, 22] showed that early affected areas had higher than average
household sizes and a large proportion of essential and casualised workers who were unable
to work from home. Thus our model findings concurred with the observed epidemiological
characteristics — that the virus was predominantly spreading in subsections of the population
with higher-than-average rates of social contact — and supported public health decision making
at the time.

By 1 July 2020, there were more than 600 active cases and 129 newly reported cases with an
estimated Reff of 1.33 [95% CrI: 1.25–1.41] (Figure 2, panel G). From 9 July 2020, stay-at-home
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policies (denoted Stage 3 restrictions) were reinstated across metropolitan Melbourne. Despite
these policies, the epidemic continued to grow through July, reaching a peak of 446 daily cases
by date of symptom onset on 24 July 2020. More severe stay-at-home restrictions (denoted
Stage 4) were enacted in metropolitan Melbourne on 2 August, including a night-time curfew,
restrictions on movement more than 5km from a person’s residence, and stricter definitions of
essential workers and businesses including invigilation of a work permit requirement.

During the periods of Stage 3 and 4 restrictions, we observed strong increases in macro-
and micro-distancing behaviour, which was reflected by a decrease in state-level transmission
potential from around 1 in early June to a minimum of 0.72 [95% CrI: 0.62–0.86] on 23 August
2020 (Figure 2, panel F), two weeks after the implementation of Stage 4 restrictions.

Following an initial sharp rise in the Reff from well below 1 in mid-May to a peak of 1.61 [95%
CrI: 1.46–1.79] at 14 June 2020, the Reff steadily decreased over the next eight weeks (Figure 2,
panel G). We estimate that Reff fell below the critical threshold of 1 on 25 July, approximately
one week prior to the implementation of Stage 4 restrictions. With Stage 4 restrictions in place,
Reff settled between 0.8 and 1 for another eight weeks.

While both transmission potential and Reff declined over this period, we estimated Reff to
be consistently higher than transmission potential (i.e., there was a strong positive deviation in
Component 2) reflecting persistent transmission in subsections of the population with higher-
than-average rates of social contact. This was consistent with other epidemiological assessments
of the outbreak which suggested that transmission was concentrated in populations that were
less able to physically distance (e.g., healthcare workers, residents of aged care facilities, meat
workers public housing residents) [20, 21, 22]. A substantial proportion of cases were in health-
care workers and aged care facilities, particularly during the tail of the epidemic. Each of these
settings required specifically targeted interventions to bring transmission under control, which
were distinct from the impacts of population level measures. This may partly explain why
transmission persisted for many weeks when severe stay-at-home restrictions were active, since
these measures primarily target transmission in the broader community and are logically less
effective at controlling transmission in essential workplaces and institutional settings.

Definitive control of the epidemic was achieved by early November 2020, when zero local
case incidence reported in Victoria for the first time since April 2020.

The pattern in Component 2 for Victoria, where it deviated strongly above zero in the
earliest stages of the epidemic, persisted above zero for many months, and returned to around
zero once the epidemic was definitely contained, is in contrast to the oscillations seen in New
South Wales from June to October.

Discussion

We have presented a novel semi-mechanistic modelling framework for assessing transmissibility
of SARS-CoV-2 from periods of high to low — or zero — case incidence, with a seamless
and coherent transition in interpretation across the changing epidemiological situations. Using
time-series data on cases and population behaviours, our model computes three metrics within
a single framework: the effective reproduction number for active cases (Reff), the population-
wide transmission potential (TP), and the deviation between Reff and TP (C2). Our model
has been applied (in real-time) to Australian data throughout the pandemic and continues to
support the public health response. Here, our analysis of the first 12 months of the pandemic
has demonstrated how these quantities enable the tracking and planning of progress towards
the control of large outbreaks (as seen in Victoria), maintenance of virus suppression (as seen
in New South Wales), and monitoring the risk posed by re-introduction of the virus (as seen in
South Australia).
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Figure 2: Time-series of daily local cases and transmissibility model components for the states
of New South Wales (NSW) and Victoria (VIC) from 1 March 2020 to 24 January 2021. Light
ribbons = 90% credible intervals; dark ribbons = 50% credible intervals. Vertical lines rep-
resent dates of key changes in restrictions on gatherings and movement, detailed in Table S1
(solid lines = tightening of restrictions; dashed lines = easing of restrictions). The blue bar is
shaded according to the level of restrictions (lighter blue = less restrictions; darker blue = more
restrictions). A and E: Daily new local cases by inferred infection date. B and F: State-wide
local transmission potential (Component 1). C and G: Reff of local active cases (Component
1&2). D and H: Deviation between transmission potential and Reff (Component 2).
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Figure 3: Time-series of each sub-model of transmission potential (Component 1) for New
South Wales (NSW) and Victoria (VIC) from 1 March 2020 to 24 January 2021. Vertical lines
represent dates of key changes in restrictions on gatherings and movement, detailed in Table
S1 (solid lines = tightening of restrictions; dashed lines = easing of restrictions). The blue
bar is shaded according to the level of restrictions (lighter blue = less restrictions; darker blue
= more restrictions). A and E: Percentage change compared to a pre-COVID-19 baseline of
one key population mobility data stream ‘Google: time a retail and recreation’. Purple dots
are data stream values (percentage change on baseline). Solid lines and grey shaded regions
are the estimated trend and 95% error interval estimated by our model. B and F: Estimated
trends in macro-distancing behaviour, i.e., reduction in the daily rate of non-household contacts
(dark purple ribbons = 50% credible intervals; light purple ribbons = 90% credible intervals).
Estimates are informed by state-level data from nationwide weekly surveys (indicated by the
black lines and grey rectangles) and population mobility data. C and G: Estimated trends
in micro-distancing behaviour, i.e., reduction in transmission probability per non-household
contact (dark purple ribbons = 50% credible intervals, light purple ribbons = 90% credible
intervals). Estimates are informed by state-level data from nationwide weekly surveys (indicated
by the black lines and grey boxes). D and H: Estimated trend in distributions of time from
symptom onset to notification for locally acquired cases (black line = median; yellow ribbons
= 90% distribution quantiles; black dots = time-to-notification of each case). Faded regions
indicate where a national trend is used due to low case counts.
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Our approach addresses a major challenge in epidemic situational awareness by enabling
assessment of epidemic risk — via the TP — when cases are driven to low levels or (temporary)
elimination is achieved. During periods of viral transmission, the model also provides new insight
into epidemic dynamics via the deviation between Reff and TP (C2). Further, the TP provides
near-real-time assessment of trends in population macro- and micro-distancing behaviours that
fluctuate in response to changing social restrictions, risk perception, and other factors such as
school holidays. In combination, knowledge gained from Reff , TP and C2 enables policymakers
to monitor the relative impacts of community-wide social restrictions and consider the need for
more targeted response measures [13].

Social and behavioural data have been used extensively in other countries to support COVID-
19 situational assessment [1, 23, 24, 25, 26, 27]. In the UK, the CoMix study [23] has been
collecting contact data on a fortnightly basis since March 2020 and reporting “Rc” (the basic
reproduction number under control measures), to the UK government’s Scientific Pandemic
Influenza Group on Modelling, Operational sub-group (SPI-M-O). Conceptually, CoMix’s Rc
is akin to our TP. However, by synthesising behavioural data from multiple sources, account-
ing for both micro- and macro-distancing behaviours (thus estimating ‘effective’ contacts), and
incorporating the effect of case surveillance, our approach is likely to capture a more complete
picture of the population-wide potential for virus transmission. Further, by estimating TP and
Reff within the same modelling framework (and thus computing C2), our analysis provides a
richer and more coherent epidemiological interpretation than that offered through independent
measurement and reporting of each metric. Our case studies demonstrate how this richness has
supported (and continues to support) the Australian COVID-19 response.

Despite its demonstrated impact, there are limitations to our approach. Firstly, it relies
on data from frequent, population-wide surveys. In Australia, these data are collected for gov-
ernment and made available to our analysis team by a market research company which has
access to an established “panel” of individuals who have agreed to take part in surveys of public
opinion. Researchers and governments in many other countries have used such companies for
rapid data collection to support pandemic response [23, 25]. However, these survey platforms
are not readily available in all settings. Further, the sampling strategy did not allow for sur-
veying individuals without internet access, low literacy or limited English language skills, or
communication or cognitive difficulties. Further, individuals under 18 years of age were not
represented in our surveys. Nor were these survey results available for the pre-pandemic period,
limiting our ability to estimate what a true behavioural baseline would be for the Australian
population.

While the patterns of TP, Reff and C2 observed over time in Australia are consistent with
“in field” epidemiological assessments, and while the methods have demonstrated impact in sup-
porting decision making, a direct quantification of the validity of the TP is not straightforward.
For example, whether self-reported adherence to the 1.5 m rule is a reliable covariate for change
in the per contact probability of transmission over time is difficult to assess. If transmission
were to become widespread in Australia; and therefore cases become more representative of
the general population rather than specific subsets, Reff and TP estimates would be expected
to converge. However in the absence of such a natural experiment, no ground truth for this
unobserved parameter exists with which to quantitatively validate the model calibration.

In Australia, our methods are not only embedded in state and national situational assessment
[14] but also national response planning. Since the model incorporates a mechanistic under-
standing of the impacts of physical distancing behaviour on both household and non-household
transmission, it can therefore be used to predict the impact of interventions on actual and
potential transmission [16].

Unlike other approaches that make assumptions about impacts of different interventions
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on behaviour, we directly measure and account for behavioural responses, providing a much
more proximal way of assessing the effects of interventions [28]. Further, while detailed data on
the demographics and transmission settings for cases in Australia is unavailable, our method
considers deviation (the C2) from the regional average (the TP). It is therefore less susceptible
to conflation between an epidemic stochastically moving between settings of different transmis-
sibility, and changes in population-wide transmission potential.

While not addressed in this article, our semi-mechanistic model structure enables us to per-
form independent estimates of the relative transmissibility of variants compared to ancestral
strains. In doing so, we account for variability in the types of contacts made when low restric-
tions are applied [3]. We are able to estimate differences between variants in the probability
of transmission per unit of contact-time, for example from detailed attack rate data from over-
seas. These probabilities can then be combined with our estimates from Australian case data
to adjust our estimates of TP under different levels of restrictions for current and emerging
variants. We have also recently updated our modelling framework to account for the effects of
vaccination on the TP (reported in the Australian Government’s Common Operating Picture
from 27 August 2021 [14]). This enables us to consider the effect of varying levels of population
vaccination coverage, age-based vaccination prioritisation strategies, and levels of restrictions
on the ability of the Delta variant (and future possible variants) to spread in the population.
These analyses underpin the recent Australian national COVID-19 re-opening plan [16] and will
be reported elsewhere.

Our novel methods provide new insight into epidemic dynamics in both low and high in-
cidence settings. The analyses have become an indispensable tool supporting the Australian
COVID-19 response, through both situational assessment and strategic planning processes.
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Materials and Methods

Model overview

We estimate the time-varying ability of SARS-CoV-2 to spread in a population using a novel
semi-mechanistic model informed by data on cases, population behaviours and health system
effectiveness. We separately model transmission from locally acquired cases (local-to-local trans-
mission) and from overseas acquired cases (import-to-local transmission). We model local-to-
local transmission (Reff) using two components:

1. the average population-level trend in transmissibility driven by interventions that pri-
marily target transmission from local cases, specifically changes in physical distancing
behaviour and case targeted measures (Component 1); and

2. short-term fluctuations in Reff to capture stochastic dynamics of transmission, such as
clusters of cases and short periods of lower-than-expected transmission, and other factors
factors influencing Reff that are otherwise unaccounted for by the model (Component 2).

During times of disease activity, Components 1 and 2 are combined to provide an estimate
of the local Reff as traditionally measured. In the absence of disease activity, Component 1 is
interpreted as the potential for the virus, if it were present, to establish and maintain community
transmission (> 1) or otherwise (< 1).

Case data

We used line-lists of reported cases for each Australian state and territory extracted from the
Australian National Notifiable Disease Surveillance System (NNDSS). The line-lists contain the
date when the individual first exhibited symptoms, date when the case notification was received
by the jurisdictional health department and where the infection was acquired (i.e., overseas or
locally).

Modelling the impact of physical distancing

Overview

To investigate the impact of distancing measures on SARS-CoV-2 transmission, we distinguish
between two types of distancing behaviour: 1) macro-distancing i.e., reduction in the rate of
non-household contacts; and 2) micro-distancing i.e., reduction in transmission probability per
non-household contact.

We used data from nationwide surveys to estimate trends in specific macro-distancing (aver-
age daily number of non-household contacts) and micro-distancing (proportion of the population
always keeping 1.5 metre physical distance from non-household contacts) behaviours over time.
We used these survey data to infer state-level trends in macro- and micro-distancing behaviour
over time, with additional information drawn from trends in mobility data.

Estimating changes in macro-distancing behaviour

To estimate trends in macro-distancing behaviour, we used data from: two waves of a national
survey conducted in early April and early May 2020 by the University of Melbourne; and
weekly waves of a national survey conducted by the Australian government from late May
2020. Respondents were asked to report the number of individuals that they had contact with
outside of their household in the previous 24 hours. Note that the first wave of the University
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of Melbourne survey was fielded four days after Australia’s most intensive physical distancing
measures were recommended nationally on 29 March 2020.

Given these data, we used a statistical model to infer a continuous trend in macro-distancing
behaviour over time. This model assumed that the daily number of non-household contacts is
proportional to a weighted average of time spent at different types of location, as measured
by Google mobility data. The five types of places are: parks and public spaces; residential
properties; retail and recreation; public transport stations; and workplaces. We fit a statistical
model that infers the proportion of non-household contacts occurring in each of these types of
places from:

• a survey of location-specific contact rates pre-COVID-19 [29]; and

• a separate statistical model fit to the national average numbers of non-household contacts
from a pre-COVID-19 contact survey and contact surveys fielded post-implementation of
COVID-19 restrictions.

Waning in macro-distancing behaviour is therefore driven by Google mobility data on increas-
ing time spent in each of the different types of locations since the peak of macro-distancing
behaviour.

Estimating changes in micro-distancing behaviour

To estimate trends in micro-distancing behaviour, we used data from weekly national surveys
(first wave from 27–30 March 2020) to assess changes in behaviour in response to COVID-19
public health measures. Respondents were asked to respond to the question: ‘Are you staying
1.5m away from people who are not members of your household’ on a five point scale with
response options “No”, “Rarely”, “Sometimes”, “Often” and “Always”.

These behavioural survey data were used in a statistical model to infer the trend in micro-
distancing behaviour over time. Micro-distancing behaviour was assumed to be non-existent
prior to the first epidemic wave of COVID-19, and the increase in micro-distancing behaviour to
its peak was assumed to follow the same trend as macro-distancing behaviour — implying that
the population simultaneously adopted both macro- and micro-distancing behaviours around
the times that restrictions were implemented. The behavioural survey data was then used
to infer the date of peak micro-distancing behaviour (assumed to be the same in all states),
the proportion of the population adopting micro-distancing behaviour, and the rate at which
micro-distancing behaviour is waning from that peak in each state.

Incorporating estimated changes in distancing behaviour in the model of transmis-
sion potential

These state-level macro-distancing and micro-distancing trends were then used in the model
of transmission potential to inform the reduction in non-household transmission rates. Since
the macro-distancing trend is calibrated against the number of non-household contacts, the
rate of non-household transmission scales directly with this inferred trend. The probability of
transmission per non-household contact is assumed to be proportional to the fraction of survey
participants who report that they always maintain 1.5m physical distance from non-household
contacts. The constant of proportionality is estimated in the model of transmission potential.

The estimated rate of waning of micro-distancing is sensitive to the metric used. If a different
metric of micro-distancing (e.g., the fraction of respondents practicing good hand hygiene) were
used, this might affect the inferred rate of waning of micro-distancing behaviour, and therefore
increasing the transmission potential.
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Modelling the impact of quarantine of overseas arrivals

We model the impact of quarantine of overseas arrivals via a ‘step function’ reflecting three
different quarantine policies: self-quarantine of overseas arrivals from specific countries prior to
March 15; self-quarantine of all overseas arrivals from March 15 up to March 27; and mandatory
quarantine of all overseas arrivals after March 27 (Figure S8). We make no prior assumptions
about the effectiveness of quarantine at reducing Reff import, except that each successive change
in policy increased that effectiveness.

Model limitations

While we had access to data on whether cases are locally acquired or overseas acquired, no data
were available on whether each of the locally acquired cases were infected by an imported case or
by another locally acquired case. This data would allow us to disentangle the two transmission
rates. Without this data, we can separate the denominators (number of infectious cases), but
not the numerators (number of newly infected cases) in each group at each point in time. With
access to such data, our method could provide more precise estimates of Reff .

Model description

We developed a semi-mechanistic Bayesian statistical model to estimate Reff , or R(t) hereafter,
the effective rate of transmission of of SARS-CoV-2 over time, whilst simultaneously quantifying
the impacts on R(t) of a range of policy measures introduced at national and regional levels in
Australia.

Observation model
A straightforward observation model to relate case counts to the rate of transmission is to assume
that the number of new locally-acquired cases NL

i (t) at time t in region i is (conditional on its
expectation) Poisson-distributed with mean λi(t) given by the product of the total infectiousness
of infected individuals Ii(t) and the time-varying reproduction rate Ri(t):

NL
i (t) ∼ Poisson(λi(t)) (1)

λi(t) = Ii(t)Ri(t) (2)

Ii(t) =
t∑

t′=0

g(t′)Ni(t
′) (3)

Ni(t
′) = NL

i (t) +NO
i (t) (4)

where the total infectiousness, Ii(t), is the sum of all active infections Ni(t
′) — both locally-

acquired NL
i (t′) and overseas-acquired NO

i (t′) — initiated at times t′ prior to t, each weighted
by an infectivity function g(t′) giving the proportion of new infections that occur t′ days post-
infection. The function g(t′) is the probability of an infector-infectee pair occurring t′ days after
the infector’s exposure, i.e., a discretisation of the probability distribution function correspond-
ing to the generation interval.

This observation model forms the basis of the maximum-likelihood method proposed by
White and Pagano (2007) [12] and the variations of that method by Cori et al. (2013) [9],
Thompson et al. (2019) [10] and Abbott et al. (2020) [30] that have previously been used to
estimate time-varying SARS-CoV-2 reproduction numbers in Australia [18].

We extend this model to consider separate reproduction rates for two groups of infectious
cases, in order to model the effects of different interventions targeted at each group: those with
locally-acquired cases ILi (t), and those with overseas acquired cases IOi (t), with corresponding
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reproduction rates RLi (t) and ROi (t). These respectively are the rates of transmission from
imported cases to locals, and from locally-acquired cases to locals. We also model daily case
counts as arising from a Negative Binomial distribution rather than a Poisson distribution to
account for potential clustering of new infections on the same day, and use a state- and time-
varying generation interval distribution gi(t

′, t) (detailed in Surveillance effect model):

NL
i (t) ∼ NegBinomial(µi(t), r) (5)

µi(t) = ILi (t)RLi (t) + IOi (t)ROi (t) (6)

ILi (t) =

t∑
t′=0

gi(t, t
′)NL

i (t) (7)

IOi (t) =

t∑
t′=0

gi(t,
′ t)NO

i (t) (8)

where the negative binomial distribution is parameterised in terms of its mean µi(t) and
dispersion parameter r. In the commonly used probability and dispersion parameterisation with
probability ψ the mean is given by µ = ψr/(1− ψ).

Note that if data were available on the whether the source of infection for each locally-
acquired case was another locally-acquired case or an overseas-acquired cases, we could split
this into two separate analyses using the observation model above; one for each transmission
source. In the absence of such data, the fractions of all transmission attributed to sources of
each type is implicitly inferred by the model, with an associated increase in parameter uncer-
tainty.

We provide the model with additional information on the rate of import-to-local trans-
mission by adding a further likelihood term to the model for known events of import-to-local
transmission since the implementation of mandatory hotel quarantine:

K ∼ Poisson
(∑8

i=1

∑τ3
t=τ2

ROi (t)N0
i (t)

)
(9)

where K is the total number of known events of transmission from overseas-acquired cases
occurring within Australia from τ2 = 2020-03-28 to τ3 = 2020-12-31. These events are largely
transmission events within hotel quarantine facilities, some of which led to outbreaks of local-to-
local transmission. Prior to this period, import-to-local transmission events cannot be reliably
distinguished from local-to-local transmission events.

When estimating Reff from recent case count data, care must be taken to account for under-
reporting of recent cases (those which have yet to be detected), because failing to account for
this under-reporting can lead to estimates of Reff that are biased downwards. We correct for
this right-truncation effect by first estimating the fraction of locally-acquired cases on each date
that we would expect to have detected by the time the model is run (detection probability), and
correcting both the infectiousness terms ILi (t), and the observed number of new cases NL

i (t).
We calculate the detection probability for each day in the past from the empirical cumulative
distribution function of delays from assumed date of infection to date of detection over a recent
period (see Surveillance effect model). We correct the infectiousness estimates ILi (t) by divid-
ing the number of newly infected cases on each day NL

i (t) by this detection probability — to
obtain the expected number of new infections per day — before summing across infectiousness.
We correct the observed number of new infections by a modification to the negative binomial
likelihood; multiplying the expected number of cases by the detection probability to obtain the
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expected number of cases observed in the (uncorrected) time series of locally-acquired cases.

Reproduction rate models
We model the onward reproduction rates for overseas-acquired and locally-acquired cases in
a semi-mechanistic way. Reproduction rates for local-to-local transmission are modelled as a
combination of a deterministic model of the population-wide transmission potential for that
type of case, and a correlated time series of random effects to represent stochastic fluctuations
in the reporting rate in each state over time. Import-to-local transmission is modelled in a
mechanistic way:

RLi (t) = exp(log(R∗i (t))− σ2 + εi(t)) (10)

ROi (t) = R∗i (0)Q(t) (11)

For locally-acquired cases, the state-wide average transmission rate at time t, R∗i (t), is
given by a deterministic epidemiological model of population-wide transmission potential that
considers the effects of distancing behaviours. The correlated time series of random effects
εi(t) represents stochastic fluctuations in these local-local reproduction rates in each state over
time — for example due to clusters of transmission in sub-populations with higher or lower
reproduction rates than the general population. We consider that the transmission potential
R∗i (t) is the average of individual reproduction rates over the entire state population, whereas
the effective reproduction number RLi (t) is the average of individual reproduction rates among a
(non-random) sample of individuals – those that make up the active cases at that point in time.
We therefore expect that the long-term average of RLi (t) will equate to R∗i (t). The relationship
between these two is therefore defined such that the hierarchical distribution over RLi (t) is
marginally (with respect to time) a log-normal distribution with mean R∗i (t). The parameter
σ2 is the marginal variance of the εi, as defined in the kernel function of the Gaussian process.

For overseas-acquired cases the population-wide transmission rate at time t, R∗i (0)Q(t), is
the baseline rate of transmission (R∗i (0) = R0; local-to-local transmission potential in the ab-
sence of distancing behaviour or other mitigation) multiplied by a quarantine effect model,
Q(t), that encodes the efficacy of the three different overseas quarantine policies implemented
in Australia (described below).

We model R∗i (t), the population-wide rate of local-to-local transmission at time t, as the
sum of two components: the rate of transmission to members of the same household, and
to members of other households. Each of these components is computed as the product of
the number of contacts, and the probability of transmission per contact. The transmission
probability is in turn modelled as a binomial process considering the duration of contact with
each person and the probability of transmission per unit time of contact. This mechanistic
consideration of the contact process enables us to separately quantify how macro- and micro-
distancing behaviours impact on transmission, and to make use of various ancillary measures
of both forms of distancing:

R∗i (t) = si(t)(HC0(1− (1− p)HD0hi(t)d) +NC0δi(t)d(1− (1− p)ND0)γi(t)) (12)

where: s(t) is the effect of surveillance on transmission, due to the detection and isolation
of cases (detailed below); HC0 and NC0 are the baseline (i.e., before adoption of distancing
behaviours) daily rates of contact with, respectively, people who are, and are not, members of
the same household; HD0 and ND0 are the baseline average total daily duration of contacts
with household and non-household members (measured in hours); d is the average duration
of infectiousness in days; p is the probability of transmitting the disease per hour of contact,
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and; hi(t), δi(t), γi(t) are time-varying indices of change relative to baseline of the duration of
household contacts, the number of non-household contacts, and the transmission probability per
non-household contact, respectively (modifying both the duration and transmission probability
per unit time for non-household contacts).

The first component in Equation (12) is the rate of household transmission, and the sec-
ond is the rate of non-household transmission. Note that the duration of infectiousness d is
considered differently in each of these components. For household members, the daily number
of household contacts is typically close to the total number of household members, hence the
expected number of household transmissions saturates at the household size; so the number of
days of infectiousness contributes to the probability of transmission to each of those household
members. This is unlikely to be the case for non-household members, where each day’s non-
household contacts may overlap, but are unlikely to be from a small finite pool. This assumption
would be unnecessary if contact data were collected on a similar timescale to the duration of
infectiousness, though issues with participant recall in contact surveys mean that such data are
unavailable.

The parameters HC0, HD0, and ND0 are all estimated from a contact survey conducted
in Melbourne in 2015 [29]. NC0 is computed from an estimate of the total number of contacts
per day for adults from [31], minus the estimated rate of household contacts. Whilst [29] also
provides an estimate of the rate of non-household contacts, the method of data collection (a
combination of ‘individual’ and ‘group’ contacts) makes it less comparable with contemporary
survey data than the estimate of [31].

The expected duration of infectiousness d is computed as the mean of the non-time-varying
discrete generation interval distribution:

d =

∞∑
t′=0

t′g ∗ (t′) (13)

and change in the duration of household contacts over time hi(t) is assumed to be equivalent to
change in time spent in residential locations in region i, as estimated by the mobility model for
the data stream Google: time at residential. In other words, the total duration of time in contact
with household members is assumed to be directly proportional to the amount of time spent
at home. Unlike the effect on non-household transmission, an increase in macro-distancing is
expected to slightly increase household transmission due to this increased contact duration.

The time-varying parameters δi(t) and γi(t) respectively represent macro- and micro-distancing;
behavioural changes that reduce mixing with non-household members, and the probability of
transmission for each of non-household member contact. We model each of these components,
informed by population mobility estimates from the mobility model and calibrated against data
from nationwide surveys of contact behaviour.

Surveillance effect model
Disease surveillance — both screening of people with COVID-like symptoms and performing
contact tracing — can improve COVID-19 control by placing cases in isolation so that they
are less likely to transmit the pathogen to other people. Improvements in disease surveillance
can therefore lead to a reduction in transmission potential by isolating cases more quickly,
and reducing the time they are infectious but not isolated. Such an improvement changes two
quantities: the population average transmission potential R∗(t) is reduced by a factor si(t); and
the generation interval distribution g(t, t′) is shortened, as any transmission events are more
likely to occur prior to isolation.

We model both of these functions using a region- and time-varying estimate of the discrete
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probability distribution over times from infection to detection fi(t, t
′):

gi(t, t
′) =

fi(t, t
′)g∗(t′)

si(t)
(14)

si(t) =

∞∑
t′=0

fi(t, t
′)g∗(t′) (15)

where g∗(t′) is the baseline generation interval distribution, representing times to infection
in the absence of detection and isolation of cases, si(t) is a normalising factor — and also the
effect of surveillance on transmission — and fi(t, t

′) is a region- and time-varying probability
density over periods from infection to isolation t′. In states/territories and at times when cases
are rapidly found and placed in isolation, the distribution encoded by fi(t, t

′) has most of its
mass on small delays, average generation intervals are shortened, and the surveillance effect
si(t) tends toward 0 (a reduction in transmission). At times when cases are not found and
isolated until after most of their infectious period has passed, fi(t, t

′) has most of its mass on
large delays, generation intervals are longer on average, and si(t) tends toward 1 (no effect of
reduced transmission).

We model the region- and time-varying distributions fi(t, t
′) empirically via a time-series

of empirical distribution functions computed from all observed infection-to-isolation periods
observed within an adaptive moving window around each time t. Since dates of infection and
isolation are not routinely recorded in the dataset analysed, we use 5 days prior to the date of
symptom onset to be the assumed date of infection, and the date of case notification to be the
assumed date of isolation. This will overestimate the time to isolation and therefore underes-
timate the effect of surveillance when a significant proportion of cases are placed into isolation
prior to testing positive — e.g., during the tail of an outbreak being successfully controlled by
contact tracing.

For a given date and state/territory, the empirical distribution of delays from symptom onset
to notification is computed from cases with symptom onset falling within a time window around
that date, with the window selected to be the smallest that will yield at least 500 observations;
but constrained to between one and eight weeks.

Where a state/territory does not have sufficient cases to reliably estimate this distribution
in an eight week period, a national estimate is used instead. Specifically, if fewer than 100 cases,
the national estimate is used, if more than 500 the state estimate is used, and if between 100
and 500 the distribution is a weighted average of state and national estimates.

The national estimate is obtained via the same method but with no upper limit on the win-
dow size and excluding data from Victoria since 14 June, since the situation during the Victorian
outbreak after this time is not likely to be representative of surveillance in states with few cases.

Macro-distancing model
The population-wide average daily number of non-household contacts at a given time can be
directly estimated using a contact survey. We therefore used data from a series of contact
surveys commencing immediately after the introduction of distancing restrictions to estimate
δi(t) independently of case data. To infer a continuous trend of δi(t), we model the numbers
of non-household contacts at a given time as a function of mobility metrics considered in the
mobility model. We model the log of the average number of contacts on each day as a linear
model of the log of the ratio on baseline of five Google metrics of time spent at different types
of location: residential, transit stations, parks, workplaces, and retail and recreation:
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log(δi(t)) = (ω �m) log(Mi(t)). (16)

where ω is the the vector of 5 coefficients, m is an vector of length 5 containing of ones,
except for the element corresponding to time at residential locations, which has value 1, and �
indicates the elementwise product. This constrains the direction of the effect of increasing time
spent at each of these locations to be positive (more contacts), except for time at residential,
which we constrain to be negative. The intercept of the linear model (average daily contacts
at baseline) is given an prior formed from the daily number of non-household contacts in a
pre-COVID-19 contact survey [29]. Since our aim is to capture general trends in mobility
rather than daily effects, we model the weekly average of the daily number of contacts, by using
smoothed estimates of the Google mobility metrics.

Whilst we aim to model weekly rather than daily variation in contact rates, when fitting the
model to survey data we account for variation among responses by day of the week by modelling
the fraction of the weekly number of contacts falling on each day of the week (the length-seven
vector in each state and time Di(t)) and using this to adjust the expected number of contacts
for each respondent based on the day of the week they completed the survey. To account for how
the weekly distribution of contacts has changed over time as a function of mixing restrictions
(e.g., a lower proportion of contacts on weekdays during periods when stay-at-home orders were
in place) we model the weekly distribution of contacts itself as a function of deviation in the
weekly average of the daily number of contacts, with length-seven vector parameters α and θ.
We use the softmax (normalised exponential) function to transform this distribution to sum to
one, then multiply the resulting proportion by 7 to reweight the weekly average daily contact
rate to the relevant day of the week.

Combining the baseline average daily contact rate NC0, mobility-driven modelled change
in contact rates over time δi(t), and time-varying day of the week effects Di(t) we obtain an
expected number of daily contacts for each survey response NCk:

log(NCk) = log(NC0) + log(δi[k](t[k])) + log(Di[k](t[k]) ∗ 7)d[k] (17)

Di(t) = softmax(α+ θ log(δi(t))) (18)

where i[k], t[k], and d[k] respectively indicate the state, time, and day of the week on which
respondent k filled in the survey.

We model the number of contacts from each survey respondent as a draw from an interval-
censored discrete lognormal distribution. This choice of distribution enables us to account
for the ad-hoc rounding of reported numbers of contacts (responses larger than 10 tend to be
‘heaped’ on multiples of 10 and 100), whilst also accounting for heavy upper tail in numbers of
reported contacts. The support of this distribution is the integers from 0 to 10 inclusive, and
the intervals 11-20, 21-50, and 50-999. Reported daily contact rates ≥1000 are excluded as these
are considered implausible for our definition of a contact. The probability mass function of this
distribution is the integral across these ranges of a lognormal distribution with parameters µk
and τ , parameterised such that the mean of the distribution is NCk:

µk = log(NCk)− τ2/2 (19)

Micro-distancing model
Unlike with macro-distancing behaviour and contact rates, there is no simple mathematical
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framework linking change in micro-distancing behaviours to changes in non-household trans-
mission probabilities. We must therefore estimate the effect of micro-distancing behaviour on
transmission via case data. We implicitly assume that any reduction in local-to-local transmis-
sion potential that is not explained by changes to the numbers of non-household contacts, the
duration of household contacts, or improved disease surveillance is explained by the effect of
micro-distancing on non-household transmission probabilities.

Whilst it is not necessary to use ancillary data to estimate the effect that micro-distancing
has at its peak, we use behavioural survey data to estimate the temporal trend in micro-
distancing behaviour, in order to estimate to what extent adoption of that behaviour has waned
and how that has affected transmission potential.

We therefore model γt (a time-varying index of change relative to baseline of transmission
probability per non-household contact, see Equation (12)), as a function of the proportion of
the population adhering to micro-distancing behaviours. We consider adherence to the ‘1.5m
rule’ as indicative of this broader suite of behaviours due to the availability of data on this
behaviour in a series of weekly behavioural surveys beginning prior to the last distancing re-
striction being implemented [32]. We consider the number m+

i,t of respondents in region i on
survey wave commencing at time t replying that they ‘always’ keep 1.5m distance from non-
household members, as a binomial sample with sample size mi,t. We use a generalised additive
model to estimate ci(t), the proportion of the population in region i responding that they al-
ways comply as a the intervention stage, smoothed over time. Intervention stages are defined
as periods of a continuous state of stay-at-home order, and this state thus switches each time a
stay-at-home order is started, ended, or significantly changed. This state switching allows the
model to react to sudden changes in compliance behaviour when orders are made or rescinded.
We assume that the temporal pattern in the initial rate of adoption of the behaviour is the same
as for macro-distancing behaviours — the adoption curve estimated from the mobility model.
In other words, we assume that all macro- and micro-distancing behaviours were adopted si-
multaneously around the time the first population-wide restrictions were put in place in March
and April 2020. However we do not assume that these behaviours peaked at the same time or
subsequently followed the same temporal trend. The model for the proportion complying with
this behaviour is therefore:

m+
i,t = Binomial(mi,t, ci(t)) (20)

logit(ci(t)) = ζi,j + s(t) (21)

where ζi,j is intervention state j in region i, and s is a smoothing function over time t.
Given ci(t), we model γi(t) as a function of the degree of micro-distancing relative to the

peak:

γi(t) = 1− β(ci(t)/κi) (22)

where κi is the peak of compliance, or maximum of ci(t), and β is inferred from case data in
the main Reff model.

Overseas quarantine model
We model the effect of overseas quarantine Q(t) via a monotone decreasing step function with
values constrained to the unit interval, and with steps at the known dates τ1 and τ2 of changes
in quarantine policy:

Q(t) =


q1 t < τ1

q2 τ1 ≤ t < τ2

q3 τ2 ≤ t
(23)
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where q1 > q2 > q3 and all parameters are constrained to the unit interval.

Error models
The correlated time-series of deviance between transmission potential the effective reproduction
rate for local-to-local transmission in each region εi(t) is modelled as a zero-mean Gaussian
process (GP) with covariance structure reflecting temporal correlation in errors within each
region, but independent between regions. We use a Matern 5/2 covariance function k, enabling
a mixture of relatively smooth trends and local ’roughness’ to represent the sudden rapid growth
of cases that can occur with a high-transmission cluster. Kernel parameters σ and l are the
same across regions:

εi ∼ GP (0, k(t, t′)) (24)

k(t, t′) = σ2

(
1 +

√
5 |t− t′|
l

+
5 (t− t′)2

3l2

)
exp

(
−
√

5 |t− t′|
l

)
(25)

Components of local transmission potential
We model the rate of transmission from locally acquired cases as a combination of the time-
varying mechanistic model of transmission rates R∗i (t), and a temporally-correlated error term
eεi(t). This structure enables inference of mechanistically interpretable parameters whilst also
ensuring that statistical properties of the observed data are represented by the model. Moreover,
these two parts of the model can also be interpreted in epidemiological terms as two different
components of transmission rates:

1. Component 1 (TP) – transmission rates averaged over the whole state population,
representing how macro- and micro-distancing, and other factors affect the potential for
widespread community transmission (R∗i (t)), and

2. Component 2 (C2) – the degree to which the transmission rates of the population of
current active cases deviates from the average statewide transmission rate (eεi(t)).

Component 2 reflects the fact that the population of current active cases in each state at a
given time will not be representative of the the state-wide population, and may be either higher
(e.g., when cases arise from a cluster in a high-transmission environment) or lower (e.g., when
clusters are brought under control and cases placed in isolation).

Component 1 (TP) can therefore be interpreted as the expected rate of transmission if cases
were widespread (population-representative) in the community. The product of Components 1
and 2 (Reff) can be interpreted as the rate of transmission in the sub-population making up
active cases at a given time.

Where a state has active cases in one or more clusters, the combination of these compo-
nents gives the apparent rate of transmission in those clusters (Reff), given by Equation 10.
This reflects the interpretation that TP captures the population mean of a distribution over
individual-level reproduction numbers, and Reff is the mean of a (non-random) sample from
that distribution — the population comprising cases at that point in time. While not used
in the public health context in Australia, the epidemiological interpretation of the Reff when
a state has no active cases is the rate of spread expected if an index case were to occur in a
random sub-population. Because the amplitude of this error term is learned from the data, this
is informative as to the range of plausible rates of spread that might be expected from a case be-
ing introduced into a random sub-population. However, the mean of this distribution, TP, may
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play a similar role and has proven to be a more interpretable quantity for end users of this model.

Parameter values and prior distributions
Tables S2 and S4 give the prior distributions of parameters in the semi-mechanistic and time-
series (ε) parts of the model respectively. Table S3 gives fixed parameter values used in the
semi-mechanistic part of the model.

The parameters of the generation interval distribution are the posterior mean parameter
estimates corresponding to a lognormal distribution over the serial interval estimated by [33].
The shape of the generation interval distribution for SARS-CoV-2 in comparable populations
is not well understood, and a number of alternative distributions have been suggested by other
analyses. A sensitivity analysis performed by running the model with alternative generation
interval distributions (not presented here) showed that parameter estimates were fairly consis-
tent between these scenarios, and the main findings were unaffected. A full, formal analysis of
sensitivity to this and other assumptions will be presented in a future publication.

No ancillary data are available to inform p, the probability of transmission per hour of
contact in the absence of distancing behaviour. However, at t = 0, holding HC0, NC0 HD0,
and ND0 constant, there is a deterministic relationship between p and R∗i (0) (the basic repro-
duction rate, which is the same for all states). The parameter p is therefore identifiable from
transmission rates at the beginning of the first epidemic wave in Australia. We define a prior on
p that corresponds to a prior over R∗i (0) matching the averages of the posterior means and 95%
credible intervals for 11 European countries as estimated by [28] in a sensitivity analysis where
the mean generation interval was 5 days — similar to the serial interval distribution assumed
here. This corresponds to a prior mean of 2.79, and a standard deviation of 1.70 for R∗i (0).
This prior distribution over p was determined by a Monte-Carlo moment-matching algorithm,
integrating over the prior values for HC0, NC0 HD0, and ND0.

Model fitting
We fitted (separate) models of ci(t) and NC0δi(t) to survey data alone in order to infer trends
in those parameters as informed by survey data. These are shown in Figures S5–S6. We used
the posterior means of each of these model outputs as inputs into the Reff model. The posterior
variance of each of these quantities is largely consistent over time and between states, and the
absolute effect of each is scaled by other parameters (e.g. β), meaning that uncertainty in
these quantities is largely not identifiable from uncertainty in other scaling parameters. As
a consequence, propagation of uncertainty in these parameters into the Reff model (as was
performed in a previous iteration of the model) has little impact on estimates of Reff and
transmission potential, so is avoided for computational brevity.

Inference was performed by Hamiltonian Monte Carlo using the R packages greta and
greta.gp [34? ]. Posterior samples of model parameters were generated by 10 independent
chains of a Hamiltonian Monte Carlo sampler, each run for 1000 iterations after an initial,
discarded, ‘warm-up’ period (1000 iterations per chain) during which the sampler step size and
diagonal mass matrix was tuned, and the regions of highest density located. Convergence was
assessed by visual assessment of chains, ensuring that the potential scale reduction factor for
all parameters had values less than 1.1, and that there were at least 1000 effective samples for
each parameter.

Visual posterior predictive checks were performed to ensure that the observed data were
consistent with the posterior predictive density over all cases (and survey results), and over
time-varying case predictions within each state.
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Code Availability

Model code is available at: https://github.com/goldingn/covid19_australia_interventions
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Supplementary Figures and Tables

Figure S1: Estimates of state-wide transmission potential (Component 1) by state/territory
from 1 March 2020 up to 24 January 2021 (lighter ribbons = 90% credible intervals; darker
ribbons = 50% credible interval). Solid grey vertical lines indicate key dates of implementation
of various physical distancing policies.
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Figure S2: Estimates of Reff for local active cases (model Component 1&2) for each
state/territory (light green ribbon = 90% credible interval; dark green ribbon = 50% credi-
ble interval). Estimates are made from 1 March 2020 up to 24 January 2021 based on cases
with inferred infection dates up to and including 18 January (due to a delay from infection to
reporting, the trend in estimates after 18 January is informed by our estimates of Reff up to
18 January and transmission potential). Solid grey vertical lines indicate key dates of imple-
mentation of various physical distancing policies. Black dotted line indicates the target value
of 1 for the effective reproduction number required for control. Local cases by inferred date of
infection are indicated by grey ticks on the x-axis. For states/territories with very low numbers
of local active cases, the estimates of Reff for active cases is highly uncertain. The state-wide
transmission potential should be referred to when assessing the risk of an epidemic becoming
established given a seeding event.

29

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 29, 2021. ; https://doi.org/10.1101/2021.11.28.21264509doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.28.21264509
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S3: Deviation between Reff of active cases and state-level local transmission potential
(Component 2) for each state/territory (light pink ribbon = 90% credible interval; dark pink
ribbon = 50% credible interval). Estimates are made from 1 March 2020 up to 24 January 2021
based on cases with inferred infection dates up to and including 18 January (due to a delay
from infection to reporting, the trend in estimates after 18 January reflects the average range
of deviations for that state, indicated by the grey shading). Solid grey vertical lines indicate
key dates of implementation of various physical distancing policies. Local cases by inferred date
of infection are indicated by grey ticks on the x-axis.
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Figure S4: Percentage change compared to a pre-COVID-19 baseline of three key mobility data
streams in each Australian state and territory from 1 March up to 24 January 2021. Solid
vertical lines indicate dates of implementation of key physical distancing measures. Purple dots
in each panel are data stream values (percentage change on baseline). Solid lines and grey
shaded regions are the estimated trend and 95% error interval estimated by our model.
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Figure S5: Estimated trend in macro-distancing behaviour, i.e., reduction in the daily rate of
non-household contacts, in each Australian state/territory from 1 March 2020 up to 24 January
2021 (light purple ribbons = 90% credible intervals; dark purple ribbons = 50% credible
intervals). Estimates are informed by state-level data from nationwide surveys (indicated by
the black lines and grey rectangles) and population mobility data. Green ticks indicate the dates
that public holidays coincided with surveys (when people tend to stay home, biasing down the
number of non-household contacts reported on those days).
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Figure S6: Estimated trend in micro-distancing behaviour, i.e. reduction in transmission prob-
ability per non-household contact, in each Australian state/territory from 1 March 2020 up to
24 January 2021 (light purple ribbons = 90% credible intervals; dark purple ribbons = 50%
credible intervals). Estimates are informed by state-level data from nationwide weekly surveys
since March 2020 (indicated by the black lines and grey boxes).
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Figure S7: Estimated trend in distributions of time from symptom onset to notification for
locally acquired cases for each Australian state/territory from 1 March 2020 to 12 January
2021 (black line = median; yellow ribbons = 90% distribution quantiles; black dots = time-to-
notification of each case). Faded regions indicate where a national trend is used due to low case
counts.
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Figure S8: Nationwide average reduction in Reff that is due to quarantine of overseas arrivals
estimated from the Reff model (light orange ribbon=90% credible interval; dark orange ribbon
= 50% credible interval). Note that this trend does not capture time-varying fluctuations in
Reff in each state/territory. Solid grey vertical lines indicate key dates of implementation of key
response policies. Black dotted line indicates the target value of 1 for the effective reproduction
number required for control. Note: A simple but näıve upper bound on Reff import can be
computed by assuming that all locally acquired cases arose from imported cases, and therefore
computing the ratio of the numbers of local and imported cases. This results in a maximum
possible value of the average Reff import of 0.57.
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Table S1: Dates of key changes in restrictions on gatherings and movement for New South
Wales and Victoria, as shown in Figures 2 and 3.

State Measure Date

NSW Restriction of gatherings to 500 people or fewer 2020-03-16
Closure of pubs, cafes and restaurants 2020-03-23
Stage 3 stay-at-home restrictions imposed 2020-03-31
e. Lifting of stay-at-home restrictions, up to 5 people can gather
in households and 10 outdoors, and cafés and restaurants re-open
(up to 10 customers)

2020-05-15

Restrictions tightening on pubs 2020-07-17
Restrictions on cafes, restaurants, funerals and weddings 2020-07-24
Restrictions eased on recreation and entertainment facilities 2020-08-28
Stay-at-home restrictions for selected postcodes 2020-12-19
Lifting of stay-at-home restrictions for selected postcodes 2021-01-09

VIC Restriction of gatherings to 500 people or fewer 2020-03-16
Closure of pubs, cafes and restaurants 2020-03-23
Stage 3 stay-at-home restrictions imposed 2020-03-30
Lifting of stay-at-home restrictions, up to 5 people can gather in
households and 10 outdoors

2020-05-13

Restrictions tightened on household (up to 5 people) and outdoor
(up to 10 people) gatherings

2020-06-22

Stay-at-home restrictions imposed in selected Melbourne
postcodes

2020-07-02

Stage 3 stay-at-home restrictions imposed in metropolitan
Melbourne

2020-07-09

Stage 4 stay-at-home restrictions imposed in metropolitan
Melbourne including curfew and travel radius of 5km

2020-08-02

Lifting of stay-at-home restrictions, cafes, restaurants and pubs
re-open

2020-10-28
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Table S2: Parameters in the semi-mechanistic part of the time-varying model of Reff . Prior on
weights for ω correspond to Google mobility metrics in the following order: parks, residential,
retail and recreation, transit stations, workplaces.

Prior distribution Parameter description

r−1/2 ∼ N+(0, 0.5) Overdispersion of observed daily new infections
logit(p) ∼ N(2.57, 0.082) Transmission probability per hour contact time
HC0 ∼ N+(2.09, 0.062) Baseline average daily household contacts
NC0 ∼ N+(10.70, 0.282) Baseline average daily non-household contacts
HD0 ∼ N+(1.05, 1.682) Baseline daily duration per household contact (hours)
ND0 ∼ N+(0.687, 0.052) Baseline daily duration per non-household contact (hours)
ω ∼ N+(0, 12) Mobility-metric weights for non-household contact rates
α ∼ N(0, 1) Effect of day of the week on non-household contact rates
θ ∼ N(0, 1) Effect of day-of-week/mobility interaction on contact rate responses

r
−1/2
NC ∼ N+(0, 0.5) Overdispersion of daily non-household contacts
µκi,0 ∼ N(0, 102) Hierarchical mean for peak microdistancing timing
µκi,l ∼ N(0, 102) Hierarchical mean for microdistancing inflection timing

µhi,l ∼ N(0, 102) Hierarchical mean for microdistancing inflection height

σκi,0 ∼ N+(0, 0.52) Hierarchical s.d. for peak microdistancing timing
σκi,l ∼ N+(0, 0.52) Hierarchical s.d. for microdistancing inflection timing

σhi,l ∼ N+(0, 0.52) Hierarchical s.d. for microdistancing inflection height

β ∼ U(0, 1) Microdistancing effect on transmission
q1 ∼ U(0, 1) Effect of quarantine of overseas arrivals (phase 1)
q2 × q1 ∼ U(0, 1) Relative effect of quarantine (phase 2 vs 1)
q3 × q2 ∼ U(0, 1) Relative effect of quarantine (phase 3 vs 2)

Table S3: Fixed parameters in the semi-mechanistic part of the time-varying model of Reff .

Parameter value Parameter description

τ1 = 2020-03-15 Date of change from arrivals policy phase 1 to 2
τ2 = 2020-03-28 Date of change from arrivals policy phase 2 to 3
τ3 = 2020-12-31 Date of end of observed quarantine spillover period
T = Date of most recent mobility data

g∗(t) =
∫ t
t−1 lognormal(τ |1.377, 0.5672) dτ Baseline generation interval function

Table S4: Parameters used in the time-series part of the time-varying model of Reff .

Prior distribution Parameter description

σ ∼ N+(0, 0.52) State-level component of amplitude of deviation Reff

l ∼ lognormal(3, 1) Temporal correlation Reff

α ∼ lognormal(3, 1) Correlation mixture weights Reff
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