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SUMMARY 31 

The Global Biobank Meta-analysis Initiative (GBMI), through its genetic and demographic diversity, 32 

provides a valuable opportunity to study population-wide and ancestry-specific genetic associations. 33 

However, with multiple ascertainment strategies and multi-ethnic study populations across biobanks, the 34 

GBMI provides a distinct set of challenges in implementing statistical genetics methods. Transcriptome-35 

wide association studies (TWAS) are a popular tool to boost detection power for and provide biological 36 

context to genetic associations by integrating single nucleotide polymorphism to trait (SNP-trait) 37 

associations from genome-wide association studies (GWAS) with SNP-based predictive models of gene 38 

expression. TWAS presents unique challenges beyond GWAS, especially in a multi-biobank and meta-39 

analytic setting like the GBMI. In this work, we present the GBMI TWAS pipeline, outlining practical 40 

considerations for ancestry and tissue specificity and meta-analytic strategies, as well as open challenges 41 

at every step of the framework. Our work provides a strong foundation for adding tissue-specific gene 42 

expression context to biobank-linked genetic association studies, allowing for ancestry-aware discovery to 43 

accelerate genomic medicine. 44 

 45 

KEYWORDS 46 

transcriptome-wide association study; meta-analysis; multi-ancestry genetic analysis; Global Biobank 47 

Meta-analysis Initiative 48 

 49 

INTRODUCTION 50 

Large population-based or clinical-case based biobanks are a key component of precision medicine 51 

efforts and provide opportunities for genetic and genomic research (Abul-Husn and Kenny, 2019). 52 

Biobanks offer context to deploy genome-wide associations (GWAS) at scale. Multi-biobank 53 

collaborations facilitate well-powered, multi-ethnic genetic research (Swede et al., 2007). In addition, such 54 

collaborations can accelerate the elucidation of the biological mechanisms that underlie diseases by in-55 

silico longitudinal genetic studies and examination of pleiotropy. 56 

 57 
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A key challenge in GWAS is interpreting significant trait-associated loci and these loci to genes or 58 

epigenomic features (Gallagher and Chen-Plotkin, 2018; Wijmenga and Zhernakova, 2018). Viable 59 

options to add biological interpretation to our understanding of GWAS loci include colocalization 60 

(Giambartolomei et al., 2014, 2018; Gleason et al., 2020; He et al., 2013) or Mendelian randomization 61 

methods (Hauberg et al., 2017; Pavlides et al., 2016; Smith and Ebrahim, 2003). Another suite of tools 62 

include transcriptome-wide association studies (TWAS), which integrate GWAS with expression 63 

quantitative trait loci (eQTL) analyses to prioritize gene-trait associations (GTAs) with applications of 64 

mediation analysis (Gamazon et al., 2015; Gusev et al., 2016) or Mendelian randomization (Zhang et al., 65 

2020). TWAS involves three general steps. First, per-gene predictive models of gene expression are 66 

trained in the eQTL dataset using genetic variants. Then, genetically-regulated expression (GReX) is 67 

imputed in the GWAS cohort with individual-level genotypes. Lastly, statistical associations between 68 

GReX and trait are estimated (Barbeira et al., 2018; Gamazon et al., 2015; Gusev et al., 2016). TWAS is 69 

also viable with GWAS summary statistics by estimating the test statistic of the TWAS association using a 70 

proper LD reference panel (Gusev et al., 2016). Generally, most TWAS methods predict expression using 71 

SNPs local to the gene within 1 Megabase of the gene body (Barbeira et al., 2018; Gamazon et al., 2015; 72 

Gusev et al., 2016; Hu et al., 2019; Nagpal et al., 2019; Zhou et al., 2020). Recently, methods that include 73 

strong distal-eQTL signals have shown improved prediction and power to detect GTAs (Bhattacharya et 74 

al., 2021a; Luningham et al., 2020). Nonetheless, practical and statistical considerations to accurately 75 

prioritize GTAs through TWAS still require methodological improvement. 76 

 77 

Along with those from traditional GWAS, TWAS introduces new challenges by incorporating gene 78 

expression (Wainberg et al., 2019) (Figure 1A). On the genetic level, as in GWAS, disentangling signals 79 

from complex LD structure, relatedness, and ancestry requires careful modeling considerations 80 

(Mbatchou et al., 2020; Zhou et al., 2018). Selection of LD reference is specifically important in multi-81 

ancestry settings, like the GBMI, as LD structure across ancestry groups differs greatly(Shifman et al., 82 

2003). Mismatched LD may lead to gene expression models with reduced predictive power, reduced 83 

power to detect GTAs, and increased false positives (Bhattacharya et al., 2020; Geoffroy et al., 2020; 84 

Keys et al., 2020). In addition, phenotype acquisition and aggregation are challenging, especially across 85 
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multiple biobanks with different healthcare, electronic health record, and case-control definitions. 86 

However, compared to GWAS, a challenge specific to TWAS is the integration of gene expression with 87 

GWAS signal. Not only is it an active topic of methodological research to choose an optimal set of genes 88 

and tissues that best explains the phenotype association at a given genetic locus, the role of context-89 

specific expression is still being evaluated in trait associations. Dynamic differences in bulk tissue 90 

expression from cell-type- or cell-state-specificity can give additional granularity to gene-trait associations. 91 

The impact of these challenges in a meta-analytic framework has not been previously explored. 92 

 93 

Here, we outline a framework for analyzing trans-ancestry, meta-analytic GWAS across multiple biobanks 94 

with TWAS. We review and explore practical considerations for all three steps (Figure 1B): ancestry 95 

specificity of expression models and LD reference panels, meta-analytic techniques for detection of 96 

GTAs, and follow-up tests and analyses for biological context. Our framework can be applied to various 97 

phenotypes to study population-wide and ancestry-specific genetic associations mediated by tissue-98 

specific expression. 99 

 100 

RESULTS 101 

Expression models are not portable across ancestry groups 102 

The diversity represented in the GBMI enables uniquely well-powered studies to detect genetic 103 

associations in non-European populations. However, optimal TWAS requires ancestry-matched training 104 

datasets of genetic and tissue-specific gene expression data, which are still lacking in non-European 105 

samples. As Cao et al points out (Cao et al., 2021), statistical power to detect GTAs in TWAS is 106 

dependent on expression heritability and the ability of the predictive expression model to recapitulate that 107 

heritable expression in the external GWAS panel. Accordingly, training expression models that perform 108 

well in all ancestry populations is necessary to ensure that discoveries made through TWAS are not 109 

restricted to European populations. For the first GBMI TWAS, we restrict analysis to populations of 110 

European ancestry, due to small sample sizes of non-European ancestry samples (Aguet et al., 2020). 111 

However, as sample sizes for eQTL datasets in non-European populations increase, the TWAS pipeline 112 
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will include expression models for these understudied and underserved populations (STAR Methods). 113 

Here, we illustrate some challenges in building these expression models across ancestry groups. 114 

 115 

We considered the 5 tissues in GTEx with at least 70 samples from both European (EUR) and African 116 

(AFR) ancestry: subcutaneous adipose (abbreviated ADIP, 𝑁 =  71 samples of AFR ancestry and 492 117 

samples of EUR ancestry), tibial artery (ARTERY, 𝑁 =  76 and 489), skeletal muscle (MUSC, 𝑁 = 86 and 118 

602), sun exposed lower leg skin (SKIN, 𝑁 = 73 and 518), and whole blood (BLOOD, 𝑁 = 80 and 574). 119 

For genes with significantly heritable expression in both EUR and AFR GTEx samples (restricted 120 

maximum likelihood-based estimate of heritability > 0 with nominal 𝑃 < 0.01), we trained EUR- and AFR-121 

specific models using elastic net regularized regression (Friedman et al., 2010) and imputed expression 122 

into the aligned (i.e., training and imputation samples have similar ancestries) and misaligned (i.e., 123 

training and imputation sample have different ancestries). For context, we also built ancestry-unaware 124 

models, where EUR and AFR samples were pooled together. We calculated predictive performance with 125 

adjusted R2 to account for sample size, using leave-one-out CV when measuring predicting performance 126 

in an aligned imputation sample (STAR Methods).  127 

 128 

Across these tissues, models trained in EUR samples performed, on average, 4 times worse (differences 129 

of 0.03-0.04 in median adjusted R2) in AFR samples compared to models trained in AFR samples (Figure 130 

2A, Tables S1-S3), with more than 80% of gene models with stronger performance if trained in AFR 131 

samples. Similar trends hold for ancestry-specific models imputed into down-sampled EUR imputation 132 

samples (Figure S1-S2, Table S1-S3), consistent with previous simulation and real-world studies 133 

(Bhattacharya et al., 2020; Keys et al., 2020); here, we considered a randomly selected EUR imputation 134 

sample with equal sample size to that of the AFR sample in the same tissue. In fact, we observed that 135 

ancestry-specific models imputed into a sample with aligned ancestry showed larger predictive R2 than 136 

ancestry-unaware (individuals of EUR and AFR ancestry in the training sample) models imputed into the 137 

same sample (Figure 2B, Table S4), despite generally increased sample sizes. This observation also 138 

holds if we further increase the sample size of the training sample by including individuals of other 139 

ancestries (Asian, American Indian, and Unknown ancestries) into the training sample (Figure S3). This 140 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 26, 2021. ; https://doi.org/10.1101/2021.11.24.21266825doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.24.21266825
http://creativecommons.org/licenses/by/4.0/


6 

 

observation emphasizes the need for ancestry matching in gene prediction from genetic data and greater 141 

recruitment of non-European ancestry patients in eQTL studies. 142 

 143 

In these analyses, one reason ancestry-unaware models may perform poorly in AFR samples is due to 144 

differences in minor allele frequency (MAF) of highly predictive SNPs between EUR and AFR ancestry 145 

populations. It is important to note that this discrepancy is not generally specific to any one ancestry; 146 

rather, ancestry imbalance in the training or reference datasets may lead to poor portability of genetic 147 

models due to differences in allele frequency. To account for common SNPs in both AFR or EUR 148 

ancestry populations, we additionally trained ancestry-unaware and ancestry-specific models using SNPs 149 

with minor allele frequency (MAF) exceeding various thresholds in both AFR and EUR samples. 150 

Excluding SNPs with MAF < 0.01 improved predictive performance of ancestry-unaware models across 151 

all tissues (Figure S4, Table S5). However, the gap in predictive performance between ancestry-specific 152 

and ancestry-unaware models did not decrease when the MAF cutoff was increased (Figure 2B, Table 153 

S4). This observation may reflect that dropping ancestry-specific rarer SNPs ignores variants with large 154 

ancestry-specific effects on gene expression. Additionally, excluding rare ancestry-specific SNPs does 155 

not address the differences in LD across the EUR and AFR samples which leads to different 156 

regularization paths and, hence, SNP-gene weights. Addressing the trans-ancestry portability of 157 

expression models remains an open study direction; methodology that borrows information from 158 

functional annotations or across different cell-type- or cell-state-specific contexts may bridge this gap in 159 

predictive performance, similar to recent developments in polygenic risk score prediction for complex 160 

traits (Amariuta et al., 2020; Márquez-Luna et al., 2020). 161 

 162 

Meta-analytic strategies must be ancestry-aware 163 

Another critical consideration for the GBMI involves meta-analysis while using GWAS summary statistics. 164 

TWAS estimates the association between GReX and the phenotype by weighting the standardized SNP-165 

trait effect sizes from GWAS summary statistics by SNP-gene weights from the expression models. To 166 

account for the correlation between SNPs, an external LD reference panel, like the 1000Genomes Project 167 

(Auton et al., 2015), is used to estimate the standard error of the TWAS association. Accordingly, the 168 
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accuracy of this reference panel to the LD structure in the GWAS cohort dictates how aligned the 169 

summary-statistics based TWAS association is to the TWAS association from direct imputation into 170 

individual-level genotypes in the GWAS cohort. Ideally, in-sample LD will give the best estimate of the 171 

TWAS standard error, but several biobanks do not provide this information under their specific genetic 172 

data sharing and privacy policies. Even departures in LD across subgroups of European ancestry 173 

populations may influence the standard error estimate. In addition, as the estimates of SNP-gene weights 174 

are influenced by the LD in the eQTL panel, differences in LD between the eQTL and GWAS panel will 175 

also affect the TWAS effect size. 176 

 177 

As LD structure greatly differs across ancestry groups (Shifman et al., 2003), pooling ancestry groups in 178 

TWAS may lead to reduced power. We conducted TWAS for asthma risk using ancestry-unaware and 179 

EUR- and AFR-specific models of whole blood expression (4,782 genes with heritable expression at 180 

nominal P < 0.01 and models with cross-validation R2 > 0.01 with nominal P < 0.05, trained via elastic net 181 

regression). Ancestry-specific TWAS Z-scores across EUR and AFR ancestry groups were not strongly 182 

correlated (𝑟 = 0.11), potentially due to differences in sample size and eQTL and GWAS architecture 183 

(Figure 3A, Figure S5-S6) (Shang et al., 2020; Wyss et al., 2018). In fact, we detected only two genes 184 

across both EUR and AFR with P < 2.5 × 10
−6

. One of these genes, DFFA, has been implicated with 185 

asthma risk through GWAS and colocalization in EUR (Vicente et al., 2017). However, the TWAS 186 

associations across EUR and AFR were in opposite directions using blood tissue. In the other 4 tissues 187 

explored, DFFA TWAS associations did not reach transcriptome-wide significance but effect directions 188 

were generally concordant (Figure S7). In blood, lead local-eQTLs (within 1 Megabase) of DFFA show 189 

are in opposite directions, though only nominally significant at P < 0.05 (Figure S8). Although they are 190 

within 60 kilobases, the lead eQTLs for DFFA across AFR (rs263526) and EUR (rs903916) are not in LD 191 

(R2 = 3 x 10-4 in AFR, 0.0072 in EUR). The GWAS effect sizes of SNPs local to DFFA do not show large 192 

deviations in effect direction and are only nominally significant, as well (Figure S8). These differences in 193 

TWAS associations across ancestry motivate careful consideration of meta-analytic strategy to avoid 194 

biasing cross-ancestry associations towards cohorts with larger sample sizes, which still tend to be 195 

predominantly of EUR ancestry. 196 
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 197 

We investigated 5 different meta-analytic strategies empirically: meta-analyzing across ancestry-specific, 198 

per-biobank GWAS summary statistics using (1) inverse-variance weighting (IVW) and (2) sample-size 199 

weighting (SSW), meta-analyzing across ancestry-specific meta-analyzed GWAS summary statistics 200 

using (3) IVW and (4) SSW, and (5) TWAS using ancestry-unaware models and meta-analyzed GWAS 201 

summary statistics across EUR and AFR ancestry groups (STAR Methods). QQ-plots in Figure 3B show 202 

earlier departure of Z-scores from the QQ-line for SSW meta-analyzed Z-scores and the ancestry-203 

unaware strategy, suggesting inflation. This observation is supported with estimates of test statistic bias 204 

and inflation using an empirical Bayes method, bacon (van Iterson et al., 2017), which show the largest 205 

estimated bias and inflation for these SSW and ancestry-unaware methods. IVW strategies show similar 206 

levels of inflation, with IVW meta-analysis across ancestry-specific meta-analyzed GWAS summary 207 

statistics showing minimal bias (Figure S9). These results align with intuition – that the more naïve SSW 208 

meta-analysis and ancestry-unaware methods bias towards EUR cohorts, which have the larger sample 209 

sizes, whereas Z-scores from the IVW methods showed positive correlations with Z-scores from AFR 210 

cohorts (Figure S6). 211 

 212 

However, it is unclear whether ancestry-specific IVW meta-analysis to the per-biobank level is necessary. 213 

As shown in Figure S10, Z-scores from these two IVW methods are moderately positively correlated (𝑟 =214 

 0.51 across 4,152 Z-scores), with this correlation increasing when we consider genes with nominally 215 

significant Z-scores for both strategies (𝑟 = 0.70 across 564 tests). We observed that top associations 216 

across these IVW meta-analyses often had high degrees of heterogeneity in effect size across biobanks, 217 

as measured by the Higgins-Thompson I2 statistic (Figure 3C, Figure S11) (Higgins and Thompson, 218 

2002). One gene, A1BG, that showed directionally concordant transcriptome-wide significant associations 219 

across both IVW strategies had a large degree of heterogeneity in the underlying participating cohorts (I2 220 

= 0.77). In fact, the cross-biobank heterogeneity is often larger than the cross-ancestry heterogeneity for 221 

TWAS associations of A1BG. Interestingly, ZNF665, another gene with directionally concordant 222 

associations across both IVW strategies showed a low degree of heterogeneity in the per-biobank effect 223 

sizes (I2 = 0.26). However, genes with discordant associations across IVW strategies showed varied 224 
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patterns. Two illustrative examples are MLNR and MYOZ3, both with large degrees of test statistic 225 

heterogeneity (I2 = 0.91 and 0.82, respectively). Across the two IVW strategies, effect sizes are in 226 

opposite directions, possibly due to large standard error differences across the ancestry-specific per-227 

biobank associations. A thorough investigation of the power and false discovery rates of these meta-228 

analysis strategies through simulations is necessary. More sophisticated methods (Hedges and Vevea, 229 

1998; Lee et al., 2017; Shi and Lee, 2016) that can properly incorporate the per-biobank uncertainty into 230 

meta-analyzed TWAS associations must be explored to increase power and properly leverage the large 231 

sample sizes of the GBMI. 232 

 233 

In addition to considerations for TWAS in trans-ethnic populations, analyzing genetic data from individuals 234 

of admixed ancestry is also an open area of study. For example, in this analysis, we have used the 235 

1000Genomes AFR LD reference panel as an estimate of the LD for the AFR-ancestry samples from 236 

each biobank. However, most of these AFR-ancestry populations are of admixed ancestry (e.g, African 237 

Americans or African British). A single LD reference panel of AFR-ancestry may not reflect the genetic 238 

diversity in these admixed populations of AFR and EUR ancestries from around the world (Baharian et 239 

al., 2016). As Zhong et al highlights, in multiethnic and admixed populations, using local ancestry 240 

estimates aids in better characterization of heritability of complex traits and more accurate mapping of 241 

genetic associations, especially eQTLs (Zhong et al., 2019). Accordingly, incorporating local ancestry 242 

estimates into both expression model step and the association testing step of TWAS may lead to 243 

increased power and should be explored. 244 

 245 

Follow-up tests provide biological and clinical context to TWAS GTAs 246 

TWAS GTAs identified using GWAS summary statistics are subject to several factors that may lead to 247 

false positives. We implement several follow-up tests to provide context to TWAS-identified GTAs. First, a 248 

TWAS GTA could attain transcriptome-wide significance due to only the strong SNP-trait associations 249 

from the underlying GWAS. To quantify the significance of the GTA conditional on the SNP-trait effects at 250 

the locus, we perform a permutation test by permuting the SNP-gene weights from the expression model 251 

to generate a null distribution (STAR Methods). Comparing the original TWAS Z-score to this null 252 
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distribution assesses how much signal is added by the expression given the specific GWAS architecture 253 

of the locus. As Gusev et al point out, this permutation test is highly conservative and intended to 254 

prioritize only associations already significant in the standard TWAS GTA detection (Gusev et al., 2016).  255 

 256 

Next, gene expression models for genes in adjacent genomic windows may be built from overlapping 257 

SNPs or SNPs in strong LD. When TWAS detects GTAs in overlapping genomic regions, we apply 258 

Bayesian probabilistic fine-mapping using FOCUS (Mancuso et al., 2019) to estimate a 90% credible set 259 

of genes to explain the observed association signal in a given tissue (STAR Methods). However, the 260 

current iteration of FOCUS has limitations. Priors for the correlation matrix between GReX of overlapping 261 

genes are dependent on SNP LD reference panels. Thus, fine-mapping in trans-ancestry settings is 262 

difficult, though recent machinery has been added to FOCUS to account for differences in genetic 263 

architecture across the study sample (Gopalan and Lu et al, in preparation). Another challenge for gene-264 

level fine-mapping in multi-tissue TWAS is distinguishing between overlapping signals across tissues. 265 

Primarily due to cross-cell-type variation in expression levels and eQTL architecture, TWAS may prioritize 266 

genes in multiple tissues that are overrepresented by the same underlying causal cell-types (Wainberg et 267 

al., 2019). This multi-tissue gene prioritization extends to fine-mapping overlapping TWAS signals across 268 

tissue, as priors for FOCUS are not tissue-dependent. An interesting future direction involves careful 269 

tissue-specific prior elicitation in TWAS fine-mapping – extracting posterior signal that is biologically 270 

consistent and meaningful without allowing the prior to dominate. 271 

 272 

The GBMI TWAS model incorporates gene expression models using MOSTWAS, a TWAS extension that 273 

prioritizes distal-eQTLs by testing their mediation effect through local molecular features (STAR 274 

Methods). For genes with models trained with MOSTWAS and associated with the trait at transcriptome-275 

wide significance, we test the additional association signal from the distal-SNPs using an added-last test, 276 

analogous to a group-added-last test in linear regression (Bhattacharya et al., 2021a). This test also 277 

prioritizes sets of genomic or epigenomic features that mediate the predicted distal-eQTLs for subsequent 278 

study of upstream, tissue-specific regulation of GTAs. In one application of MOSTWAS, one prioritized 279 

functional hypothesis was experimentally validated in vitro (Bhattacharya et al., 2021b). As distal-eQTLs 280 
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are more likely to be tissue- or cell-type-specific (Yang et al., 2017), the association signal from these 281 

distal-eQTLs could also be leveraged in cross-tissue fine-mapping strategies. 282 

 283 

Lastly, TWAS suffers from severely reduced power and inflated false positives in the presence of SNP 284 

pleiotropy, where the genetic variants in the gene expression model affect the trait, independent of gene 285 

expression (Veturi and Ritchie, 2018). We encourage estimating the degree of and accounting for SNP 286 

pleiotropy using LDA-MR-Egger (Barfield et al., 2018) or PMR-Egger (Yuan et al., 2020), especially in 287 

settings with individual-level GWAS genotypes. Applications for these methods using GWAS summary 288 

statistics reveals some inflation of standard errors (Zhu et al., 2021), suggesting the need for further 289 

evaluation and development of summary statistics-based methods to account for SNP pleiotropy in 290 

TWAS GTA detection. 291 

 292 

Biobanks enable GReX-PheWAS for biological context  293 

Biobanks aggregated in the GBMI provide a rich catalog of phenotypes for analysis, with phenotype 294 

codes (phecodes) aggregated from ICD codes classified into clinically relevant categories (Wei et al., 295 

2017). This phenotype catalog enables Phenome-Wide Association Studies (PheWAS) as a complement 296 

to GWAS by both replicating GWAS associations and providing a larger set of traits associations with 297 

GWAS variants. To follow-up on novel TWAS-prioritized genes, we may expand the PheWAS framework 298 

to the tissue-specific GReX level in a similarly complementary analysis: GReX-level Phenome-Wide 299 

Association Study (GReX-PheWAS), as previously deployed in biobank settings and similar to the 300 

PredixVU database (Pathak et al., 2020; Unlu et al., 2019, 2020). Not only do these analyses replicate 301 

and detect new TWAS associations, but they can also point to groups of phenotypes that show 302 

enrichments for trait-associations for the gene of interest.  303 

 304 

We briefly illustrate an example of GReX-PheWAS using 3 genes (Figure 4, Figure S12-S13, Table S6): 305 

TAF7, a novel gene in our TWAS, and ILRAP18 and TMEM258, two genes previously implicated through 306 

GWAS (Johansson et al., 2019; Portelli et al., 2020; Reijmerink et al., 2008, 2010; Zhu et al., 2020). 307 

These genes were prioritized from European-specific TWAS for asthma risk from Zhou et al (Zhou et al., 308 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 26, 2021. ; https://doi.org/10.1101/2021.11.24.21266825doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.24.21266825
http://creativecommons.org/licenses/by/4.0/


12 

 

2021) using lung tissue expression (101,311 cases and 1,118,682 controls): TAF7 (MOSTWAS model), 309 

IL18RAP (JTI model), and TMEM258 (JTI model). European-specific TWAS meta-analysis for asthma 310 

detected a negative association with TAF7 cis-GReX, a gene that did not intersect a GWAS-significant 311 

locus. In TWAS follow-up tests, TAF7 passed permutation testing and was estimated in the 90% credible 312 

set at the genomic locus via FOCUS with posterior inclusion probability 1. TAF7 encodes a component of 313 

the TFIID protein complex, which binds to the TATA box in class II promoters and recruits RNA 314 

polymerase II and other factors (Bhattacharya et al., 2014). As the clinically-relevant associations for 315 

TAF7 lung GReX are not characterized, we employed GReX-PheWAS in UKBB European-ancestry 316 

GWAS summary statistics across 731 traits and diseases with sample sizes greater than 100,000, 317 

grouped into 9 categories (Figure 4, STAR Methods). We see enrichments for phenotypes of the 318 

hematopoietic and musculoskeletal groups (Figure 4A) with hypothyroidism and chronic laryngitis as the 319 

top phenotype associations (Figure 4B, Table S6). These phenotypes include multiple inflammations of 320 

organs (e.g., laryngitis, osteitis, meningitis, inflammations of the digestive and respiratory system, etc). 321 

We also detected several associations with related respiratory diseases and traits. Similarly, for the two 322 

previously implicated genes, we find enrichments for respiratory and hematopoietic GTAs for ILRAP18 323 

and across multiple categories for TMEM258, consistent with the categorized functions and associations 324 

of these genes (Figure S12-S13, Table S6). The utility of GBMI’s robust roster of phenotypes enables 325 

GReX-PheWAS to add biological and clinical context to novel TWAS associations. 326 

 327 

GReX-PheWAS, despite its utility, shares the challenges of PheWAS. Phenotypes within and across 328 

groups may be correlated, leading to a series of dependent tests. Even divergent phenotypes may be 329 

correlated, either clinically or biologically. Thus, simple adjustments of multiple testing burden may not be 330 

appropriate, and methods that account for correlation between phenotypes, like permutation tests, may 331 

be more applicable (Hebbring, 2014; Korthauer et al., 2019; Stevens et al., 2017; Wei et al., 2017). In 332 

addition, covariate adjustments in expression models built for disease-specific analyses may not be 333 

generalizable for multiple phenotypes. Most population-based clinical biobanks lack comprehensive 334 

clinical and lifestyle information of the individuals. Phenotyping information is typically incomplete, mostly 335 

due to gaps in electronic health records. Phenotype groupings may also be deceptive: as most biobanks 336 
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follow ICD coding that groups traits and diseases by body systems, GReX-PheWAS enrichments for a 337 

given group may not reflect shared genetic pathways across body systems. In addition, case-control 338 

selection may not be optimal due to differences in exclusion criteria (McGuirl et al., 2020). Lastly, 339 

phenotype acquisition and aggregation across multiple biobanks is challenging, with different healthcare, 340 

electronic health record, and case-control definition assignments. Despite these limitations in phenotype 341 

acquisition, recent methods focusing on identifying shared genetic architecture among multiple 342 

phenotypes (McGuirl et al., 2020) in a phenome-wide approach highlight the advantages of GReX-343 

PheWAS. 344 

 345 

DISCUSSION 346 

Here, we provide a framework for TWAS in a multi-biobank setting across many ancestry groups. Our 347 

work outlines several methodological gaps that should be addressed in the future: (1) training expression 348 

models that are portable across ancestry groups, (2) limiting false discovery in TWAS by properly 349 

modeling differences in LD across ancestry groups, (3) incorporating uncertainty within and heterogeneity 350 

across biobanks to boost TWAS meta-analytic power, and (4) contextualizing TWAS GTAs through 351 

follow-up testing, probabilistic fine-mapping across ancestry groups and expression contexts, and GReX-352 

PheWAS. Along with the discussed issues with current TWAS methodology, tissue-specific expression 353 

may not provide sufficient granularity needed to discover trait-relevant biological mechanisms. Recent 354 

methods that study the mediation of the SNP-trait relationship by cell-type heterogeneity show that cell-355 

types are influenced by genetics and predict complex traits (Liu et al., 2021). In turn, single-cell eQTL 356 

datasets can be integrated with GWAS to identify cell-type- or cell-state-specific expression pathways that 357 

are health- or disease-related. Incorporating single cell expression data into a predictive model will 358 

require more sophisticated statistical methodology that relies on modeling cell identity as a spectrum, 359 

rather than a categorical definition (Burkhardt et al., 2021; Verma and Engelhardt, 2020). Furthermore, a 360 

multi-omic approach that incorporates functional data with TWAS may better model the flow of biological 361 

information in a biologically interpretable fashion (Baca et al., 2021; Bhattacharya et al., 2021a), with 362 

Zhao et al, in preparation.  363 

 364 
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Despite the limitations of this suite of methods, TWAS continues to be a useful tool for interpreting GWAS 365 

associations and independently discovering genetic associations mediated by gene expression. There is 366 

a severe need for an increase in reference eQTL data from individuals of non-European ancestry at parity 367 

with those of European-ancestry individuals. Moreover, more sophisticated integrative computational and 368 

experimental tools to complement improved TWAS and GWAS to understand the biology underlying 369 

health and disease need to be developed. 370 
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FIGURE LEGENDS 407 

Figure 1: Overview of GBMI transcriptome-wide association study (TWAS) pipeline with challenges at 408 

every data level. (A) Each level of data in TWAS introduces a unique set of challenges: (1) genetics data 409 

include confounding from genetic ancestry, population structure and relatedness, and complex linkage 410 

disequilibrium patterns, (2) gene expression data introduces context-specific factors, such as tissue-, cell-411 

type-, or cell-state-specific expression, and (3) phenotypic data, especially in the meta-analyses of 412 

multiple biobanks, involve challenges in acquiring and aggregating phenotypes, properly defining controls 413 

for phenotypes, and ascertainment and selection bias from non-random sampling. (B) An overview of the 414 

GBMI TWAS pipeline: (1) JTI and MOSTWAS for model training, (2) inverse-variance weighted meta-415 

analysis using per-biobank, per-ancestry group TWAS summary statistics, and (3) various follow-up tests, 416 

including conditional or permutation tests, distal-SNPs added last test, probabilistic fine-mapping using 417 

FOCUS, and tests for SNP horizontal pleiotropy. Dotted lines represent associations that are tested in the 418 

TWAS pipeline, while the solid lines represent a link built through predictive modeling. 419 

 420 
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Figure 2: Comparison of predictive performance of genetic models of expression across ancestry. (A) 421 

Distribution of difference in adjusted R2 (Y-axis) when predicting expression in the AFR imputation sample 422 

between models trained in EUR and in AFR training samples across tissue (X-axis). (B) Distribution of 423 

difference in adjusted R2 between ancestry-specific and ancestry-unaware models imputing into EUR 424 

(left) and AFR (right) samples. 425 

 426 

Figure 3: Comparison of meta-analytic strategies for multi-biobank, trans-ancestry TWAS. (A) Scatterplot 427 

of per-ancestry meta-analyzed TWAS scores across EUR (X-axis) and AFR ancestry (Y-axis). The dotted 428 

horizontal and vertical lines indicate P < 2.5 × 10
−6

 with a diagonal line for reference. Points are colored 429 

based on which ancestry population the TWAS association meets P < 2.5 × 10
−6

. (B) QQ-plot of TWAS 430 

Z-scores, colored by meta-analytic strategies. Per ancestry refers to TWAS meta-analysis across meta-431 

analyzed ancestry-specific GWAS summary statistics. Per bank/per ancestry refers to TWAS meta-432 

analysis using all biobank- and ancestry-specific GWAS summary statistics. (C) Effect sizes and 433 

Bonferroni-corrected confidence intervals (CIs) for TWAS associations across 17 individual biobanks 434 

(stratified by ancestry group with EUR in green and AFR in red) and 2 IVW meta-analysis strategies (in 435 

yellow) for 5 representative genes. The Higgins-Thompson I2 statistic for heterogeneity is provided, with 436 

the dotted line showing the null. 437 

 438 

Figure 4: GReX-PheWAS for categorizing phenome-wide associations for TAF7 genetically-regulated 439 

expression in UKBB. (A) Boxplots of -log10 Benjamini-Hochberg FDR-adjusted P-values of GTAs across 9 440 

phenotype groups. The dotted grey line showed FDR-adjusted P = 0.05. (B) Miami plot of TWAS Z-441 

scores (Y-axis) across phenotypes, colored by phecode group. The dotted grey line shows the 442 

significance threshold for Benjamini-Hochberg FDR correction and phenotypes are labelled if the 443 

association passes Bonferroni correction. 444 

 445 

STAR METHODS 446 

We first outline the steps of the TWAS pipeline employed for phenotype available for analysis in the 447 

GBMI. Then, we provide details for the analyses presented in Results. 448 
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 449 

The GBMI TWAS Pipeline 450 

Training expression models from genetics 451 

Tissue-specific expression models trained with reference data from the Genotype-Tissue Expression 452 

Project (GTEx) v8 (Aguet et al., 2020) are built using two methods: (1) Joint-Tissue Imputation (JTI), 453 

which leverages shared genetic cis-regulation across tissues (Zhou et al., 2020), and (2) MOSTWAS, 454 

which prioritizes tissue-specific distal-SNPs through rigorous mediation analysis to account for additional 455 

expression heritability (Bhattacharya et al., 2021a). Genes with significantly positive expression 456 

heritability (nominal 𝑃 <  0.05) and five-fold cross-validation (CV) adjusted 𝑅2 ≥ 0.01 with 𝑃 < 0.05 are 457 

considered for TWAS. Ancestry-specific models are trained, excluding SNPs with MAF < 0.01 and 458 

deviated from Hardy-Weinberg at P < 10
−5

 across all 838 GTEx samples. The first iteration of the GBMI 459 

TWAS pipeline focuses on EUR-ancestry models due to larger sample sizes. However, as sample sizes 460 

for other ancestry groups increase, this pipeline can be adapted for these currently underrepresented 461 

ancestries. In addition, models from other data sources using other methods can be incorporated in 462 

subsequent steps. 463 

 464 

Hypothesis tests for TWAS  465 

To test for an association between tissue-specific GReX of a gene and a trait of interest, GWAS summary 466 

statistics are integrated with these expression models. For the EUR-specific TWAS, we use EUR-specific 467 

meta-analyzed GWAS summary statistics across all biobanks. JTI and MOSTWAS use two different 468 

approaches to test for a GTA. For MR-JTI, the posterior predictive distribution of GReX is estimated, and 469 

multiple-instrumental-variable causal inference is used to estimate the GTA, controlling for overall 470 

heterogeneity (Zhou et al., 2020). For MOSTWAS, a weighted burden test is constructed, as in FUSION 471 

(Bhattacharya et al., 2021a; Gusev et al., 2016; Pasaniuc et al., 2014). Both of these methods require a 472 

LD reference panel; the GTEx LD matrix is used as a reference. Taken together, these methods provide 473 

effect sizes, standard errors, Z-scores (effect sizes standardized by standard error), and P-values for 474 

GTAs. A GTA is transcriptome-wide significant using a Bonferroni correction across all tests run. The 475 

number of tests run is equal to the sum of the number of significant gene models across all tissues. 476 
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 477 

Follow-up tests and analyses are then run to provide context to the TWAS GTAs. A permutation test is 478 

run by shuffling the SNP-gene weights 1,000 times and determining the TWAS Z-score at each 479 

permutation, generating a null distribution. The original TWAS Z-score is compared to this null distribution 480 

to generate a permutation P-value; Benjamini-Hochberg FDR correction is used to account for multiple 481 

testing burden here. This test examines whether the SNP-gene relationship provides more information 482 

than just the SNP-trait association. Next, for MOSTWAS, the distal-SNPs added-last test is run to 483 

measure the association from distal-SNPs in the expression models, conditional on the association from 484 

local-SNPs (Bhattacharya et al., 2021a). This test prioritizes sets of mediating molecular features for the 485 

SNP-gene relationship with significant effects on the trait. Lastly, for genes whose models are built using 486 

SNPs from overlapping genomic regions, probabilistic fine-mapping via FOCUS (default parameters and 487 

priors) is employed to determine a 90% credible set of genes that explain the gene-level association 488 

signal at the locus (Mancuso et al., 2019). FOCUS also outputs posterior inclusion probabilities for each 489 

gene in the 90% credible set. 490 

 491 

Analysis of ancestry-specific and -unaware models 492 

To show the utility of ancestry-specific models, we train EUR- and AFR-specific models using elastic net 493 

regression for 5 tissues with more than 70 samples from AFR ancestry patients: subcutaneous adipose 494 

(𝑁 = 492 EUR, 𝑁 =  71 AFR), tibial artery (𝑁 = 489 EUR, 𝑁 =  76 AFR), skeletal muscle (𝑁 = 602 EUR, 495 

𝑁 = 86 AFR), sun exposed lower leg skin (𝑁 = 518 EUR, 𝑁 = 73 AFR), and whole blood (𝑁 = 574 EUR, 496 

𝑁 = 80 AFR). To balance sample sizes in the imputation sample, we down-sampled the EUR ancestry 497 

imputation sample to match the AFR imputation sample. We consider only genes with positive expression 498 

heritability in both EUR and AFR training samples (Yang et al., 2011). We also build ancestry-unaware 499 

models, where genotypes for EUR and AFR samples are pooled together in the training sample. We 500 

calculate predictive performance in aligned and misaligned imputation samples based on ancestry; the 501 

aligned imputation sample is one with ancestry that predominantly matches the ancestry of the training 502 

sample. Predictive performance is measured with adjusted R2 to account for sample size, using an 503 

appropriate linear model between predicted and observed expression. For imputation samples that are 504 
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used in training (aligned imputation panel), we use leave-one-out CV when measuring predictive 505 

performance. Lastly, when imputing into AFR and EUR samples using the ancestry-unaware models, we 506 

use leave-one-out CV, as well, but only cross-validating over the AFR or EUR samples, respectively. 507 

 508 

Comparison of meta-analytic strategies 509 

We compared 5 different meta-analytic strategies empirically: meta-analyzing across ancestry-specific, 510 

per-biobank GWAS summary statistics using (1) inverse-variance weighting (IVW) and (2) sample-size 511 

weighting (SSW), meta-analyzing across ancestry-specific meta-analyzed GWAS summary statistics 512 

using (3) IVW and (4) SSW, and (5) TWAS using ancestry-unaware models into meta-analyzed GWAS 513 

summary statistics across EUR and AFR ancestry groups. First, we consider three different sets of 514 

GWAS summary statistics: biobank- and ancestry-specific summary statistics, ancestry-specific summary 515 

statistics meta-analyzed across all biobanks, and summary statistics meta-analyzed across biobanks and 516 

ancestry groups. In two former settings, for biobank 𝑖 and a given gene, we generate 𝛽
𝑇𝑊𝐴𝑆,𝑖

, the TWAS 517 

effect size, and 𝑆𝐸𝑇𝑊𝐴𝑆,𝑖, the corresponding standard error. Given 𝐵 different biobanks, the IVW TWAS Z-518 

score, 𝑍𝑇𝑊𝐴𝑆,𝐼𝑉𝑊, is calculated as: 519 

 520 

𝑍𝑇𝑊𝐴𝑆,𝐼𝑉𝑊 =
(

∑ 𝛽𝑇𝑊𝐴𝑆,𝑖/𝑆𝐸𝑇𝑊𝐴𝑆,𝑖 
𝐵
𝑖=1

∑ 𝑆𝐸𝑇𝑊𝐴𝑆,𝑖
−1𝐵

𝑖=1

)

(∑ 𝑆𝐸𝑇𝑊𝐴𝑆,𝑖
𝐵
𝑖=1 )

1/2 . 521 

 522 

With 𝑍𝑇𝑊𝐴𝑆,𝑖 = 𝛽𝑇𝑊𝐴𝑆,𝑖/𝑆𝐸𝑇𝑊𝐴𝑆,𝑖 and 𝑁𝑖 as the sample size of the 𝑖th biobank (or pooled sample size 523 

across all ancestry-specific biobank summary statistics), the SSW TWAS Z-score, 𝑍𝑇𝑊𝐴𝑆,𝑆𝑆𝑊, is calculated 524 

as: 525 

 526 

𝑍𝑇𝑊𝐴𝑆,𝑆𝑆𝑊 =  
∑ 𝑁𝑖𝑍𝑇𝑊𝐴𝑆,𝑖

𝐵
𝑖=1

(∑ 𝑁𝑖
2𝐵

𝑖=1 )
1/2 . 527 

 528 

For the ancestry-unaware TWAS, we use ancestry-unaware elastic net regression models and integrate 529 

with GWAS summary statistics meta-analyzed across all ancestry groups and biobanks. 530 
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 531 

GReX-level phenome-wide association studies (GReX-PheWAS) 532 

Transcriptome-wide significant genes are further prioritized by performing GReX-PheWAS to categorize 533 

associations across a broad spectrum of phenotypes. Using UKBB summary statistics from European 534 

ancestry patients (Bycroft et al., 2018), we tested for GTAs for 731 phenotypes grouped into 9 categories: 535 

dermatologic, digestive, endocrine/metabolic, genitourinary, hematopoietic, musculoskeletal, neoplasms, 536 

neurological, and respiratory. Here, we illustrate GReX-PheWAS using three genes from the European-537 

specific TWAS for asthma risk using lung tissue expression: TAF7 (MOSTWAS model), IL18RAP (JTI 538 

model), and TMEM258 (JTI model). A phenome-wide significant association was defined via Bonferroni 539 

correction (P < 
0.05

3×731
 = 2.28 × 10

−5
). 540 

 541 

SUPPLEMENTAL INFORMATION 542 

Table S1: Difference in adjusted R2 between models trained in aligned and misaligned ancestry samples 543 

as the ancestry of the imputation sample. 544 

Table S2: R2 of ancestry-specific models imputed into EUR imputation sample (training:imputation) 545 

Table S3: R2 of ancestry-specific models imputed into AFR imputation sample (training:imputation) 546 

Table S4: Difference in R2 between ancestry-specific and ancestry-unaware models across MAF 547 

Table S5: Cross-validation R2 of ancestry-unaware models across MAF threshold 548 

Table S6: GReX-PheWAS results for 3 representative genes from asthma meta-analytic TWAS in 549 

Europeans in GBMI that meet Bonferroni correction (P < 0.05/731) 550 

Figure S1: Ratio of predictive performance of expression models in aligned versus misaligned imputation 551 

samples across AFR (left) and EUR (right) ancestry in the imputation sample. Here, we down-sample the 552 

EUR imputation sample to match the sample size of the AFR imputation sample. 553 

Figure S2: Predictive performance of expression models in aligned and misaligned imputation samples. 554 

Figure S3: Predictive performance of ancestry-unaware expression models compared to ancestry-555 

specific models across 5 tissues. Boxplot of difference in predictive performance in EUR (A) and AFR (B) 556 

samples between ancestry-aligned models and ancestry-unaware models. We consider (1) individuals of 557 
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all ancestry in the training sample of the ancestry-unaware model (gold) or only EUR and AFR individuals 558 

in the training sample (grey). The red line indicates a difference of 0. 559 

Figure S4: Predictive performance of ancestry-unaware expression models across minor allele frequency 560 

thresholds. 561 

Figure S5: TWAS Miami plots across AFR and EUR ancestry groups for asthma using whole blood gene 562 

expression models. 563 

Figure S6: Correlation of TWAS Z-scores across ancestry-specific, individual biobank GWAS cohorts and 564 

5 meta-analytic strategies. 565 

Figure S7: TWAS associations across EUR and AFR ancestry groups for DFFA across 5 tissues. The 566 

effect size is given with the point (triangle if association is transcriptome-wide significant) with a 95% 567 

confidence interval provided. 568 

Figure S8: Miami plots of DFFA local-eQTLs and GWAS signal for SNPs around DFFA. In (A), color 569 

shows linkage disequilibrium R2 to lead eQTL SNP. Grey line shows a nominal P-value cutoff of 0.05 (|Z| 570 

= 1.96). 571 

Figure S9: Empirical Bayes estimates of bias and inflation in TWAS Z-scores across meta-analysis 572 

strategies. Estimates of bias (top) and bottom (inflation) with one standard error width around the 573 

estimate are given across meta-analysis strategies. The dotted lines provide a reference for the null (0 for 574 

bias and 1 for inflation). 575 

Figure S10: Comparison of two IVW meta-analyzed Z-scores. Vertical and horizontal dotted lines give a 576 

reference for the Bonferroni-corrected threshold for transcriptome-significance. A diagonal line is provided 577 

from reference. 578 

Figure S11: Comparison of meta-analyzed Z-scores with individual biobank TWAS Z-scores. Ancestry-579 

specific TWAS Z-scores for individual biobanks are shown in the top panel, colored by ancestry. Meta-580 

analyzed Z-scores are shown in the bottom panel with shapes reflecting the different strategies. Dotted 581 

lines provide a reference for transcriptome-wide significance. 582 

Figure S12: UKBB T-PheWAS associations across 5 representative asthma-associated genes through 583 

European-only meta-analytic TWAS, grouped by phecode group. The horizontal dotted line shows FDR-584 

adjusted P = 0.05.  585 
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Figure S13: Miami plots of UKBB T-PheWAS associations across 2 genes previously implicated through 586 

GWAS and detected in European-only meta-analytic TWAS in GBMI. 587 
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Figure 1: Overview of GBMI transcriptome-wide association study (TWAS) pipeline with challenges at 
every data level. (A) Each level of data in TWAS introduces a unique set of challenges: (1) genetics data 
include confounding from genetic ancestry, population structure and relatedness, and complex linkage 
disequilibrium patterns, (2) gene expression data introduces context-specific factors, such as tissue-, cell-
type-, or cell-state-specific expression, and (3) phenotypic data, especially in the meta-analyses of 
multiple biobanks, involve challenges in acquiring and aggregating phenotypes, properly defining controls 
for phenotypes, and ascertainment and selection bias from non-random sampling. (B) An overview of the 
GBMI TWAS pipeline: (1) JTI and MOSTWAS for model training, (2) inverse-variance weighted meta-
analysis using per-biobank, per-ancestry group TWAS summary statistics, and (3) various follow-up tests, 
including conditional or permutation tests, distal-SNPs added last test, probabilistic fine-mapping using 
FOCUS, and tests for SNP horizontal pleiotropy. Dotted lines represent associations that are tested in the 
TWAS pipeline, while the solid lines represent a link built through predictive modeling. 
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Figure 2: Comparison of predictive performance of genetic models of expression across ancestry. (A) 
Distribution of difference in adjusted R2 (Y-axis) when predicting expression in the AFR imputation sample 
between models trained in EUR and in AFR training samples across tissue (X-axis). (B) Distribution of 
difference in adjusted R2 between ancestry-specific and ancestry-unaware models imputing into EUR 
(left) and AFR (right) samples. 
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Figure 3: Comparison of meta-analytic strategies for multi-biobank, trans-ancestry TWAS. (A) Scatterplot 
of per-ancestry meta-analyzed TWAS scores across EUR (X-axis) and AFR ancestry (Y-axis). The dotted 

horizontal and vertical lines indicate P < 2.5 × 10
−6

 with a diagonal line for reference. Points are colored 

based on which ancestry population the TWAS association meets P < 2.5 × 10
−6

. (B) QQ-plot of TWAS 

Z-scores, colored by meta-analytic strategies. Per ancestry refers to TWAS meta-analysis across meta-
analyzed ancestry-specific GWAS summary statistics. Per bank/per ancestry refers to TWAS meta-
analysis using all biobank- and ancestry-specific GWAS summary statistics. (C) Effect sizes and 
Bonferroni-corrected confidence intervals (CIs) for TWAS associations across 17 individual biobanks 
(stratified by ancestry group with EUR in green and AFR in red) and 2 IVW meta-analysis strategies (in 
yellow) for 5 representative genes. The Higgins-Thompson I2 statistic for heterogeneity is provided, with 
the dotted line showing the null. 
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Figure 4: GReX-PheWAS for categorizing phenome-wide associations for TAF7 genetically-regulated 
expression in UKBB. (A) Boxplots of -log10 Benjamini-Hochberg FDR-adjusted P-values of GTAs across 9 
phenotype groups. The dotted grey line showed FDR-adjusted P = 0.05. (B) Miami plot of TWAS Z-
scores (Y-axis) across phenotypes, colored by phecode group. The dotted grey line shows the 
significance threshold for Benjamini-Hochberg FDR correction and phenotypes are labelled if the 
association passes Bonferroni correction. 
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