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Abstract 24 

Cardiovascular diseases (CVDs) are the primary cause of all global death. Timely and 25 

accurate identification of people at risk of developing an atherosclerotic CVD and its sequelae, 26 

via risk prediction model, is a central pillar of preventive cardiology. However, currently available 27 

models only consider a limited set of risk factors and outcomes, do not focus on providing 28 

actionable advice to individuals based on their holistic medical state and lifestyle, are often not 29 

interpretable, were built with small cohort sizes or are based on lifestyle data from the 1960s, 30 

e.g. the Framingham model. The risk of developing atherosclerotic CVDs is heavily lifestyle 31 

dependent, potentially making a high percentage of occurrences preventable. Providing 32 

actionable and accurate risk prediction tools to the public could assist in atherosclerotic CVD 33 

prevention. We developed a benchmarking pipeline to find the best set of data preprocessing 34 

and algorithms to predict absolute 10-year atherosclerotic CVD risk. Based on the data of 35 

464,547 UK Biobank participants without atherosclerotic CVD at baseline, we used a 36 

comprehensive set of 203 consolidated risk factors associated with atherosclerosis and its 37 

sequelae (e.g. heart failure).  38 

Our two best performing absolute atherosclerotic risk prediction models provided higher 39 

performance than Framingham and QRisk3. Using a subset of 25 risk factors identified with 40 

feature selection, our reduced model achieves similar performance while being less complex. 41 

Further, it is interpretable, actionable and highly generalizable. The model could be incorporated 42 

into clinical practice and could allow continuous personalized predictions with automated 43 

intervention suggestions.  44 

 45 

 46 

 47 

 48 
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Introduction 49 

Cardiovascular diseases (CVDs) are the number one cause of all global death (1,2). In 2016, 50 

17.9 million people died of CVDs alone, accounting for 31% of all global deaths (1). The direct 51 

costs of CVDs in the US for 2010 were $272.5 billion whereas indirect costs were $171.7 billion 52 

and are expected to increase to $818.1 and $275.8 billion in 2030 respectively (3,4). 53 

Atherosclerosis alone is responsible for 1.3% of all hospital stays with costs of $9 billion per 54 

year, while all atherosclerosis-related diseases amount to $43.5 billion of total hospital costs 55 

annually (5). Individually, patients with CVD incur more than twice the medical costs of age- and 56 

sex-matched patients without CVD, largely because of the increased likelihood of subsequent 57 

hospitalizations. The greatest differences in total CVD costs usually occur when comparing 58 

patients with and without a secondary CVD hospitalization (6). 59 

All current guidelines on the prevention of CVD in clinical practice recommend the assessment 60 

of total CVD risk since atherosclerosis is usually the product of a number of risk factors (7,8) 61 

and in recent years these guidelines have evolved to focus on the absolute risk of disease as 62 

opposed to relative risk (7–10). Clinician tools for CVD risk estimation must enable rapid and 63 

accurate estimation of an individual patient’s absolute CVD risk (7), or for opportunistic 64 

screening of high-risk patients from relevant populations (11). Screening is the identification of 65 

unrecognized disease or risk of disease in individuals without symptoms. In addition to 66 

opportunistic screening, which is carried out without a predefined strategy (e.g. when the 67 

individual is consulting a general practitioner (GP) for some other reason), tools can be used for 68 

systematic screening, which is centrally organised strategic screening in the general population 69 

or in targeted subpopulations, such as subjects with a family history of premature CVD or 70 

familial hyperlipidaemia (7). There is ongoing debate on the role of systematic centralised 71 

population based screening in CVD (10,12), one reason for this being the tendency for 72 

increased use of burdensome diagnostic testing following the use of risk based screening 73 
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tools(10)(13). A relatively new area of screening is self-screening, carried out by proactive 74 

individuals, using smartphone or smartwatch app based screening tools, which may use built in 75 

app-linked sensors, or screening chat-bots (14–16). There is public demand for reliable, 76 

actionable, explainable and usable health information tools (17), including for disease 77 

screening. 78 

 79 

The risk to build up atherosclerotic plaque varies and is determined by multiple factors such as 80 

genetics, environment and lifestyle (11,18–21). With genetics being unmodifiable and the 81 

environment being difficult to change, the risk of developing atherosclerotic plaque can be 82 

reduced based on an individual’s lifestyle which is modifiable (19,20). 83 

Thus, atherosclerotic CVD is actionable and preventable by addressing behavioral risk factors, 84 

such as smoking, physical activity and nutrition (1,11,19,20). 85 

 86 

Most diseases, including atherosclerotic CVDs, have a complex pathophysiology that involves 87 

multiple interacting molecular systems, making it insufficient to look only at an isolated biological 88 

pathway or a subset of markers to predict disease risk (22). A precision medicine based 89 

approach is required, where multiple biological layers are considered (i.e., ‘multi-omics’), 90 

alongside clinical and lifestyle data (22). Such an approach has the potential to capture all 91 

important interactions or correlations detected between molecules in different biological layers, 92 

providing a holistic understanding of an individual's current health status and enabling the 93 

quantification of an individual’s absolute risk of atherosclerotic CVDs (23,24). 94 

 95 

Previous studies in this area use an outdated or very limited set of risk factors and outcomes for 96 

their analysis (7,25). In recent years, the knowledge of behavioral risk factors and of the 97 

pathophysiology of atherosclerotic CVDs have advanced tremendously (11,25). Current 98 

absolute risk prediction models have limited predictive capability as they have not been trained 99 
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on all possible atherosclerotic CVD outcomes (26–28), or they include outcomes which are 100 

unmodifiable such as those related to pregnancy, accidents, or congenital factors (28). 101 

Both SCORE (Systematic COronary Risk Evaluation) and SCORE2 (29,30), are models for 102 

predicting relative CVD risk, whereas we focus on predicting absolute CVD risk, which is why 103 

we chose to omit those models from our analysis. Another related investigation, which also used 104 

the UK Biobank (UKB) dataset, developed multiple Cox Proportional Hazard models for 10-year 105 

CVD risk prediction, with a reduced version requiring 47 risk factors and another version 106 

disregarding all cholesterol risk factors as well as systolic blood pressure, in order to provide a 107 

simple approach for risk prediction in remote settings with limited testing resources (31). 108 

However, survival models such as the proportional hazard model, are not designed to provide 109 

absolute risk estimates for individual patients. 110 

 111 

Machine learning (ML) based approaches have many advantages, such as superior 112 

performance, being able to identify complex non-linear patterns, the ability to encode diverse 113 

and high dimensional data types, being more stable to outliers, allowing continuous model 114 

updates, versatility for different domains and scalability (32–35).  115 

However, classic disadvantages of ML based approaches are their lack of interpretability, risk 116 

for inherent bias due to the used data, difficulty to acquire physician adoption, explaining to 117 

physicians why a new risk model might be superior to existing ones, with all of these hindering 118 

widespread adoption of ML based risk prediction models (35,36). One example for ML based 119 

CVD risk prediction is the AutoPrognosis based approach, where an ensemble of multiple ML 120 

pipelines has also been applied on the UK Biobank dataset for 5-year CVD risk prediction (28). 121 

Further, using a purely ML driven approach can lead to a model that requires too many risk 122 

factors to compute risk, which is infeasible for routine clinical check-ups. Another disadvantage 123 

of purely data-driven approaches is the inclusion of risk factors which might show strong 124 
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correlations but are unrelated to the pathophysiology of CVDs or are not actionable, making 125 

them inapplicable in a clinical setting or as an actionable self-management tool (28).  126 

 127 

The aim of this study was to use a large-data ML approach to develop an actionable absolute 128 

risk prediction tool which takes into account the holistic health of an individual and has a focus 129 

on behavioral risk factors relating to atherosclerotic CVD outcomes. Our goal was to have a 130 

highly holistic understanding of an individual's current health status, to better quantify their risk 131 

of atherosclerotic CVDs and to provide actionable advice. We aimed to do this by taking multiple 132 

biological layers into account, which are: (i) multi-omics data from blood samples (e.g. lipidome 133 

and proteome); (ii) family history (e.g. genome), (iii) lifestyle data, (iv) clinical data and (v) 134 

environmental data; along with (vi) an extensive set of risk factors and outcomes. 135 

 136 

We used data from 464,547 participants of the UK Biobank study who did not have  137 

atherosclerotic CVD at baseline. We created an automated pipeline to benchmark risk 138 

prediction classifier algorithms against each other, then evaluated their predictive performances 139 

in the overall population and tested the generalizability of the top-performing classifiers through 140 

retraining and testing on different sub-populations. We explored the clinical implications of the 141 

proposed classifiers, with a focus on the top-performing models. This study does not focus on 142 

the algorithmic aspects of the utilized classifiers. 143 

Methodological details on the utilized classifiers can be found in the open-source documentation 144 

of the respective algorithms of the scikit-learn (37) and xgboost (38) libraries and in the 145 

supporting information (S4 Table). 146 

 147 

Materials and Methods 148 

Study design and participants 149 
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The UK Biobank is a long-term prospective large-scale biomedical database including over 150 

500,000 participants aged 40-69 years (when recruited between 2006 and 2010). The database 151 

is globally accessible to approved researchers undertaking research into the most common and 152 

life-threatening diseases and continuously collects phenotypic and genotypic data about its 153 

participants, including data from questionnaires, physical measures, blood, urine and saliva 154 

samples, lifestyle data (39). This data is further linked to each participant’s health-related 155 

records, accelerometry, multimodal imaging, genome-wide genotyping and longitudinal follow-156 

up data for a wide range of health-related outcomes (39,40). The UK Biobank study protocol is 157 

available online (41). 158 

The North West Multi-centre Research Ethics Committee approved the UK Biobank study and 159 

all participants provided written informed consent prior to study enrollment. Our research is 160 

covered by the UK Biobank’s Generic Research Tissue Bank (RTB) Approval and was 161 

approved by the UK Biobank Access Management Team (42). 162 

 163 

We excluded participants with atherosclerotic CVDs present before or during baseline, 164 

participants who chose to leave the UKB study and participants who were lost due to various 165 

reasons. The resulting cohort consisted of 464,547 participants. The last available date of 166 

participant follow-up was March 5th, 2020. 167 

 168 

Risk factor definition 169 

We curated a list of all generally known risk factors and outcomes for atheroscelortic CVDs from 170 

the medical literature and from validated risk prediction models. This preliminary list of risk 171 

factors was reduced through curation to focus on those factors that were clearly involved in the 172 

pathophysiology of atherosclerosis and those that are modifiable through behavioral change. 173 

The curation was carried out by three medical doctors with experience in diagnosing or 174 

scientifically modelling cardiovascular diseases. We consolidated all relevant UKB columns into 175 
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203 risk factors and grouped them into six categories: demographics (e.g. age, biological sex, 176 

ethnicity), biomarkers (e.g. cholesterol, glucose, blood pressure, heart rate), lifestyle (e.g. 177 

alcohol consumption, smoking, physical activity, sleep, social visits), environment (e.g. exposure 178 

to tobacco smoke, work and housing and other socio-economic related factors), genetics (e.g. 179 

family history of cvd, stroke, diabetes, high cholesterol, high blood pressure) and comorbidities 180 

(e.g. heart arrhythmias, diabetes, acute & chronic kidney injury, migraines, rheumatoid arthritis, 181 

systemic lupus erythematosus, severe mental illnesses (schizophrenia, bipolar disorder, 182 

depression, psychosis), diagnosis or treatment of erectile dysfunction, atypical antipsychotic 183 

medication). A categorized list of all risk factors used in our analysis is provided in the 184 

supplementary data (S1 Table). 185 

 186 

Outcome definition 187 

In the same manner as described above, an initial list of atherosclerotic CVDs was further 188 

reviewed and curated by the same team of medical doctors. All resulting CVDs of interest are 189 

associated with atherosclerotic plaque build-up, are modifiable and relate to the collected risk 190 

factors only. Thus, we disregard brain haemorrhages due to accidents and congenital and 191 

pregnancy-related CVDs, which are not actionable. The curated list of all ICD-10 and ICD-9 192 

outcomes meeting the above criteria consists of 193 total (125 unique) CVD outcomes, e.g. 193 

coronary/ischaemic heart disease, heart attack, angina, stroke, cardiac arrest, congestive heart 194 

failure, left ventricular failure, myocardial infarction, aortic valve stenosis, cerebral artery 195 

occlusions, nontraumatic haemorrhages. A list with all outcome codes used in our analysis is 196 

provided in the supplementary data (S2 Table). An atherosclerotic CVD event was defined as 197 

the first occurrence out of the following: any of the atherosclerotic CVD outcome diagnosis 198 

codes, also as primary or secondary death cause during the 10-year follow-up period. 199 

 200 
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Cohort Follow-up  201 

Follow-up time was set to 10 years as commonly used in other risk models (see table 2 in (7)) 202 

and counted from the date of one’s initial assessment center visit. Individuals who died from 203 

other causes during their follow-up period or had a relevant CVD event past their individual 204 

follow-up period, were marked as not having had a relevant CVD event. 205 

 206 

Models used in comparison 207 

Framingham Risk Score. The Framingham 10-year CVD absolute risk score is based on the 208 

data of the two prospective studies, the Framingham Heart Study and the Framingham offspring 209 

study (26). The cohort consists of 8491 participants, with 4522 women and 3969 men who 210 

attended a baseline examination between 30 and 74 years of age and were free of CVD. A 211 

positive CVD outcome was defined as any of the following: coronary death, myocardial 212 

infarction, coronary insufficiency, angina, ischemic stroke, hemorrhagic stroke, transient 213 

ischemic attack, peripheral artery disease and heart failure. 214 

Participants were followed-up for 12 years where 1174 participants developed a CVD. Two 215 

biological sex-specific risk models were derived, where Body Mass Index (BMI) substitues lipid 216 

measurements. The variables used were biological sex, age, total cholesterol, HDL cholesterol, 217 

treated and untreated systolic blood pressure, smoking status and diabetes status. 218 

The Framingham risk calculators and model coefficients are publicly available (43). We imputed 219 

missing data using simple mean imputation.  220 

 221 

QRisk3. The QRisk3 10-year CVD absolute risk score is based on a prospective open cohort 222 

study using data from general practices (GPs), mortality and hospital records in England (27). 223 

The cohort consists of 10.56 million patients between the age of 25 and 84 years, where 75% of 224 

the patients were used for training and 25% for validation. Patients with a pre-existing CVD, 225 
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missing Townsend score or using statins were removed from the baseline. Patients were 226 

classified as having a positive CVD outcome when any of the following outcomes was present 227 

during follow-up in the GP, hospital or mortality records: coronary heart disease, ischaemic 228 

stroke, or transient ischaemic attack. QRisk3 used the following ICD-10 codes: G45 (transient 229 

ischaemic attack and related syndromes), I20 (angina pectoris), I21 (acute myocardial 230 

infarction), I22 (subsequent myocardial infarction), I23 (complications after myocardial 231 

infarction), I24 (other acute ischaemic heart disease), I25 (chronic ischaemic heart disease), I63 232 

(cerebral infarction), and I64 (stroke not specified as haemorrhage or infarction). The utilized 233 

ICD-9 codes were: 410, 411, 412, 413, 414, 434, and 436. Participants were followed-up for 15 234 

years where 363,565 participants of the training set (4,6%) developed a relevant CVD. One 235 

biological sex-specific risk model was derived. 236 

The risk factors used in the final model were age, ethnicity, deprivation, systolic blood pressure, 237 

BMI, total cholesterol/HDL cholesterol ratio, smoking status, family history of coronary heart 238 

disease, diabetes status, treated hypertension, rheumatoid arthritis, atrial fibrillation, chronic 239 

kidney disease, systolic blood pressure variability, diagnosis of migraine, corticosteroid use, 240 

systemic lupus erythematosus, atypical antipsychotic use, diagnosis of severe mental illnesses, 241 

diagnosis or treatment of erectile dysfunction. 242 

The QRisk3 risk calculator and model coefficients are publicly available (44), built into all major 243 

NHS GP systems and included in the national guidelines 244 

(https://www.healthcheck.nhs.uk/seecmsfile/?id=1687, accessed 10th November 2021). We 245 

imputed missing data using simple mean imputation. 246 

 247 

Standard linear and ML models. We compared regularized linear regression (with L1 penalty), 248 

random forests and gradient boosting (xgboost implementation) for assessing the highest 249 

achievable Area Under the Receiver Operating Characteristic Curve (AUROC) value, which we 250 

used for assessing the trade-off between number of features and predictive performance of 251 
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several simpler practical risk predictors, as determined by an iterative feature elimination 252 

procedure outlined below. L1 regularization for logistic regression implements a strong penalty 253 

for non-zero feature weights, resulting in a feature selection procedure that discards features 254 

that are likely to be non-predictive. Random Forest is an ensemble method that fits many 255 

decision trees independently to a subset of the data. We implemented both methods using their 256 

scikit-learn library implementation. Finally, we evaluated Extreme Gradient Boosting: Gradient 257 

boosting is an ensemble tree-based machine learning method that combines many weak 258 

classifiers to produce a stronger one. It sequentially fits a series of classification or regression 259 

trees, with each tree created to predict the outcomes misclassified by the previous tree (45). By 260 

sequentially predicting residuals of previous trees, the gradient boosting process has a focus on 261 

predicting more difficult cases and correcting its own shortcomings. Extreme Gradient Boosting 262 

(XGB / XGBoost) is a specific implementation of the gradient boosting process, and uses 263 

memory-efficient algorithms to improve computational speed and model performance (38,46).  264 

For completeness, we evaluated a number of other standard classifiers, but discarded them due 265 

to too high computational complexity or inferior performance so we do not report their 266 

performances here: Decision Trees, Voting Classifiers, Multi-Layer Perceptrons with 2 layers 267 

and 200 and 150 neurons each (Neural Network), stochastic gradient descent implementing a 268 

support vector machine algorithm (47,48), Ada Boost (49,50), Gradient Boosting (45), K 269 

Neighbors (51), Quadratic Discriminant Analysis (52) and Gaussian Naive Bayes (37,53). 270 

 271 

Model development and benchmarking using pipeline 272 

We built a benchmarking pipeline for automated and reproducible data extraction, normalization, 273 

imputation, model training, tuning of model hyperparameters, classification, documentation and 274 

reporting.  275 
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We implemented all models using their respective scikit-learn library or xgboost library 276 

implementation using the Python programming language (37,38). Details on the used Python 277 

libraries and methods are provided in the supplementary data (S3 and S4 Tables).  278 

Categorical values were one-hot encoded. Data normalization was performed by removing the 279 

mean and scaling to unit variance. Data imputation was performed for all models using a simple 280 

mean imputation. The models’ hyper-parameters were determined using grid search and 281 

stratified k-fold cross validation using 3 folds to avoid overfitting.  282 

Finally, we assessed model performance mainly using the AUROC.  283 

 284 

Iterative feature elimination 285 

We employed an iterative feature elimination procedure based on the regularized logistic 286 

regression for finding the best trade-off between predictive performance and number of risk 287 

factors, with the aim of creating a risk prediction algorithm that is applicable in the clinical 288 

context. We used the standard L1 regularization (also known as Lasso) proposed by (54); it 289 

implements a strong penalty on non-zero feature weights of our logistic regression model, 290 

resulting in a sparse feature set for prediction.  291 

A logistic regression coefficient value � can be interpreted as the expected change in log odds 292 

of having the outcome per unit change in the feature x�. Therefore, increasing the feature by 293 

one unit multiplies the odds of having the outcome by eβ. This means that we can interpret the 294 

coefficients as feature importance values in the sense that the feature with the smallest 295 

coefficient has the least importance on model predictions. Importantly, this holds only true in the 296 

context of the parameters contained in the current model. Thus, we re-estimate the model after 297 

each feature elimination round. 298 

In each iteration, we re-estimated the logistic regression model on the remaining parameters, 299 

and then discarded all parameters that were set to zero by the L1 regularization; finally, we also 300 
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discarded the parameter with the lowest non-zero absolute value.  301 

As an additional step, we created a ranking of the relative feature importance value of each 302 

feature by dividing its absolute coefficient weight by the sum of all absolute coefficient weights. 303 

 304 

Statistical analysis 305 

To reduce overfitting, we evaluated the classification performance of all our benchmarked 306 

algorithms by using 3-fold stratified cross-validation and measuring the Area Under the Receiver 307 

Operating Characteristic Curve. For the cross-validation, we used a training set with 325,182 308 

participants to train and derive our standard linear and ML models and then assessed the 309 

AUROC performance on the held-out test set with 139,365 participants using 203 risk factors 310 

respectively. We report the AUROC and the 95% confidence intervals (Wilson score intervals) 311 

for all models. 312 

 313 

Generalizability 314 

With 442,620 out of the 502,551 patients in the UK Biobank, the cohort has a high proportion 315 

(88.1%) of participants with British ethnicity. In an effort to estimate a proxy for out-of-sample 316 

generalizability, we re-trained the two best models, XGB and Logistic Regression with L1 317 

regularization, only on whites and tested their performance on a non-white test set. The white-318 

only training set consists of 378,836 participants (81.5%). The non-white test set consists of 319 

85,711 participants (18.5%). 320 

 321 

Results 322 

Characteristics of the training and test populations 323 

Of 502,551 patients in the UK Biobank, we filtered out 7.6% who already experienced a relevant 324 

CVD outcome (during or before baseline) and the participants being lost or who withdrew from 325 
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the biobank. This resulted in 464,547 participants who met the inclusion criteria. 28,561 (6.1%) 326 

of those participants developed at least one of the relevant CVD outcomes during their 10-year 327 

follow-up period. We used a common 70% of the data as a training set and 30% as a hold-out 328 

test set. Table 1 shows the overlap of our atherosclerotic CVD outcome definition with the CVD 329 

outcome definition used in the related work approach by Alaa et al. (28): 330 

 331 

Table 1. CVD outcomes statistics according to definition in current study and the 332 

comparator study definition by Alaa et al. (28). 333 

Statistic measured Number 

No. of atherosclerotic CVD outcomes that 

developed in 10-year follow-up according to 

definition in current study 

28,561 

No. of CVD outcomes that developed in 10-

year follow-up according to comparator study 

definition 

28,242 

No. of CVD outcomes after 10-year follow-up 

that overlap in the current study and 

comparator study definition 

456,184 out of 

464,547 (98%) 

No. of CVD outcomes identified in the current 

study but not in comparator studies 

4,341 

No. of CVD outcomes included in comporator 

studies, but not in current study 

4,022 

 334 

Prediction accuracy 335 

Comparison of prediction models. The resulting prediction accuracy of the benchmarked 336 

models is depicted in Table 2. We used both Framingham 10-year CVD risk versions, with and 337 

without lipids, as well as QRisk3 as baseline models to assess the performance of predicting 338 
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someone’s 10-year risk of developing an atherosclerotic cardiovascular disease based on a 339 

holistic set of risk factors, with a focus on actionable risk factors and outcomes. The best 340 

performing model was XGB with an AUROC of 75.73%, only marginally higher than the Logistic 341 

Regression model with L1 regularization (75.44%) and substantially better than the Random 342 

Forest model (66.90%).  343 

Table 2. Performance of all tested classifiers including baseline models. 344 

No. Algorithm Name 

AUROC and 95% 

confidence intervals 

1 

Extreme Gradient Boosting 

(XGB) 

0.7573  

(0.755-0.7595) 

2 

Logistic Regression with L1 

regularization  

0.7544 

(0.755-0.7595) 

3 QRisk3 

0.725 

(0.7226-0.7273) 

4 Framingham Lipid & BMI 

0.680 (0.6775-0.6824) 

& 

0.681 

(0.6788-0.6837) 

5 Random Forest 

0.6690 

(0.6666-0.6715) 

 345 

Fig 1 shows the AUROCs of the best performing models XGB and from Logistic Regression 346 

with L1 regularization, which is the simplest model tested and amongst the top two best 347 

performing models. Logistic Regression comes with the advantages of being interpretable by 348 

providing reasoning for its classifications, and being a simple and robust method (35). 349 

In order to better evaluate the clinical implications and significance of our results, we compared 350 

the results of our benchmarked models with our baseline models Framingham and QRisk3. 351 

Table 2 shows that both, our XGB and Logistic Regression classifiers achieved superior 352 
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performance compared to the baseline models. Apart from the Random Forest model, all tested 353 

models had a higher AUROC than both baseline Framingham (68.0% and 68.1%) and QRisk3 354 

(72.5%) models.  355 

The difference in AUROC performance of the Framingham score in our experiments in Fig 1 356 

and the one stated from Alaa et al. (28) in their study are explainable by the related work 357 

approach using an older UK Biobank version with 40,000 fewer baseline patients and their last 358 

available date of participant follow-up being February 17, 2016. Furthermore, our UK Biobank 359 

version has biochemistry data which was released May 1, 2019 including cholesterol and 360 

additional questionnaires data which the related approach did not have. Additionally, more 361 

diagnosis data was made available over time. These dataset differences explain the difference 362 

in AUROC.  363 

 364 

Fig 1. AUROC of Logistic Regression with L1 regularization and XGBoost  365 

 366 

Figs 2 and 3 show the AUROCs of all baseline models on imputed and unimputed data 367 

respectively. 368 

 369 

Fig 2. AUROC curves of baseline models on imputed data 370 

 371 

 372 

Fig 3. AUROC curves of baseline models on unimputed data 373 

 374 

Both Framingham versions perform nearly identically on imputed and unimputed data whereas 375 

QRisk3 performs worse on unimputed data. 376 

Feature elimination vs. predictive performance 377 
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Fig 4 shows how the performance of the best Logistic Regression model depends on the 378 

number of risk factors used. Stepwise discarding the risk factors leads to a relatively unchanged 379 

and stable model performance until around 170 iterations of feature elimination. This indicates 380 

that for predicting an individual’s 10-year atherosclerotic CVD risk, many features provide only 381 

marginal value and a small subset of features provides substantial informative value. After 382 

around 170 iterations, there was a marked decline in model performance associated with further 383 

reductions in utilized features.  384 

 385 

 386 

Fig 4. Performance of best Logistic Regression model depending on number of features. 387 

AUROC performance of best performing Logistic Regression model with L1 regularization 388 

(continuous blue line) compared to number of features utilized in each iterative feature 389 

elimination step (orange line), dotted blue horizontal line showing intersection of 25 features 390 

with iterative feature elimination step, allowing for extrapolation to model performance. 391 

 392 

Table 3 shows in more detail the dependence of the model performance on the number of 393 

features. Utilizing only 25 (88%) out of the 203 total risk factors still leads to a reasonable 394 

AUROC performance, with a high reduction in utilized features. Compared to the model 395 

performance with an AUROC of 75.44% when using all 203 risk factors, the model still achieves 396 

74.15% with the 25 most informative risk factors.  397 

We also assessed the concrete performance for fewer features. To reach the same 398 

performance as QRisk3 of 72.5% AUROC, 16 features would be necessary. The two most 399 

informative features are age and biological sex. To reach a similar performance as Framingham 400 

(68.0%), two features would be necessary (68.98%). It is worth noting that both Framingham 401 

and QRisk3 were trained and tuned on other datasets and have different CVD definitions and 402 

objectives. 403 
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 404 

Table 3. Performance of best Logistic Regression model depending on number of 405 

features. 406 

Number of 

Features 

AUROC 

203 75.44 

40 75.01 

25 74.15 

20 73.32 

17 72.76 

10 70.88 

2 68.98 

 407 

Generalizability results 408 

We assessed the generalizability of our models with the aforementioned approach of re-training 409 

the two previously best performing models only on a white cohort and testing them on a non-410 

white cohort. Table 4 and Fig 5 show the results for Logistic Regression and XGB. The Logistic 411 

Regression model has an AUROC of 75.86% in the generalizability experiment, compared with 412 

an AUROC of 75.44% in the previous experiment. XGB has an AUROC of 76.26% in the 413 

generalizability experiment and 75.73% in the previous experiment. These results show 414 

marginal differences to the results of the previous experiments. 415 

 416 
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Table 4. Model performance when trained on whites and tested on non-whites. 417 

Model AUROC on 
generalizability 
experiment 

Previous 
AUROC 
results 

Logistic 

Regression 

with L1 

regularization 

75.86% 75.44% 

XGBoost 76.26% 75.73% 

 418 

 419 

Fig 5. AUROC of Logistic Regression with L1 regularization and XGBoost when trained 420 

on whites and tested on non-whites. 421 

Predictive ability of individual variables in UK Biobank. 422 

Table 5 shows the relative regression feature weights of the 25 most informative risk factors in 423 

descending order. A full list is provided in the supplementary materials (S5 Table). Based on our 424 

previous manual curation of risk factors and outcomes, we can see that the most informative 425 

risk factors are distributed across 5 categories (Table 6). The two most informative features 426 

were age and biological sex. 427 

 428 

Table 5. Relative regression feature weights of 25 most informative risk factors from best 429 

Logistic Regression model. 430 

Feature 

number Risk factor name 

Relative 

informative value 

descending 
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1 Age 0.0938 

2 Biological sex 0.0485 

3 Systolic blood pressure 0.0284 

4 Social visits: About once a week 0.0277 

5 Social visits: 2-4 times a week 0.0273 

6 Walking pace: Brisk pace 0.0268 

7 Total cholesterol HDL ratio 0.0267 

8 Total cholesterol 0.0239 

9 LDL cholesterol 0.0235 

10 Familial CVD 0.0218 

11 

Social visits: About once a 

month 0.0203 

12 Sleep problems: Not at all 0.0188 

13 Alcohol with meals: Yes 0.0184 

14 Smoking 0.0184  

15 Social visits: Almost daily 0.0178  

16 No. of cigarettes daily 0.0163  

17 Hypertension 0.0160  

18 Walking pace: Steady average 0.0154 
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pace 

19 Waist circumference 0.0150 

20 Alcohol with meals: It varies 0.0141 

21 

Social visits: Once every few 

months 0.0139 

22 Overall health rating: Excellent 0.0134 

23 Other Heart Arrhythmias 0.0129 

24 Overall health rating: Poor 0.0123 

25 Sleep problems: Several days 0.0122 

 431 

Table 6. Categorization of the 25 most informative risk factors into categories from the 432 

best Logistic Regression model. 433 

Category Risk Factors 

Demographics Age, Biological sex 

Biomarkers Waist circumference, systolic blood pressure, 

total cholesterol, LDL cholesterol, total 

cholesterol HDL ratio 

 

Comorbidities Hypertension, sleep problems: not at all, 

sleep problems: several days, other heart 

arrhythmias 

Family History Familial CVD 
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Lifestyle Factors Social visits: about once/week, social visits: 

2-4 times/week, social visits: about 

once/month, social visits: almost daily, social 

visits: once every few months, smoking, no. 

of cigarettes daily, alcohol with meals: yes, 

alcohol with meals: it varies, walking pace: 

steady average pace, walking pace: Brisk 

pace, overall health rating: excellent, overall 

health rating: poor 

 434 

Discussion 435 

Using data gathered from the large longitudinal cohort UK Biobank study, we developed a 436 

pipeline to benchmark several classification models for predicting a subject's 10-year absolute 437 

risk of developing an atherosclerotic CVD. We used an extensive set of physician curated risk 438 

factors and outcomes methodology, employing a holistic view of the subject’s current health 439 

status rooted in a precision medicine approach. The models were trained and evaluated using 440 

data from 464,547 UK Biobank participants, spanning 203 CVD risk factors for each subject. 441 

Using a simple Logistic Regression model with a holistic set of risk factors significantly improved 442 

the accuracy of atherosclerotic CVD risk prediction compared to currently available, widely used 443 

and recommended models such as Framingham and QRisk3. Both of these existing models rely 444 

on a limited set of risk factors and outcomes and do not focus on modifiable lifestyle factors. 445 

Further, our best performing Logistic Regression model utilizes new CVD risk predictors 446 

showing high predictive power, which are social visits, walking pace and overall health rating. 447 

The frequency of social visits could be indicative of someone’s current mental health status, 448 

which has been shown to be a relevant CVD risk factor (55,56). These and other non-laboratory 449 

risk factors could be collected by means of a questionnaire or passively deduced using data 450 

analytics from data sources such as GPS, calendar and sensors from smartphones, 451 
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smartwatches and fitness trackers.  452 

Additionally, our best performing models, XGBoost and Logistic Regression, showed marginal 453 

differences when trained and tested on particular sub-populations, which is indicative of good 454 

generalizability to other ethnicities. 455 

As there was little performance difference between the best performing models, we primarily 456 

discuss the simplest model, Logistic Regression with L1 regularization. This model has the 457 

inherent benefit of offering reasoning for its predictions, through analyzing the learned 458 

coefficients for every risk factor and having feature selection performed by the L1 regularization. 459 

With L1 regularization, less important risk factors’ coefficients are minimised and also set to 460 

zero, which then leads to entire removal of these features from the model, and fewer risk factors 461 

needed for an accurate prediction. 462 

 463 

Using iterative feature elimination, we identified a subset of the 25 most relevant risk factors 464 

providing a similar performance compared to using all 203 risk factors. With the 25 most 465 

relevant risk factors belonging to five different categories, suggests that different biological 466 

layers contribute to the risk of atherosclerotic CVD. This result indicates that it is insufficient to 467 

assess only one biological layer for accurate risk prediction, confirming the findings of other 468 

studies for identifying novel biomarkers and pathways in complex diseases (57). This result 469 

supports our initial model development approach: to use a holistic model for an individual’s 470 

health. Our approach was rooted in precision medicine and takes into account multiple 471 

biological layers by using multi-omics as well as clinical and lifestyle data with the aim to capture 472 

all potential interactions or correlations detected between molecules in different biological layers 473 

(22). Multi-omics data generated for the same set of samples can provide useful insights into 474 

the interaction of biological information at multiple layers and thus can help in understanding the 475 

mechanisms underlying the complex biological condition of interest. 476 

 477 
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In our model, the lifestyle category contributed the most risk factors, suggesting that it is 478 

essential to include someone’s daily lifestyle data and not just periodic snapshots of clinical data 479 

into an individual’s risk assessment for a complex disease like CVD. The causal relationships 480 

between the risk factors considered in our model and atherosclerotic CVDs have been 481 

demonstrated by other studies (11,19,21,25). Innovative approaches are needed in order to 482 

tackle the increasing prevalence and mortality of CVD-related diseases (2), and the associated 483 

healthcare systems’ financial burdens. This is especially required in low and middle income 484 

countries where CVD prevalence has also been increasing and is expected to increase as a 485 

consequence of an aging and growing population (2).  486 

 487 

There is potential for novel disruptive approaches to affordably improve CVD outcomes. Areas 488 

where this may have an impact is in novel approaches to screening, lifestyle coaching and 489 

prevention (2). Screening will become more accessible and widespread by more (near-)medical-490 

grade sensors being integrated into smartphones and smartwatches, enabling continuous 491 

monitoring of relevant behavioral CVD risk factors, as well as biomarkers such as heart rate, 492 

blood pressure and blood glucose. By gathering a wider spectrum of relevant risk factors for 493 

cardiovascular disease automatically and continuously, an ongoing and personalized 494 

cardiovascular disease risk prediction could be enabled. Through linking personalised 495 

information on an individual’s CVD risk with app-based programmes for sustained behavioural 496 

modification, it may be possible to lower the incidence and mortality of CVDs (58). Combined 497 

with a companion smartphone-based app, an AI or healthcare provider-generated personalised 498 

intervention program could be provided, and targeted at those people who need it the most. 499 

Many studies have shown that digital health interventions are cost effective for managing CVD 500 

(for a review see (59)). One report found that a community-based prevention program could 501 

have a mean return on investment (ROI) on medical cost savings of $5.60 for every $1 spent 502 

within a 5 year timeframe by improving physical activity and nutrition and reducing tobacco 503 
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usage (60). A review of 11 in-home cardiac rehabilitation programs for the secondary prevention 504 

of CVD found that social support, goal setting, monitoring, credible instructions and literature 505 

resources are all effective behavior change techniques to reduce behavioral risk factors for CVD 506 

(61). 507 

 508 

The improvement achieved by our models might be partially attributed to being trained and 509 

assessed on the UK Biobank dataset, whereas the baseline Framingham model was derived 510 

from a different population. The population and many of the data sources used in the QRisk3 511 

model are similar, being the general UK population and using their GP, hospital and mortality 512 

records. However, our risk model generation approach and QRisk3’s approach were designed 513 

with different aims and objectives and the modelling strategy was different. For these reasons, 514 

direct comparison between the models is limited. Notable differences between the approaches 515 

include a more limited set of risk factors included in Framingham and QRisk3’s and a focused 516 

and wider range of atherosclerotic CVDs included in our approach. 517 

 518 

The results from our generalizability subanalysis indicate that our XGB and Logistic Regression 519 

models might generalize well to other ethnicities and do not overfit to our cohort, however, this 520 

needs to be further evaluated with more data from diverse ethnicities.  521 

 522 

Our results show that our models have improved performance over the baseline models 523 

Framingham and QRisk3 (Table 2). This is because the selection of the appropriate disease 524 

modelling approach, classifiers and careful tuning of the model’s hyperparameters are crucial 525 

steps for realizing the potential benefits of ML. Our pipeline automates some of these steps 526 

which makes the tuning and discovery of new disease risk models easily accessible for clinical 527 

research. Our prospective cohort modelling approach, which is rooted in precision medicine, is 528 
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the first to generate an atherosclerotic CVD absolute risk prediction tool based upon a complete 529 

definition of atherosclerotic CVD outcomes and a holistic set of risk factors. 530 

 531 

Limitations 532 

The UK Biobank only admitted participants for their initial signup from the ages 40 and up. This 533 

might limit the applicability of the risk score for younger populations and further tests with data 534 

from younger populations need to be conducted. 535 

 536 

There are many missing data values related to the potential risk factors for many participants.  537 

Having more unimputed data of relevant CVD risk factors could improve the predictive 538 

performance of all our benchmarked classifiers and could also lead to changes in the classifier 539 

ranking from Table 2 and relative risk factor importances in Table 5. However, the use of 540 

imputed data is highly unlikely to have an impact on our conclusion that a holistic set of risk 541 

factors and an exhaustive atherosclerotic CVD outcome definition could improve atherosclerotic 542 

and actionable CVD risk prediction. 543 

 544 

An additional limitation of our study is that the UK Biobank dataset consists of participants of 545 

predominantly (88%) British ethnicity, with an even larger portion having a white background 546 

(91%). Therefore, further assessments of the influence of the ethnicity predictor need to be 547 

carried out to enable a generalizable tool. Previous work in this area indicates that the plaque 548 

growth process seems to be independent of ethnicity (21).  549 

A further limitation of this UK focused dataset is that socio-economic and other environmental 550 

factors differ between countries. This is another potential bias that needs to be further evaluated 551 

with datasets from other countries with different socio-economic characteristics. 552 

 553 
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Disease risk prediction models which include subjective non-laboratory risk factors, such as the 554 

self-reported health rating and usual walking pace, should be cautiously evaluated to minimize 555 

self-reported bias. These risk factors have been found to be good predictors of someone’s 556 

overall CVD risk in another study using UK Biobank data (28).  557 

 558 

Conclusions 559 

We benchmarked multiple classifiers to predict an individual’s 10-year risk of developing an 560 

atherosclerotic CVD, using a holistic set of risk factors and a specific definition of atherosclerotic 561 

CVDs. Our reduced Logistic Regression with L1 regularization classifier, a simple and 562 

interpretable model, is amongst our best prediction models, includes actionable lifestyle factors, 563 

has great predictive power and requires 13 unique features. Our experiments showed that a two 564 

feature-questionnaire is as accurate as the Framingham models and a 16 feature-questionnaire 565 

is as accurate as QRisk3 for 10-year atherosclerotic CVD risk prediction. Both prediction 566 

models, XGBoost and Logistic Regression, generalize well to non-white people, which might 567 

indicate that our models generalize well to other (western) countries. Framingham and QRisk3, 568 

which are well established and validated absolute risk prediction models, do not perform as well 569 

on predicting individuals’ 10-year risk of developing an atherosclerotic CVD. With our Logistic 570 

Regression model, we created a promising new interpretable, actionable and accurate risk 571 

prediction tool that could assist individuals and public health in CVD risk reduction. 572 
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