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Abstract

Optimal protocols of vaccine administration to minimize the effects of infectious
diseases depend on a number of variables that admit different degrees of control.
Examples include the characteristics of the disease and how it impacts on different
groups of individuals as a function of sex, age or socioeconomic status, its transmission
mode, or the demographic structure of the affected population. Here we introduce a
compartmental model of infection propagation with vaccination and reinfection and
analyse the effect that variations on the rates of these two processes have on the
progression of the disease and on the number of fatalities. The population is split into
two groups to highlight the overall effects on disease caused by different relationships
between vaccine administration and various demographic structures. We show that
optimal administration protocols depend on the vaccination rate, a variable severely
conditioned by vaccine supply and acceptance. As a practical example, we study
COVID-19 dynamics in various countries using real demographic data. The model can
be easily applied to any other disease and demographic structure through a suitable
estimation of parameter values. Simulations of the general model can be carried out at
this interactive webpage [1].

Author summary

Vaccination campaigns can have varying degrees of success in minimizing the effects of
an infectious disease. It is often very difficult to assess a priori the importance and
effect of different relevant factors. To gain insight into this problem, we present a model
of infection propagation with vaccination and use it to study the effects of vaccination
rate and population structure. We find that when the disease affects in different ways
distinct population groups, the best vaccination strategy depends non-trivially on the
rate at which vaccines can be administered. The application of our analysis to
COVID-19 reveals that, in countries with aged populations, the best strategy is always
to vaccinate first the elderly, while for youthful populations maximizing vaccination rate
regardless of other considerations may save more lives.
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Introduction 1

Infectious diseases have profoundly shaped human habits, and societies at large [2]. 2

Their tremendous effects on morbidity and mortality could only be counteracted with 3

the advent of massive vaccination campaigns, which stand out as the most effective 4

medical interventions ever [3]. This is so despite the fact that only smallpox has been 5

eradicated (also rinderpest in animal hosts), while multiple other communicable diseases 6

persist at low incidence or with significantly milder effects in infected individuals – 7

thanks to vaccination. Eradication of pathogens is difficult if they have alternative 8

species as reservoirs, in the absence of a vaccine, or if the disease is geographically 9

spread or has a complicated diagnosis. 10

Nowadays, many infectious diseases remain endemic even if a vaccine is available and 11

its administration is widespread. Vaccinated individuals can become infected because 12

vaccines only confer partial protection [4]; if immunity wanes, both vaccinated and 13

previously infected individuals can get the infection again [5]. Around 1% of infected 14

individuals undergo reinfection by SARS-CoV-2 [6], a percentage that is higher in the 15

case of other respiratory diseases, such as influenza, where the high variability of viral 16

strains and continued reinfections during each flu-season have made it endemic [7]. 17

Indeed, the emergence of mutant forms of pathogens that escape immune attack and 18

thus limit the protective effects of past infections or vaccination is the rule [8], especially 19

when prevalence is high [9]. 20

The eventual fate of an emergent epidemic is uncertain as it depends on the type of 21

immunity people acquire through infection or vaccination and on how the virus 22

evolves [10]. The effects of disease in populations along typically lengthy transients 23

between the emergence of a contagious disease and its dynamical stabilization depend 24

on features of the population and of the disease, but also on controlled interventions 25

such as non-pharmaceutical measures and, critically, vaccine roll-out [11]. 26

It is hard to quantify all possible effects of vaccination [12], since it is ideally aimed 27

at fulfilling several dissimilar goals, among others to prevent the disease and reduce its 28

severity and mortality and to minimize the impact of the disease on the health care 29

system and the economy [13]. Actually, vaccination strategies often focus on one or 30

another priority: for instance, on vaccinating first the most vulnerable groups, or on 31

starting with the individuals with the highest spreading potential, with the hope that 32

the most vulnerable group will be indirectly protected [14,15]. Vaccination strategies 33

cannot be unique and universal [16], since their effects vary as a function of the 34

transmission mode and severity of the specific disease, of population habits (which 35

determine contacts and therefore contagion probability), of demographic profiles and, 36

last but not least, on the availability of vaccines [17]. 37

In this contribution, we address the effect of different vaccination protocols in 38

structured populations by means of a compartmental model, and assuming a 39

non-negligible fraction of reinfections and infections of vaccinated individuals. As a 40

measure of the effects of vaccination we use the reduction in the number of deaths after 41

one year, as compared with a situation of no vaccination. The model is deliberately 42

simple to focus on the overall effects of two fixed empirical variables (the infection 43

fatality ratio, IFR, of the disease and the demographic structure of the population) and 44

one controllable variable: the vaccination rate. In the first part of the work, we explore 45

the effects of these variables in synthetic populations structured into two groups where 46

the first one has a higher number of intra-group contacts (and thus is the group that 47

best spreads the disease) and the second one contains more vulnerable individuals (with 48

a higher IFR). In the second part of the work, we apply the model to COVID-19 and 49

several different countries. In each particular case studied, we use available data on 50

demography, contact matrices between age-groups [18, 19], and independently evaluated, 51

age-dependent IFR. Finally, we have built a public webpage [1] where multiple 52
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additional demographic profiles can be chosen and model parameters arbitrarily 53

changed, also with the goal of allowing quantitative comparison with other models in 54

the literature [14,20]. 55

Models 56

SIYRD: A compartmental model with reinfections and 57

vaccination 58

The basic SIYRD model is a compartmental model with five different classes: 59

Susceptible (S), Infected (I), Reinfected (Y), Recovered (R) and Dead (D) individuals. 60

The recovered class merges individuals from two origins: those which were infected and 61

have overcome the disease, thus bearing partial immunity to new infections, and 62

susceptible individuals which have been vaccinated. As a first approximation, we 63

assume that the degree of immunity acquired by vaccinated individuals is equivalent to 64

that of recovered individuals after natural infection. Figure 1 summarizes the transitions 65

allowed between compartments. Note that only vaccination of susceptible individuals is 66

considered, due to the assumed equivalence between vaccination and disease overcoming. 67

Fig 1. Schematic of compartments in the epidemic model with vaccination
and reinfection. (A) Basic SIYRD model. Susceptible individuals (S) exit the
compartment either through infection (to class I, at rate βSI if infected by an I
individual and at rate βSY if infected by a Y individual) or vaccination (to class R, at
rate v). Infected individuals may recover (R, rate r) or die (D), regardless of whether
they have primary infections (I, rate µI) or reinfections (Y, rate µY ). Recovered
individuals can become reinfected (by class Y at rate βRY or by class I at rate βRI),
and either recover again (to class R, rate r) or die (to class D, rate µY ). Green dashed
lines link classes whose interaction triggers transitions. (B) As in (A), for the model
with two groups. Note that transitions occur only within classes of the same group,
while interactions intra- and inter-groups (green dashed lines) couple the dynamics.
These interactions are weighted through contact matrices and the fraction of individuals
in each group, which consider the demographic structure of the population.

The equations that define the epidemic model are 68
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Ṡ = −βSI
IS

N
− βSY

Y S

N
− vΘ(S, θ) (1)

İ = βSI
IS

N
+ βSY

Y S

N
− rI − µII (2)

Ẏ = βRI
IR

N
+ βRY

Y R

N
− rY − µY Y (3)

Ṙ = rI + rY − βRI
IR

N
− βRY

Y R

N
+ vΘ(S, θ) (4)

Ḋ = µII + µY Y (5)

Parameters are rescaled in such a way that the time unit of our simulations is one 69

day. Vaccination is implemented in this model through a parameter v that represents 70

the fraction of population vaccinated per time unit, i.e. per day. This rate is multiplied 71

by a function Θ(S, θ) that takes into account its progressive slowdown and eventual halt 72

when a fraction θ of individuals has been vaccinated. The specific functional form of 73

Θ(S, θ) does not affect the overall dynamical properties of the system (see S3 Appendix). 74

Model parameters 75

The separation between primary infections (I) and reinfections (Y) entails four different 76

infection rates (see Fig. 1): βSI and βSY correspond to the infection rates of susceptible 77

individuals by primary-infected and re-infected individuals, respectively; βRI and βRY 78

are the equivalent infection rates for recovered individuals. Although the precise values 79

of some of these infection rates might be difficult to estimate in general, we consider 80

disease types where they are subject to certain relations that hold on average, over the 81

population. For example, reinfected individuals have a lower infective capacity in 82

comparison to primary-infected individuals, both towards susceptible and recovered 83

individuals. In other words, reinfection rates are smaller than primary-infection rates, 84

βSI ≥ βSY and βRI ≥ βRY . 85

Consistently, the likelihood that a susceptible individual becomes infected is larger 86

than that of a recovered individual, since the latter bears at least partial immunity 87

against the disease either due to a prior infection or to vaccination. This applies both to 88

primary infections, βSI ≥ βRI , and to reinfections, βSY ≥ βRY . Finally, we assume that 89

the ratio between the infection rates of primary-infected and reinfected individuals is 90

independent of the state of the individual that can be potentially infected, 91

βSY

βSI
=
βRY

βRI
. (6)

The mortality rate of primary-infected individuals can be calculated using the 92

infection fatality risk (IFR) of the disease under consideration, defined as the ratio 93

between the number of fatalities and the number of infections in a given (sub)population 94

(see S2 Appendix). The mortality rate of reinfected individuals is assumed to be 95

significantly lower, µI � µY , as a result of their partial immunity against the disease. 96

Finally, for simplicity we assume that the recovery rate r of primary-infected and 97

reinfected individuals is identical, neglecting possible small differences. 98

The quantitative estimation of r depends on the IFR and on the infectious period of 99

the disease, see S2 Appendix. The vaccination rate v is a variable that can be explored 100
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in a range of values depending on vaccine supply. We will consider values up to 2%, 101

representing the fraction of population vaccinated in one day. A summary of parameters 102

in the SIYRD can be found in Table 1. 103

Table 1. Definition of parameters in the SIYRD model. All rates have dimensions of
day−1 with the exception of the vaccination rate, which has dimensions of population
(fraction) × day−1, and θ, which has dimensions of population (fraction).

Parameter Definition

βSI , βRI Infection rate of S and R individuals by I individuals
βSY , βRY Infection rate of S and R individuals by Y individuals

r Recovery rate of I and Y individuals
µI Mortality rate of I individuals
µY Mortality rate of Y individuals
v Vaccination rate
θ Maximum fraction of vaccinated population

Stratified SIYRD (S2IYRD) 104

In order to consider the demographic structure of populations and how a given disease 105

affects different groups (e.g. depending on age or sex), we extend the SIYRD model to 106

represent two different population groups (G1 and G2) per class, each containing N1 107

and N2 individuals, respectively. Variables and parameters characteristic of each group 108

now get the corresponding subindex: this applies to vaccination rates vi, mortality rates 109

µIi and µYi
, and recovery rates ri. Disease transmission rates βSI , βSY , βRI and βRY 110

are independent of the group to which they apply. To be consistent, the two groups are 111

connected to each other through a contact matrix that reflects individual connectivity 112

patterns (see S1 Appendix). To simplify notation, the simple, one-class model with 113

reinfection and vaccination will be called SIYRD all through the text, while the model 114

with two coupled groups will be called S2IYRD. 115

Equations (7-11) describe the dynamics of group G1 in the S2IYRD model, 116

Ṡ1 = −
[
(βSII1 + βSY Y1)

M11

N1
+ (βSII2 + βSY Y2)

M12

N2

]
S1 − v1Θ(S1, θ) (7)

İ1 =

[
(βSII1 + βSY Y1)

M11

N1
+ (βSII2 + βSY Y2)

M12

N2

]
S1 − (r1 + µI1)I1 (8)

Ẏ1 =

[
(βRII1 + βRY Y1)

M11

N1
+ (βRII2 + βRY Y2)

M12

N2

]
R1 − (r1 + µY1

)Y1 (9)

Ṙ1 = −
[
(βRII1 + βRY Y1)

M11

N1
+ (βRII2 + βRY Y2)

M12

N2

]
R1

+r1(I1 + Y1) + v1Θ(S1, θ) (10)

Ḋ1 = µI1I1 + µY1Y1 (11)

This model has a second set of analogous equations, coupled to Eqs. (7-11), obtained 117

by simply interchanging subindexes, 1↔ 2. 118

The most important modification of the model comes from the matrix of contacts 119

M, whose elements Mij represent the number of contacts an individual of group i has 120

with individuals of group j, thus weighing the effect of intra- and inter-group contacts 121

in contagion rates (see S1 Appendix). 122
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S2IYRD model parameters 123

Though mortality and recovery rates are in principle subject to relationships analogous 124

to those described for the SIYRD model, they can be also independently estimated for 125

each group as characteristics of the disease under consideration. Now, the values of the 126

elements Mij synthesize the contact structure of the affected population and, in general, 127

can be empirically obtained using actual demographic structure and surveys of contacts 128

between different groups in a variety of daily situations (see S1 Appendix). Finally, the 129

vaccination rate can be varied to represent different administration protocols, in order 130

to test how they affect disease progression. We will consider three situations in which 131

priority is given to G1, to G2, or both groups are simultaneously vaccinated. The result 132

of each protocol will be compared with the baseline of no vaccination. Specifically, the 133

prioritized population group is vaccinated at a rate v until the fraction of susceptible 134

individuals reaches (1− θ). When that happens, vaccination of the second, 135

non-prioritized group begins, provided the previous threshold θ has not been yet reached 136

through natural infections. Under simultaneous vaccination, both groups are vaccinated 137

at rates proportional to their respective group sizes. If vaccination finishes in one of the 138

groups first, the other group receives all doses. Note that, due to the vaccination 139

prescription, where a fixed number of individuals (equal to the vaccine doses available) 140

are vaccinated at each time, our simulations will be performed with finite populations of 141

size N = 108, and with the real population size in specific examples. To permit 142

comparison of different results, however, we will use normalized variables ni = Ni/N . 143

In every specific scenario, three factors emerge as the main determinants of epidemic 144

spread and thus of optimal vaccination protocols: the division of the population into 145

groups and their contact habits (subsumed under the Mij terms), the aetiology of the 146

disease (IFR and recovery, death and infection rates), and the vaccination rates vi 147

—which stand as the only variables that can be externally modified when the disease 148

propagates freely or under constant non-pharmaceutical measures. 149

Results 150

Dynamics of the SIYRD model 151

Steady states 152

The linear stability analysis of the SIYRD reveals the existence of a unique nonzero 153

steady state corresponding to epidemic mitigation: susceptible and infectious individuals 154

vanish, leaving only recovered and dead individuals (0, 0, 0, R∗, D∗). The exact values of 155

R∗ and D∗ can be calculated under certain conditions (see S3 Appendix). This fixed 156

point is always neutrally stable. If no infection of recovered individuals by reinfected 157

ones is allowed (βRY = 0), the qualitative result remains unchanged. 158

When vaccination is suppressed, a second steady state is also possible, 159

(S∗, 0, 0, R∗, D∗), which is linearly unstable and therefore irrelevant from an 160

epidemiological viewpoint. A neutrally stable pure endemic steady state 161

(0, 0, Y ∗, R∗, D∗) emerges if the mortality rate of reinfected individuals is set to zero, 162

µY = 0. Further details on fixed points and their stability, together with figures 163

illustrating the dynamics towards different final states can be found in S3 Appendix. In 164

principle, it is not possible to determine to which steady state the system will converge 165

given the initial conditions and specific parameter values. 166
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Fig 2. Generic dynamics of the SIYRD model. The existence of reinfection causes a
non-monotonous increase in the number of recovered individuals. After an initial
increase due to the I → R transition, this fraction decreases when I grows further since
reinfections thus become more frequent. For small values of the death rate of Y
individuals, µY , a long plateau in the number of secondary infections develops,
significantly delaying the extinction of the epidemic (note the logarithmic x−axis).
Parameters are βSI = βRI = 0.46, βSY = βRY = 0.046, µI = 0.00149, µY = 10−5,
r = 0.0180, v = 0.01, and θ = 0.7. The red dashed line represents the asymptotic value
of R∗ in a case where it can be analytically calculated (see S3 Appendix for further
details). Initial conditions: (0.99, 0.01, 0, 0, 0).

Long transients with a quasi-endemic disease 167

Due to the introduction of reinfection, the model presents an interesting behavior in a 168

broad range of parameters: the fraction of reinfected individuals Y and the total 169

number of fatalities D experience a long, plateau-like transient before relaxing to their 170

asymptotic values, see Figure 2. This behavior is related to the existence of a stable 171

endemic state for µY = 0. Indeed, the mechanistic origin of long transients relies on the 172

loop that links R and Y classes, whose dynamical equations fully decouple from the rest 173

in the limit when S = I = 0 and µY = 0, and present slow dynamics for small values of 174

µY . In other words, these long transients are mostly controlled by the low mortality 175

rate of secondary infections, which limits the flux of individuals out of the Y-R loop and 176

delays the end of the epidemic. While, outside of this regime, the asymptotic state is 177

reached in about a year time, it may take over a century for the disease to disappear in 178

the slow regime. This behavior is observed for a broad range of parameters in the 179

relevant case when the dynamics of first infections occurs at rates several-fold faster 180

than that of secondary infections. In practice, what the model yields in a few years time 181

is a long plateau in epidemic incidence that can be interpreted as a quasi-endemic 182

disease. At longer timescales, however, the model is no longer a valid description of the 183

dynamics, since variables such as immune decay, mutations yielding new viral variants 184

and, eventually, demographic changes, come into play. It is in these situations when 185

diseases can become truly endemic, since the pool of susceptible individuals is 186

replenished through one or another mechanism. 187
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Dynamics of the S2IYRD model 188

In this section, we will discuss the dynamics of the S2IYRD model under the three 189

possible vaccination strategies: priority to G1, to G2, or simultaneous vaccination. The 190

advantage of either strategy will be evaluated under variable vaccination rates. Here, we 191

do not make explicit the criterion to split the population into two groups, and explore 192

instead the effect of these two groups having dissimilar sizes and being differently 193

affected by the disease. To this end, we will study two representative values of the 194

contact strength between groups, vary the fraction of population in either group and the 195

IFR ratio, and illustrate how these affect the optimal vaccination strategy under 196

increasing vaccination rates. Parameters can in principle be varied independently, but 197

the closure relationship M12n1 = M21n2 (see S1 Appendix) has to be fulfilled for 198

consistency. Also, we will restrict our explorations to cases where the group at higher 199

risk is the slower spreader; otherwise, there is no conflict between vaccinating the most 200

susceptible or the group that best spreads the disease, and the best strategy is therefore 201

trivial. Without loss of generality, group G1 will be the faster spreader, and group G2 202

the one most affected by the disease. We will use as measure of the effectiveness of a 203

strategy the asymptotic decrease in the number of fatalities once the epidemic halts (or, 204

alternatively, at a sufficiently long time since vaccination started). 205

General dynamical features 206

The behavior of the model is qualitatively robust for all scenarios explored, for different 207

parameter values and contact matrices, as long as the initial reproductive number is 208

slightly above the epidemic threshold (R0 = βSIdI & 1). Nevertheless, important 209

quantitative differences arise (see examples in the next section). As time elapses, the 210

number of susceptible individuals in both groups is reduced due to infection and 211

vaccination. Simultaneously, there is an increase in the number of infected individuals 212

and a subsequent increment of recovered and dead individuals. Furthermore, increases 213

in the number of recovered individuals may cause a boost of reinfections under 214

sufficiently high prevalence. Ultimately, when susceptible individuals become exhausted, 215

primary infections decline and model dynamics become exclusively dependent on 216

recovered and reinfected individuals. Infection rates and contact between groups mostly 217

determine the speed of the epidemic, especially affecting how fast susceptible individuals 218

move to other compartments. In turn, mortality and recovery rates play the largest 219

effect in setting the final number of deaths. If the previous parameters are fixed, it is 220

the vaccination rate that determines the temporal evolution of the epidemic and the 221

optimal vaccination strategy. 222

Effect of model parameters in total fatalities 223

Let us explore several synthetic examples to illustrate important relationships between 224

model parameters and their effect on death reduction. Figure 3 summarizes the overall 225

behavior and illustrates how variations in the vaccination rate and in the relative size of 226

the groups affect optimal vaccination protocols. 227

Characteristic dynamics under slow and fast vaccination rates are represented in 228

Fig. 3A. If the vaccination rate is too slow, the dynamics are barely distinguishable from 229

free propagation, and the overall reduction of the number of fatalities is very modest. 230

For sufficiently high vaccination rates (around 0.5 and higher), the reduction of deaths 231

becomes significant. Figure 3B represents the reduction obtained in number of deaths 232

for each strategy as a function of the vaccination rate and the relative group size. At 233

low vaccination rates, the advisable strategy is to vaccinate first group G2, the most 234

vulnerable, though the optimal strategy changes to priority given to group G1 for 235

sufficiently high vaccination rates, the precise value of v at which the best strategy 236
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changes depending on the relative size of the groups (see also Fig. 3C). The selection of 237

the optimal strategy is more critical at intermediate values of the vaccination rate and 238

when the two groups have comparable sizes. At very high vaccination rates, however, 239

vaccination strategies yield similar reductions and are weakly dependent on the relative 240

group size. Figure 3D presents a quantitative summary of the effect of the best strategy. 241

Cells to the left of the thick dark red line correspond to priority to G2 as the advisable 242

protocol, with a reduction in the number of deaths given for each vaccination rate and 243

population fraction n2. To the right of the thick dark red line, the optimal strategy is 244

priority vaccination of group G1. 245

We have explored the effect of the IFR in the optimal vaccination strategy as a 246

function of the vaccination rate for two different group sizes (or contact matrices, recall 247

the coupling between these two quantities through the closure relation), see Figure 4. 248

This case serves to compare the effects of diseases of different severity (as represented by 249

the variation in the IFR) that, however, share their propagating ability and affect the 250

same population. 251

At low IFR ratio, the strategy yielding the higher death reduction is vaccination of 252

the group with the higher number of contacts, G1 in our examples, since both groups 253

experience similar effects of the disease. The situation is reversed as the IFR ratio 254

increases, since as the disease impinges more severely on the G2 group, its priority 255

vaccination becomes more advantageous. As in the examples above, priority vaccination 256

of the most vulnerable group is advised for low vaccination rates. Consistently, the 257

optimal protocol changes at sufficiently high v, the threshold depending on the IFR and 258

on the difference in contacts (c.f. group sizes) between the two groups. 259

As the results in this section illustrate, changes in different parameters are 260

non-linearly related, and it does note seem possible to predict the optimal strategy 261

without taking into account all variables and quantifying their effect through explicit 262

simulations of the epidemic model. On the one hand, as vaccination rate increases, the 263

proportion of vaccinated G2 individuals grows even if this is not the priority group, 264

since G1 vaccination can be anyway completed earlier, and vaccination of G2 265

individuals begins right after. Moreover, indirect protection of most vulnerable 266

individuals through mitigation of G1-spreading capacity increases too. This is also 267

reflected in the effect of reducing inter-group contacts. When M12 is reduced, G1 or 268

simultaneous priority are more likely to improve G2 death reduction at a given 269

vaccination rate. Eventually, the G1-priority approach often becomes the optimal 270

strategy for sufficiently high vaccination rates. 271

Application of S2IYRD to COVID-19 272

It has been proven that age is strongly correlated with severity and mortality of 273

COVID-19 [21–27], a disease where reinfections are not rare [28–30]. Therefore, an 274

assessment of different vaccination scenarios for SARS-CoV-2 propagation using the 275

age-stratified S2IYRD model appears as a useful framework to detect major qualitative 276

differences between vaccination strategies. In this section, we take different 277

demographic profiles and empirically measured COVID-19 IFRs as case-examples. 278

Populations will be divided into two groups through an age threshold. Contact matrices 279

calculated from available data allow to estimate parameters Mij for a given population 280

split. Since there are multiple parameters that can be varied, we will discuss illustrative 281

examples in this section and leave to the interested reader to explore further cases 282

through the interactive webpage [1] that we have developed. 283

Figure 5A reports empirical data on IFR per group age for COVID-19 in Spain. 284

COVID-19 fatality risk grows close to exponentially with age and with a similar slope 285

(multiplying by about 4 the risk per decade) in all countries analysed [31]. IFR profiles 286

as in Fig. 5A allow to calculate the values of IFR in groups G1 and G2, and the 287
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A B 

C D 

Fig 3. Summary of the dynamics of the model and final states as a function of
vaccination rate and relative group size. (A) Dynamics of the system for low (above,
v = 0.1) and high (below, v = 1) vaccination rates, with n2 = 1/3. (B) Reduction in the
number of deaths (RD) for each strategy (see legend) as a function of the relative group
size and the vaccination rate. In the absence of vaccination, RD = 0. (C) Reduction in
the number of deaths for the optimal strategy. Panels stand for three different relative
group sizes, as a function of the vaccination rate (above) and for three vaccination rates,
as a function of the relative group size (below). Blue bars correspond to priority given
to G1 as the best strategy; yellow bars correspond to priority given to G2. (D)
Quantitative effect of the best strategy as a function of the vaccination rate and the
relative size of the groups. To the left of the thick red line, vaccination of the G2 group
first yields higher RD (numerically obtained values shown in each cell), and vice versa
to the right of the line. Panels B, C, and D convey similar information, but underscore
different effects. Parameter values common for all simulations are: N = 108, M11 = 6,
M22 = 3, M12 = 2, IFR1 = 0.1, IFR2 = 0.5, dI = 15d, r1 = 0.0667, r2 = 0.0663,
µI1 = 6.67 · 10−5, µI2 = 3.33 · 10−4, µYi = 0.01 · µIi , βSI = 1/dI = 0.0667,
βRI = 0.1 · βSI , βRY = 0.5 · βSI , βSY = βRY · βSI/βRI and θ = 0.7.
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A B 

Fig 4. Reduction of death values (%) achieved by the optimal vaccination strategy as a
function of vaccination rate and IFR ratio. Two scenarios, with M12 = 2 (A) or
M12 = 1 (B) are simulated. To the left of the thick red line G1 prioritization is the
optimal strategy. To the right, vaccination of the G2 group first yields the highest RD.
Except for the IFR ratio, parameters are as in Fig. 3 with n2 = 1/3.
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Fig 5. S2IYRD parameters for COVID-19 can be estimated from the empirical fatality
risk (IFR) and demographic profiles. (A) IFR percentage values based on COVID-19
confirmed fatalities as a function of age in Spain (see S2 Appendix). (B) Demographic
pyramid for the Spanish population in 2020; blue corresponds to male population, dark
red to female population; in the vertical axis, populations are grouped in 5-year
intervals, starting with 0-4 years at the bottom. Different age thresholds yield different
values of the fraction of elder group n2, (n1 = 1− n2). (C) In gray, effective values of
the number of contacts in groups G1 and G2 and, in gold, their corresponding IFR
percentage values for four different age thresholds separating both groups, as shown in
the legend. See S1 Appendix and S2 Appendix for details.
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mortality and recovery rates of primary infections (see S2 Appendix). The demographic 288

composition of the population, as in the example shown in Fig. 5B, is needed to 289

estimate the values Mij . All estimated parameters vary if the threshold age that 290

separates both groups, which affects their composition and the intra- and inter-group 291

contacts, changes (see Fig. 5C). In the case of Spain, relative differences between the 292

two groups in IFR and number of contacts are maximized for an age threshold at 80 293

years (down-right panel in Fig. 5C). We will keep this threshold fixed in this section to 294

focus on the relationship between demographic profiles and vaccination strategies. A 295

second case-example, with a threshold at 50 years, can be found in S4 Appendix (again, 296

different thresholds and various other countries, India, Italy and Japan at the time of 297

this writing, can be explored in the the webpage [1]). 298

Table 2 summarizes the empirical values obtained for four different countries which 299

differ in their demographic composition and in their contacts (see S2 Appendix for raw 300

data and other details). Spain has a negative growth in recent decades that yields a 301

narrowing, cup-like demographic pyramid. It also bears the largest fraction of elder 302

population, over six-fold that of the South African Republic (SAR). Israel’s 303

demographic pyramid has the Christmas-tree-like shape characteristic of young and 304

rapidly growing populations, with a fraction of population above 80 years between that 305

of Spain and the SAR. Such is the case of the elder group in the USA as well. The USA 306

demographic pyramid displays a box-like shape that reveals a population of stable size. 307

The IFR of all four countries is comparable for the elder group but differs for the young 308

one. In turn, the fraction of contacts within group G1 is high and comparable, while 309

values of contacts between groups and within the G2 group vary. 310

Table 2. Empirical parameters for the countries in Fig. 6. Updated demographic
pyramids (to year 2020) and independent, empirical values of COVID-19 IFR for each
country per age group have been used for these estimations. Details on data origin are
reported in S1 Appendix and S2 Appendix.

n2 IFRn1
IFRn2

M11 M22 M12

Spain 0.06 0.87% 19.26% 6.83 0.34 0.21
SAR < 0.01 2.88% 19.85% 6.16 0.26 0.07
Israel 0.03 0.38% 18.51% 6.79 0.84 0.09
USA 0.04 1.04% 21.53% 6.34 0.62 0.15

As previously done, we now examine three different vaccination strategies: priority 311

to the over-80-years group G2, priority to the younger group G1, and simultaneous 312

vaccination proportional to the population of either group. In the first two scenarios, 313

vaccination of the corresponding second group starts once that of the priority group 314

finishes (with a threshold θ = 0.7). Fig. 6 summarizes the effect of different vaccinating 315

protocols in the reduction of deaths as a function of the vaccination rate v for the four 316

countries above. In all cases, vaccinating first G2 always reduces mortality more than 317

does any of the other two strategies, often more than doubling the effect of alternative 318

protocols at low vaccination rates (see Fig. 6). Nevertheless, the difference is minor for 319

the case of the SAR due to two main factors: the relatively high IFR of the younger 320

group and, especially, the very low size of the elder group. As a result, most deaths 321

come from G1, blurring the positive effect of protecting first the elder group. On the 322

other hand, the vaccination of this latter group occurs early in the monitored year and, 323

as explained, then continues with group G1. Therefore, its effects are not that different 324

from simultaneous vaccination (and, actually, from priority to the G1 group) in one-year 325

time. Still, differences are observable at the initial stages of vaccination. Remarkably, 326

simultaneous vaccination or priority vaccination to the G1 group do not present major 327

differences in any case. In the case of Israel, vaccination of the G1 group first is slightly 328
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Fig 6. Death reduction after one year corresponding to each vaccinating strategy as a
function of the vaccination rate. (a) Spain; (b) South African Republic; (c) Israel and
(d) USA. Population pyramids are shown as an illustration of the demographic
structure; blue corresponds to male population, dark red to female population; numbers
in the x-axes of the insets stand for population in millions; in the vertical axis,
populations are grouped in 5-year intervals, starting with 0-4 years at the bottom.
Demographic data correspond to year 2020 and have been obtained from the Spanish
National Institute for Statistics (INE) and from the World population 2019 prospects of
UN. IFR measures independently carried out in each of these countries have been used
in the simulations (see S2 Appendix); otherwise, model parameters are the same for all
cases, with an age threshold at 80 years (indicated as a dashed line in the inset).
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beneficial at low vaccination rates, while simultaneous vaccination is more efficient at 329

high v; in the case of the USA, simultaneous vaccination is better at intermediate 330

vaccination rates. 331

Vaccination rates, however, do make a significant quantitative difference in the 332

difference of performance between the optimal strategy and the rest. In terms of 333

reduction of fatalities, the advantage of G1 priority barely reaches a 5% with respect to 334

the worst-performing protocol. This even requires relatively high vaccination rates 335

(around v = 1), and the improvement typically decreases with decreasing v. 336

Increasing the vaccination rate monotonically increases the reduction in the number 337

of deaths, regardless the protocol. The increase is almost linear for Spain and Israel, but 338

accelerates with v for the SAR and the USA, especially. For example, if priority is given 339

to the group G1, an increase in 0.05% in the vaccination rate from v = 0.2 to 0.25 rises 340

RD in 2.3% points, while an increase from v = 0.9 to v = 0.95 causes a 4.9% increase in 341

RD. The change in RD is also about two-fold for the other two strategies. 342

At sufficiently high vaccination rates, the three vaccination strategies reduce the 343

differences in their effect. However, even in that situation, G2-prioritization allows to 344

attain much earlier in time a death reduction comparable to that eventually attained 345

with any of the other two strategies, due to the early protection of the most susceptible 346

group. 347

Discussion 348

The goal of this work has been to analyse major effects of demographic population 349

structure, disease fatality and vaccination rate in optimal vaccination strategies in a 350

model with reinfections, and to provide a general scenario that can be applied to other 351

situations. An important variable whose effect cannot be disentangled from other 352

demographic factors is the contact between groups, which affects optimal vaccination 353

strategies through its implicit relevance in disease spread. The dynamics have been 354

evaluated using effective population-level contact matrices estimated in situations 355

without mobility restrictions [18]. Contact matrices are however a key element that 356

becomes modified in presence of an on-going pandemic due to non-pharmaceutical 357

interventions, as indirectly shown by changes in mobility [32] that directly impact 358

propagation dynamics [33]. The model incorporates other simplifications such as the 359

implementation of a limited number of compartments and the use of only two groups. 360

Optimal vaccination roll-out depends on multiple variables. The precise value of the 361

vaccination rate at which the advantage of vaccinating first the most susceptible group 362

is lost in front of alternative strategies sensitively varies with the IFR of the specific 363

disease. At high IFR, as for COVID-19, priority vaccination to the most connected 364

group is only advantageous at remarkably high vaccination rates (above 1%, the precise 365

threshold depending on the characteristics of the population). However, the relative 366

advantage of the optimal strategy is reduced as the number of administered daily doses 367

grows. The reduction is sensitive to demographic differences in a non-trivial way: while 368

in the South African Republic and in the USA our model yields a quasi-equivalence 369

among the three different strategies for a vaccination rate v ≥ 1%, a significant 370

difference persists for Spain and Israel, for example. Our results with two age thresholds 371

(at 80 and 50 years) are consistent with the overall picture. Lowering the age threshold 372

implies a reduction of IFR in the older group and a simultaneous increase in the average 373

number of contacts per individual in both groups. In terms of death reduction, priority 374

vaccination of the older group is systematically more efficient for high IFRs (as those of 375

COVID-19). For diseases with lower IFR, as influenza, the general consensus is that 376

children should be vaccinated first due to their high transmission capacity [17, 34]. It is 377

likely that the optimal strategy for COVID-19 changes and resembles that for influenza 378
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if the disease becomes endemic and its effects turn milder once most of the world 379

population has been either infected or vaccinated. 380

These results are consistent with those of other model-based studies showing that 381

the optimal vaccination strategy balancing direct and indirect protection against 382

COVID-19 is highly determined by vaccine supply and efficacy [14,35,36] and 383

vaccination of the most susceptible group is more efficient under a broad range of 384

situations [37,38]. Our study adds two elements to previous approaches. First, the 385

introduction of reinfections, which are non-negligible for COVID-19 and other 386

coronaviruses [5], shows the existence of long transients (or quasi-endemic states) that 387

may predate the transition to a truly endemic state predicted for COVID-19 [11]. 388

Second, the model is simple enough so as to allow the characterization of systematic 389

effects due to, at least, group size, demographic composition and IFRs. 390

As other models used to inform optimal vaccination roll-out [14,35–37], our model 391

assumes that individuals within a given group have on average the same number of 392

contacts. More realistic models should consider heterogeneity in the number of contacts, 393

since it has been shown that highly skewed contact distributions, with hubs (or, 394

equivalent from a dynamic viewpoint, super-spreader individuals or events) have 395

important effects in immunity thresholds [39] and in vaccination strategies. For 396

example, the convenience of vaccinating network hubs first has been broadly 397

discussed [40,41], though that strategy is hampered by the difficulty of identifying 398

actual hubs with local information. An interesting alternative consists in vaccinating 399

neighbors of randomly chosen individuals, since these neighbors have more contacts on 400

average [42]. Still, this latter strategy cannot consider protective behaviors exhibited by 401

individuals, which might be independent of their contact habits. Perhaps an improved 402

strategy should include at once a sensible use of this last strategy coupled with 403

individual-dependent IFR, a quantity that depends not only on age, but also on sex, 404

comorbidities and social roles, among others. Regardless the details of the model, the 405

most efficient immunization strategy is conditioned by the availability of vaccines at 406

each time, and optimization is particularly critical when availability is low-to-medium, 407

while different strategies converge at sufficiently high vaccination rates. 408

We have focused in the reduction in the number of fatalities under different 409

vaccination protocols, since this is a short-term benefit that can be easily quantified. 410

However, different vaccination protocols also affect hospital occupation or the number of 411

infections, and the variation can be very large depending on population structure, 412

contact habits, and vaccination rate. The benefits of reducing the number of infections 413

are more difficult to evaluate, but have to be kept in mind as our knowledge of the 414

adaptive strategies of SARS-CoV-2 improves: more infections entail an enhanced 415

number of circulating viral variants and therefore a higher probability of emergence of 416

strains able to escape the protective effect of vaccines. In the mid and long term, it 417

might be advisable to seek optimal vaccination strategies that simultaneously minimize 418

the number of fatalities and the number of infections. 419
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