
Identification of occupations susceptible to high exposure and risk associated with multiple 1 

toxicants in an observational study: National Health and Nutrition Examination Survey 1999-2 

2014 3 

 4 

Vy Kim Nguyen Ph.D.1,3, Justin Colacino Ph.D.1,2,4,5, Chirag J Patel Ph.D.3, Maureen Sartor 5 

Ph.D.2, Olivier Jolliet Ph.D.1,2 6 

 7 

Affiliations:  8 

1 Department of Environmental Health Sciences, School of Public Health, University of 9 

Michigan, Ann Arbor, MI, USA 10 

2 Department of Computational Medicine and Bioinformatics, Medical School, University of 11 

Michigan, Ann Arbor, MI, USA 12 

3 Department of Biomedical Informatics, Medical School, Harvard University, Boston, MA, 13 

USA 14 

4 Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann 15 

Arbor, MI, USA 16 

5 Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA 17 

 18 

To whom correspondence should be addressed: 19 

Vy Kim Nguyen 20 

Department of Biomedical Informatics, Harvard Medical School 21 

10 Shattuck Street, Boston, MA, 02115, USA 22 

e-mail: vy_nguyen@hms.harvard.edu   23 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 24, 2021. ; https://doi.org/10.1101/2021.11.23.21266764doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.11.23.21266764
http://creativecommons.org/licenses/by/4.0/


Running title: Occupations susceptible to high exposure and risk  24 

 25 

Declaration of Competing Interest 26 

At the time of the writing of the manuscript, Dr. Patel was a consultant and shareholder of 27 

XY.health. Dr. Patel is also paid by J&J. All other authors declare they have nothing to disclose.  28 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 24, 2021. ; https://doi.org/10.1101/2021.11.23.21266764doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.23.21266764
http://creativecommons.org/licenses/by/4.0/


Abstract 29 
Background: According to the World Health Organization, occupational exposures to hazardous 30 
chemicals are estimated to cause over 370,000 premature annual deaths. The risks due to multiple 31 
workplace chemical exposures, and those occupations most susceptible to the resulting health 32 
effects, remain poorly characterized.  33 
Objectives: The aim of this study is to identify occupations with elevated toxicant biomarker 34 
concentrations and increased health risk associated with toxicant exposures in a working US 35 
population from diverse categories of occupation. More specifically, we aim to 1) define 36 
differences in chemical exposures based on occupation description, 2) identify occupational 37 
groups with similar chemical exposure profiles, and 3) identify occupational groups with chemical 38 
biomarker levels exceeding acceptable health-based biomarker levels. 39 
Methods: For this observational study of 51,008 participants, we used data from the 1999-2014 40 
National Health and Nutrition Examination Survey. We characterized differences in chemical 41 
exposures by occupational group for 129 chemicals by applying a series of generalized linear 42 
models with the outcome as biomarker concentrations and the main predictor as the occupational 43 
groups, adjusting for age, sex, race/ethnicity, poverty income ratio, study period, and biomarker 44 
of tobacco use. We identified groups of occupations with similar chemical exposure profiles via 45 
hierarchical clustering. For each occupational group, we calculated percentages of participants 46 
with chemical biomarker levels exceeding acceptable health-based guidelines.  47 
Results: Blue collar workers from “Construction”, “Professional, Scientific, Technical Services”, 48 
“Real Estate, Rental, Leasing”, “Manufacturing”, and “Wholesale Trade” have higher biomarker 49 
levels of toxic chemicals such as several heavy metals, acrylamide, glycideamide, and several 50 
volatile organic compounds compared to their white-collar counterparts. For these toxicants, 1-51 
58% of blue-collar workers from these industries have toxicant concentrations exceeding 52 
acceptable levels.  53 
Discussion: Blue collar workers have toxicant levels higher relative to their white-collar 54 
counterparts, often exceeding acceptable levels associated with noncancer effects. Our findings 55 
identify multiple occupations to prioritize for targeted interventions and health policies to monitor 56 
and reduce high toxicant exposures. 57 
 58 
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1. Introduction 62 

Data from the World Health Organization suggest that exposures to hazardous chemicals in an 63 

occupational setting are responsible for over 370,000 premature deaths annually (Lim et al., 2012; 64 

Stanaway et al., 2018). Such findings lend urgency to characterize occupational exposures to 65 

identify workers from which industries or jobs are susceptible to adverse effects from toxicant 66 

exposures.  Many studies tend to focus on one chemical or one chemical family to evaluate 67 

occupational exposures (Birks et al., 2016; Brenner et al., 2015). In doing so, these studies may 68 

miss the complete picture of being exposed to a slew of toxicants if the focus is only directed at 69 

one chemical or one chemical family. Furthermore, exposures to multiple chemicals can further 70 

increase the risk of a disease. For a few studies that have investigated across multiple chemicals, 71 

they have narrowed their focus on a limited set of industries and job titles (Kijko et al., 2016; Mater 72 

et al., 2016). Thus, there is a need for a comprehensive, untargeted approach to study occupational 73 

exposures for a wide range of chemicals across a variety of occupations. 74 

Furthermore, many studies on occupational exposures use estimates of exposures based on job 75 

titles or air measurements at the workplace (Birks et al., 2016; Kijko et al., 2016; Mater et al., 76 

2016). These indirect measures are limited in their ability to accurately quantify the distribution of 77 

chemical exposures within the human body. In contrast, human biomonitoring provides a more 78 

direct estimate of exposure while also integrating exposures which derive from multiple sources 79 

and pathways. In addition, another advantage of biomonitoring data is that it provides an internal 80 

dose that can be related to a toxicological response (Hays et al., 2007). In particular, biomonitoring 81 

equivalents define a concentration cutoff of a chemical or its metabolites in a biological medium 82 

such as blood, urine, or serum based on acceptable exposure values such as reference dose, 83 

tolerable daily intakes, or minimal risk levels (Aylward et al., 2013). Several studies have used 84 
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biomonitoring equivalents as a screening method to evaluate risk from exposures to environmental 85 

toxicants in the general population (Aylward et al., 2013; Faure et al., 2020). However, few studies 86 

have used biomonitoring equivalents in an occupational context to determine prevalence of 87 

workers with concentrations above acceptable levels by industry and job description (Aylward et 88 

al., 2010; Hays et al., 2008). Such insight will help identify which toxicants and occupations should 89 

be prioritized for further human biomonitoring, health risk evaluation, and targeted interventions.  90 

Our goal is to broadly identify occupations susceptible to high exposure and risk associated with 91 

combinations of multiple toxicants. To accomplish this goal, we used data from the National 92 

Health and Nutrition Examination Survey (NHANES), which measures a broad range of 517 93 

chemical biomarkers as part of their mission to assess the health and nutritional status of the US 94 

noninstitutionalized population. Occupational information, particularly the 21 industrial and 19 95 

occupation codes, are also available. Our objectives are to 1) define differences in chemical 96 

exposures based on occupation description, 2) identify occupational groups with similar chemical 97 

exposure profiles, and 3) identify occupational groups with chemical biomarker levels exceeding 98 

acceptable health-based biomarker levels. 99 

2. Methods 100 

2.1 Study Population  101 

Since 1999, the Centers for Disease Control (CDC) has conducted the Continuous NHANES to 102 

collect cross-sectional data on demographic, socioeconomic, dietary, and health-related 103 

information in the US population. For this analysis, we combined data from the chemical 104 

biomarker, demographic, and occupational datasets between years 1999-2014 for an initial sample 105 

of 82,091 participants. We categorized participants as different groups of unemployment status 106 

using the questionnaires on the type of work done last week and main reason for not working last 107 
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week. We categorized the workers into their corresponding industry by using the publicly available 108 

industry code on the participants’ current job. We categorized participants into white- or blue-109 

collar workers by using the publicly available occupational codes on the participants’ current job 110 

and the US Department of Labor definition of blue-collar (U.S. Department of Labor, 2019). Blue-111 

collar workers are defined as workers who perform repetitive tasks with their hands, physical skill, 112 

and energy. The industry and occupational codes can be found at 113 

https://wwwn.cdc.gov/nchs/nhanes/search/datapage.aspx?Component=Questionnaire. We 114 

tabulated the job occupation description and the collar category in Table S1. We then excluded 115 

participants under 16 years old (N = 30,987) as this is the minimum age at which NHANES 116 

recorded occupation status. We excluded participants who recorded their industry as “Blank but 117 

applicable” (N = 9). We also excluded participants (N = 87) from the following occupational 118 

groups if the sample size was less than 50 participants:  blue-collar workers from “Armed Forces” 119 

and “Finance, Insurance” and white-collar workers from “Armed Forces”, “Private Household”, 120 

and “Mining”. These exclusion and inclusion criteria are further detailed in Figure 1. The resulting 121 

sample size of our studied population was 51,008 participants. Table S2 provides the sample size 122 

of each industry-collar combinations and unemployment.  123 

The National Center for Health Statistics research ethics review board provided ethical approval 124 

of the study. All participants provided written informed consent. 125 

2.2 Chemical Biomarkers of Occupational Exposures  126 

We defined chemical biomarker, c, as an indicator of environmental exposure that can be measured 127 

in blood, serum, or urine. We replaced all measurements below the limit of detection (LOD) with 128 

the LOD divided by the square root of 2, as recommended by the CDC (CDC, 2009) to produce 129 

reasonably unbiased means and standard deviations (Hornung & Reed, 1990). For di-2-ethylhexyl 130 
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phthalate (DEHP) and arsenic separately, we calculated the sum of metabolites to compare with 131 

respect to the biomonitoring equivalents. We used mono-(2-ethyl-5-oxohexyl) phthalate, mono-132 

(2-ethyl-5-hydroxyhexyl) phthalate, mono-(2-ethylhexyl) phthalate, and mono-2-ethyl-5-133 

carboxypentyl phthalate to calculate the summation of DEHP metabolites. We calculated the 134 

summation of arsenic metabolites with monomethylarsonic acid and dimethylarsonic acid. 135 

Therefore, we have a total of c = 517 chemical biomarkers.  136 

Then, we further excluded chemicals that a) have a median sample size of less than 90 participants 137 

across the occupational groups, b) have non-lipid adjusted measurements when lipid adjusted 138 

measurements are available and c) have a detection frequency less than 10%. We delineated in 139 

detail which chemical biomarkers were excluded from our analyses in Text S1. We tabulated the 140 

inclusion criteria for each chemical in Table S4. The final dataset for analysis consisted of 129 141 

chemical biomarkers from 12 classes (Figure 1 and Table S5). We tabulated the sample size of 142 

each chemical in Table S6. We tabulated the distribution statistics for each chemical in Table S7. 143 

We displayed the detection frequency by each combination of chemical biomarker and 144 

occupational group in Figure S1. Laboratory methods used to measure the chemical biomarkers 145 

are provided at 146 

https://wwwn.cdc.gov/nchs/nhanes/search/datapage.aspx?Component=Laboratory. 147 

2.3 Statistical Analysis 148 

We performed all analyses using R version 3·6·0. Our analytic code is publicly available on 149 

GitHub (https://github.com/vynguyen92/nhanes_occupational_exposures). We applied the survey 150 

weights to all our statistical models to 1) account for NHANES sampling designs and 2) enable 151 

the generalizability of our findings to the non-institutionalized, civilian US population.  152 
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We used multivariate regression models to evaluate differences in the chemical biomarker levels 153 

across the occupational groups, which includes the industry-collar combinations and unemployed 154 

groups. We conducted a series of stepwise linear regression models with the log10 transformed 155 

chemical measurements as the outcome variable and the main predictor as the occupation groups 156 

with the reference group as white collars from Public Administration. The selection of the 157 

reference group was based on the a priori hypothesis that white collar workers from Public 158 

Administration would be exposed to toxicants at relatively low levels for most toxicants. We 159 

adjusted for age (continuous), gender (categorical), race/ethnicity (categorical), poverty income 160 

ratio (continuous), NHANES cycle (continuous), and tobacco use/exposure status using serum 161 

cotinine levels (continuous). Race is self-reported by the participants. The poverty income ratio is 162 

defined by dividing the total family income by the poverty income line. A poverty income ratio 163 

lower than 1 implies that the participant’s total family income is below the poverty income line. 164 

For ease of interpretation, the regression coefficients for the occupational groups were converted 165 

to percent differences [10coefficient - 1] × 100. To identify significant comparisons while maintaining 166 

a lower false positive rate, we used the False Discovery Rate (FDR) method on the p-values of the 167 

regression coefficients pertaining to the occupational groups (Benjamini & Hochberg, 1995). 168 

The non-random sparsity of the chemical biomarker dataset in the NHANES worker population 169 

creates challenges in applying machine learning techniques to group individual workers together 170 

based on similarity in chemical exposure profiles. Applying most machine learning techniques 171 

requires a complete dataset (Soley-Bori, 2013). However, as no worker has data available for all 172 

studied toxicants (Table S8, Figure S2), we cannot characterize the chemical profile for each 173 

individual worker. Such challenges limited studies to characterizing combinations of toxicant 174 

exposures within a specific chemical family, but workers are exposed to multiple toxicants across 175 
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a variety of chemical families at their workplace. Instead of characterizing the toxicant profile of 176 

a given worker, we can characterize the profile for a group of individual workers to address this 177 

sparsity issue by identifying clusters of occupations with similar chemical exposure profiles. Thus, 178 

we performed hierarchical agglomerative clustering analyses on the dataset of percent differences 179 

for the occupational groups. Text S2 describes the methodology used to identify clusters of 180 

occupations with similar chemical exposure profiles.   181 

To identify susceptible occupations with chemical biomarker levels exceeding acceptable 182 

exposure levels, we compared workers’ biomarker levels to biomonitoring equivalents, i.e. the 183 

internal levels corresponding to these acceptable exposures. We, first, performed a literature 184 

review to develop a database of biomonitoring equivalents (Table S10-S11). There are three types 185 

of effects for the biomonitoring equivalents:  noncancer, inhalation cancer, and ingestion cancer. 186 

Noncancer effects can include mutagenicity, developmental toxicity, neurotoxicity, and 187 

reproductive toxicity. Cancer effects are specific for different route of exposures. Then we used 188 

this database to calculate the percentage of participants above the biomonitoring equivalent for 189 

each occupation and each chemical. We used hierarchical clustering to group the occupations who 190 

have similar profiles in chemical biomarker levels exceeding acceptable levels.  191 

Text S3 provided full details on the methodology to quantify the contribution of occupation in 192 

explaining chemical biomarker levels. Text S4 provided full details on the sensitivity analyses to 193 

characterize the influence of smoking on differences in chemical biomarker levels by occupation.   194 

2.4 Role of the funding source  195 

The funders of the study did not have a role in study design, data collection, data analysis, data 196 

interpretation, and writing of the manuscript. All authors have full access to the data in the study 197 
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and accept responsibility for the decision to submit for publication. The corresponding author had 198 

full access to all the data and the final responsibility to submit for publication. 199 

3. Results 200 

All figures are available on our interactive app at 201 

https://chiragjp.shinyapps.io/nhanes_occupational_exposures/.   202 

3.1 Study Population  203 

Table 1 and 2 presents population characteristics for the 51,008 NHANES participants from 1999-204 

2014. Figure 2 shows the percentage of categories for age group, sex, race, poverty income ratio, 205 

smoking status, and study period for each occupational group. Participants working in blue-collar 206 

jobs tend to be on average younger compared to those working in white-collar jobs (Figure 2A). 207 

Blue-collar jobs are primarily occupied by males, while females tend to work in private household, 208 

health care, and education (Figure 2B). White-collar jobs are predominantly comprised of Non-209 

Hispanic White participants, whereas blue-collar workers tend to be more diverse (Figure 2C). 210 

There is a socioeconomic gradient with white-collar workers having higher poverty income ratio 211 

(i.e. lower socioeconomic status) compared to blue-collar workers (Figure 2D). There is a 212 

substantial proportion of active smokers in blue collar jobs as well as those “Looking for work”, 213 

“Disabled”, or “On layoff”, whereas the proportions of active smokers are much lower in white-214 

collar jobs (Figure 2E). There is a relative uniform distribution of participants by study period for 215 

each occupation (Figure 2F). These figures are available on our interactive app at 216 

https://chiragjp.shinyapps.io/nhanes_occupational_exposures/. 217 

3.2 Differences in Chemical Biomarker Levels by Occupational Groups 218 

Figure 3 displays the differences in chemical biomarker levels across the occupational groups 219 

using regression and distribution statistics for the following chemicals:  lead, m-/p-xylene, 220 
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cotinine, 2,4-D, glycidamide, and sum of DEHP metabolites. We selected these chemicals for the 221 

at least one of the following reasons:  1) availability of having a biomonitoring equivalent and 2) 222 

existence of statistically significant differences in biomarker levels across the occupational groups. 223 

Biomonitoring equivalents are available for the selected chemicals except for cotinine. In Figure 224 

3A, blood lead is, on average, significantly higher in most blue-collar workers and unemployed 225 

groups such as “Looking for work”, “On layoff”, “Disabled”, and “Retired” compared to the other 226 

white-collar workers. We observed a similar pattern in blood cadmium (Figure S4). In contrast, 227 

metabolites of mercury display the opposite exposure patterns to those of lead and cadmium. Total 228 

blood mercury levels of most blue-collar workers are substantially and significantly lower 229 

compared to those of white-collar workers (Figure S5). Similarly, m-/p-xylene (Figure 3B) and 230 

toluene (Figure S6) are higher in blue-collars and unemployed participants in “On layoff”, 231 

“Disabled”, and “Unable to work for health reasons” compared to white-collar workers. Similar 232 

results are observed for several Polyaromatic Hydrocarbons (PAHs) such as 1-pyrene, 2-fluorene, 233 

3-fluorene, and 1-naphthol (Figure S7), but the signals are not as strong as those for toluene and 234 

m-/p-xylene. It is noteworthy that within the same industry such as “Professional, Scientific, 235 

Technical Services”, levels of m-/p-xylene are substantial different between white versus blue 236 

collars. Figure 3C shows a smoking gradient with blue-collar workers and unemployed participants 237 

having substantially higher levels of cotinine compared to white collars and the NHANES 238 

populations. NNAL, which is primarily found in tobacco products, shows a similar trend (Figure 239 

S8). The signals for the smoking related compounds are among the strongest and most substantial. 240 

Figure 4D shows how concentrations of a herbicide, 2,4-D, are significantly and substantially 241 

higher in blue-collar and white-collar workers from “Agriculture, Forestry, Fishing” along with 242 

blue-collar workers from “Information Services”. Though, none of the participants have 2,4-D 243 
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levels exceeding the guideline biomonitoring equivalent levels. DEET acid, a metabolite of DEET 244 

and a common ingredient used in insect repellant, shows a similar pattern (Figure S9). In Figure 245 

3E, glycidamide levels, on average, are significantly higher in blue collars from “Wholesale 246 

Trade”, “Other Services”, “Professional, Scientific, Technical Services”, “Retail Trade”, 247 

“Construction”, and “Arts, Entertainment, Recreation”. In addition, glycidamide levels are also 248 

significantly higher in white collars from “Accommodation, Food Services”, “Agriculture, 249 

Forestry, Fishing”, and “Retail Trade”. Acrylamide show similar pattern (Figure S10). These two 250 

chemicals are found in food prepared at high temperature via frying, baking, or roasting and are 251 

used in textile, paper processing, and cosmetics. In Figure 3F, levels of the sum of urinary DEHP 252 

metabolites are significantly higher in “Professional, Scientific, Technical Services” and 253 

“Accommodation, Food Services” compared to the reference group. Phthalates in general are used 254 

as plasticizers. On the contrary, mono-ethyl phthalate, an indicator of personal care product usage, 255 

are, on average higher, in the reference group (Figure S11).  256 

3.3 Chemical Exposure Profiles 257 

Figure 4 shows differences in chemical exposure profiles by occupational groups for the 129 258 

studied chemicals. The chemical exposure profiles of blue-collar workers are more similar to those 259 

of other blue-collar workers than to their white-collar counterparts. For example, blue-collar 260 

workers from “Construction”, “Other Services”, “Professional, Scientific, Technical Services”, 261 

“Real Estate, Rental, Leasing”, “Manufacturing”, and “Wholesale Trade” have some of the highest 262 

biomarker levels of heavy metals, such as cadmium and lead, PAHs, and volatile organic chemicals 263 

(VOCs), including m-/p-xylene and toluene, but have lower levels of arsenic and mercury 264 

metabolites and BP-3, which is a UV blocking chemical used in sunscreen. There are some blue 265 

collars who have higher levels of dietary components such as orange or red plant pigments found 266 
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in fruits and vegetables such as trans−b−carotene, cis−b−carotene, and a−carotene and a form of 267 

vitamin E such as d-Tocopherol. Interestingly, participants who are “Looking for work”, “On 268 

layoff”, “Disabled”, “Unable to work for health reasons”, and “Occupation Missing” have similar 269 

chemical exposure profiles to the aforementioned blue-collar workers. Participants who report 270 

being “Disabled” or “Unable to work for health reasons” have significantly lower levels of several 271 

dietary components. Within the food services cluster, which includes blue and white collars from 272 

“Transportation, Warehousing” and “Accommodation, Food Services”, the phthalates signal is 273 

particularly stronger in the blue-collar workers from “Accommodation, Food Services”. The far 274 

left of the heatmap consists of mostly white-collar workers. These occupational groups have the 275 

most similar chemical exposure profiles to that of white-collar workers from “Public 276 

Administration” as the percent differences across most studied chemicals are near 0, i.e. the blue 277 

and red boxes are faded. We excluded smoking-related compounds such as NNAL and Cotinine 278 

from the figure, or else we would not be able to observe any signals from the other chemical 279 

biomarkers (Figure S12). 280 

3.4 Occupational Groups with Chemical Biomarker Levels Exceeding Acceptable Guidelines 281 

Figure 5 shows the percentage of a given occupational group with chemical biomarker levels 282 

exceeding the biomonitoring equivalents for noncancer effects. Our hierarchical clustering 283 

analysis on the occupational groups show that the left half of Figure 5 includes predominantly blue 284 

collars and unemployed groups, while the right half includes predominantly white collars. This 285 

suggests that blue collars and unemployed groups have similar chemical exposure profiles to each 286 

other, and such profiles are different from the chemical profiles of the white collars. Several blue 287 

collar jobs along with unemployed groups such as those who are “On layoff”, “Unable to work for 288 

health reasons”, and “Disabled” have some of the highest percentages of participants with 289 
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biomarker levels exceeding acceptable health levels for VOCs such as m-/p-xylene, benzene, 290 

pesticides such as 3−phenoxybenzoic acid, heavy metals such as cadmium, lead, and arsenic, 291 

metabolites of DEHP, and acrylamide and its metabolite glycideamide. These findings suggest that 292 

these toxicants for the aforementioned occupations may be further monitored to understand why 293 

biomarker levels are exceeding acceptable guidelines. Figure S13-S14 shows the percentage of 294 

participants with excessive toxicant levels for the cancer effects. 295 

4. Discussion 296 

In this study, we systematically characterize differences in chemical biomarker levels across a 297 

diverse suite of chemical contaminants and occupations. This is the first application of hierarchical 298 

clustering on differences by chemical exposures to identify groups of workers with similar 299 

chemical exposure profiles. This is also the first study to determine the percentage of a given 300 

occupation who are exceeding acceptable levels for a broad set of toxicants. Furthermore, this is 301 

the first application of hierarchical clustering to systematically identify which chemicals for which 302 

occupations have biomarker levels exceeding acceptable guidelines. Our findings are informative 303 

for identifying which workers are susceptible to higher exposures from which toxicants.  304 

Contact with products and equipment may explained higher biomarker levels of heavy metals such 305 

as lead and cadmium, PAHs, and VOCs such as toluene and benzene found in blue-collar workers. 306 

Higher lead levels found in blue collars may be due to the presence of lead in old and commercial 307 

paint, car parts, batteries, glass, and consumer products made of plastics (CDC, 2018). In addition, 308 

this same group of workers may be exposed to cadmium via industrial uses of cadmium in making 309 

batteries, plating, pigments, and plastics (Miao & Ji, 2019). Sources of occupational PAH 310 

exposures to this group may be due to engaging in tasks that involve combustion emission 311 

(Raymond, 1998). Similarly, higher VOCs levels may also be due to working with products 312 
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containing VOCs (Minnesota Department of Health, 2020). Overall, higher biomarker levels of 313 

heavy metals, PAHs, and VOCs in predominantly blue-collar workers may be due to contact with 314 

products containing these chemicals. This suggests that the forementioned blue collars should be 315 

further examined to understand sources of exposures for such toxicants and reasons for exceeding 316 

acceptable levels. 317 

On the other hand, behaviors associated with higher socioeconomic status may explain why most 318 

white-collar workers have higher levels of metabolites of arsenic and mercury along with a 319 

biomarker of sunscreen use, BP-3. While arsenic (CDC, 2019a) and mercury (CDC, 2019b) are 320 

used in many industries, it is less likely that higher biomarker levels of arsenic metabolites in white 321 

collars are due to occupational exposures. Although, health care workers may be exposed to 322 

mercury via medical or dental equipment (Trzcinka-Ochocka et al., 2007). Higher mercury and 323 

arsenic biomarker levels among these white-collar workers may indicate higher fish consumption 324 

(Shimshack et al., 2007), which associated with higher socioeconomic status instead of an 325 

indicator of occupational exposures (Tyrrell et al., 2013). It is also doubtful that white-collar 326 

workers are manufacturing products containing exposed to BP-3 (Benzophenone, 2013; Program, 327 

2006). Instead, as BP-3 is used to prevent UV light from damaging scents and colors in personal 328 

care products (CDC, 2017), it more likely that higher levels of this chemical may suggest that 329 

cosmetics usage has a major role in strategic self-presentation. Overall, the chemical exposure 330 

profiles of white-collar workers likely indicate behaviors associated with socioeconomic status. 331 

Many studies using NHANES have been limited to studying chemical co-exposures in one 332 

chemical family due to the non-random sparsity of the chemical biomarker data (Sadetzki et al., 333 

2016; Shim et al., 2017). To address this sparsity challenge, we conducted clustering analysis on 334 

exposure differences among the occupational groups, i.e. clustering analysis on statistics of the 335 
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biomarker data instead of on the raw data. Our framework enabled the identification of co-336 

exposure across a wide range of chemicals not only limited to one chemical family. This 337 

framework can be applied in other settings to help cluster observations based on similar profiles 338 

especially in a non-randomly sparse dataset. This can be done without having to form a complete 339 

dataset or impute the missing values. 340 

Chemical exposures have been implicated as etiological agents in adverse noncancer effects on the 341 

nervous, reproductive, immune, and cardiovascular systems. Such toxic chemicals include heavy 342 

metals such as lead and cadmium, VOCs, PAHs, phthalates, and smoking-related compounds. 343 

Several epidemiological and toxicological studies have implicated the neurotoxicity of heavy 344 

metals, especially lead (Garza et al., 2006) and cadmium (Méndez-Armenta & Ríos, 2007). Many 345 

studies have shown the reproductive toxicity of phthalates (Martino‐Andrade & Chahoud, 2010) 346 

and PAHs (Yin et al., 2017). PAHs (Schober et al., 2007) and VOCs such as toluene and benzene 347 

(Jiménez-Garza et al., 2017) are also known to elicit an inflammatory response individually and 348 

in combination (Kuang et al., 2020). Heavy metals have been recently linked to cardiovascular 349 

disease (Duan et al., 2020). Tobacco exposures have been causal factors in several noncancer 350 

effects such as respiratory problems (Anderson & Ferris Jr, 1962), heart disease (Lakier, 1992), 351 

infections (Arcavi & Benowitz, 2004), and fertility problems (Stillman et al., 1986). Overall, our 352 

findings of toxicant levels in blue collar workers exceeding acceptable levels coupled with existing 353 

literature on the adverse effects of such toxicants continues to further implicate blue collars from 354 

the aforementioned industries to be a high-risk population.  355 

Our findings lend urgency to understand how one’s occupation can be a route for smoking 356 

initiation in young people and consequentially exposure to other toxicants. The connection 357 

between being a blue collar, active smoker, and younger may suggest that being an active smoker 358 
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is part of the culture of a blue-collar worker (Ham et al., 2011). Furthermore, blue-collar workers 359 

are additionally exposed to VOCs, PAHs, and heavy metals, since these chemicals have been 360 

detected in tobacco products. Interestingly, blue-collar workers have higher levels of nicotine 361 

metabolites and dietary components such as beta- and alpha-carotenes. This finding is especially 362 

alarming, since cancer-preventative trials have shown that vitamin A analogues, alone or in 363 

combination with vitamin E, are risk factors for lung cancer and mortality in active smokers 364 

(Omenn et al., 1996; Paolini et al., 1999). Our findings can inspire future studies to develop 365 

interventions to understand cultural and behavioral factors leading to smoking initialization and 366 

implement evidence-based regulations on tobacco control to prevent the younger population from 367 

initiating smoking (Kunst, 2021). 368 

Environmental injustice is defined as the disproportionate exposures of toxicants and their 369 

consequential effects on health to disadvantaged groups such as individuals from racial minorities 370 

and/or low socioeconomic status (Maantay, 2002). Blue-collar workers are disproportionally 371 

exposed to some of the most toxic chemicals with several found at concentration exceeding 372 

acceptable guidelines for cancer and noncancer effects (Kolonel, 1976; Swartz, 2001). 373 

Furthermore, many blue-collar workers may come from the lowest socioeconomic status 374 

(Kivimäki et al., 2006). Thus, our findings call for an increase in exposure surveillance and 375 

industrial controls, effect regulations on chemical exposures, inform remediation strategies, and 376 

help implement interventions programs to improve the health of workers susceptible to toxicant 377 

exposures. Moreover, health providers such as occupational physicians and industrial health 378 

personnel can use our findings to inform their patients on preventatives measures to avoid 379 

occupations and toxicant exposures that may increase their personal and familial disease risk.  380 
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The present study has several other limitations. First, as NHANES is a cross-sectional survey, we 381 

cannot make claims on causal factors of chemical exposures. Second, a limitation of using 382 

chemical biomarker data is that a delay between the time of exposure and time of data collection 383 

may prevent the detection of higher occupational exposures. This limitation is especially salient 384 

for VOCs, which have short half-life ranging from 2 to 128 hours (OECD, 2004, 2014), which 385 

implies that substantially higher biomarker levels could be observed at workplace. Third, while 386 

we identified differences in chemical biomarker levels by occupation, we cannot claim that such 387 

differences are due to occupational exposures, since we do not know the source of all exposures 388 

for each study participant. Nevertheless, our findings can inspire future studies to prioritize 389 

chemicals and susceptible occupations in specific industries to measure at the workplace. Fourth, 390 

while NHANES has biomonitoring data on 517 chemicals, we only obtained biomonitoring 391 

equivalents for 106 chemicals (20.5%). Fifth, there is potential uncertainty in how the 392 

biomonitoring equivalents are converted from exposures values to biomarker concentrations. Such 393 

uncertainty can either decrease or increase the value of the biomonitoring equivalent and in turn 394 

change the interpretation of which chemicals for which occupations should be further monitored.  395 

5. Conclusions 396 

Evaluating differences in chemical exposures by occupation is essential to identify occupations 397 

susceptible to high exposures to toxicants as well as understand how occupational exposures play 398 

a role in adverse health outcomes. We applied an unbiased approach to screen across 129 chemical 399 

biomarkers to characterize the chemical exposure profiles across white- and blue-collar workers 400 

from 20 different industries and 7 unemployed groups. We developed a framework using 401 

hierarchical clustering on differences of chemical biomarker levels to identify clusters of 402 

occupations with similar chemical exposures. Our framework enabled 1) comprehensive 403 
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characterization of chemical exposures across a wide variety of occupations and toxicants and 2) 404 

identification of occupations susceptible to high toxicant exposure and exceeding acceptable 405 

health-based levels. These findings can guide efforts to design targeted interventions to reduce and 406 

prevent exposures in susceptible occupations and help mitigate negative effects from toxicant 407 

exposures. 408 

  409 
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https://wwwn.cdc.gov/nchs/nhanes/Search/variablelist.aspx?Component=Demographics, 427 

https://wwwn.cdc.gov/nchs/nhanes/search/datapage.aspx?Component=Questionnaire, and 428 

https://wwwn.cdc.gov/nchs/nhanes/Search/variablelist.aspx?Component=Laboratory. Our 429 

curated data along with related documents such as excel documents and R code for the statistical 430 
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 433 

 434 

 435 

Figure 1. Schematic description on curation of chemical biomarker and inclusion criteria of 436 
participants and of the analytical methods used to characterize occupational variations in chemical 437 
exposures. Reference group for the analysis on the industry-collar combinations is white collars 438 
from public administration.  439 

 440 
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 442 
Figure 2. Panel of bar plots showing the percentage of participants by A) age group, B) sex, C) 443 
race/ethnicity, D) poverty income ratio (PIR), E) smoking status, and F) NHANES cycle for each 444 
industry-collar combination and unemployment status. The occupational groups are ordered in 445 
ascending order based on percentage of A) participants who are 28 years and younger, B) males, 446 
C) Non-Hispanic Whites, D) PIR = [0,1] (i.e. participants who are below the poverty income line), 447 
E) participants who do not smoke, and F) participants in 1999-2002. The “NHANES Population” 448 
consists of all participants in 1999-2014. The “NHANES 16+ Population” consists of participants 449 
in 1999-2014 and are 16 years old or older. Smoking status is defined using serum cotinine levels:  450 
no smoking ≤ 1 ng/mL, secondhand smoke 1-3 ng/mL, and active smoking > 3 ng/mL. These 451 
individual figures are available on our interactive app at 452 
https://chiragjp.shinyapps.io/nhanes_occupational_exposures/. 453 
  454 
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 455 
Figure 3. Panel of boxplots of chemical distribution for A) blood Lead, B) m-/p-Xylene, C) 456 
Cotinine, D) 2,4-D, E) Glycidamide , and F) sum of DEHP metabolites. Purple triangle represents 457 
the geometric mean of chemical levels for a given occupational group. The pink line represents 458 
the biomonitoring equivalent of the chemical for noncancer effects. The “NHANES Population” 459 
consists of participants in 1999-2014. The “NHANES 16+ Population” consists of participants in 460 
1999-2014 and are 16 years old or older. Percent differences are derived from fully adjusted 461 
models, which were adjusted for age, sex, race/ethnicity, poverty income ratio, study period, and 462 
serum cotinine (biomarker of smoking). Reference group for the occupational groups is comprised 463 
of white collars from Public Administration. Number of asterisks indicate statistical significance 464 
of the percent differences:  * (p-value Î (0·01, 0.05]), ** (p-value Î  (0·001, 0.01]), and *** (p-465 
value ≤ 0·001). The p-values corrected for multiple comparison with the Benjamini and Hochberg 466 
FDR procedure of 5%. These individual figures are available on our interactive app at 467 
https://chiragjp.shinyapps.io/nhanes_occupational_exposures/. 468 
 469 
 470 
 471 
  472 
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 473 

 474 
Figure 4. Heatmap of percent differences in chemical biomarker concentrations by occupational 475 
group, relative to white collars from Public Administration. Chemical biomarkers in white color 476 
indicates that the concentrations are the same between the given industry-collar combination and 477 
the reference group. The color bar for the columns represents the collar categorization and 478 
unemployment. The color bar for the rows represents the chemical classes. Blue presents the blue-479 
collar workers. White represents the white-collar workers. Gray presents the unemployed 480 
participants. The dendrogram of the occupational groups is defined based on using the average 481 
linkage function with Pearson’s correlation-based distance. Results are adjusted for age, sex, 482 
race/ethnicity, poverty income ratio, study period, and serum cotinine (biomarker of smoking). 483 
Number of asterisks indicate statistical significance of the percent differences:  * (p-value Î (0·01, 484 
0·05]), ** (p-value Î (0·001, 0·01]), and *** (p-value ≤ 0·001). This figure is available on our 485 
interactive app at https://chiragjp.shinyapps.io/nhanes_occupational_exposures/.  486 
 487 
 488 
  489 
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 490 
Figure 5. Heatmap of percentages of workers with biomarker levels exceeding biomonitoring 491 
equivalents for noncancer effects. Chemical biomarkers in white color indicates that no worker 492 
in a given occupational group has biomarker levels exceeding acceptable guidelines. The color 493 
bar for the columns represents the collar categorization and unemployment. Blue presents the 494 
blue-collar workers. White represents the white-collar workers. Gray presents the unemployed 495 
participants. This figure is available on our interactive app at 496 
https://chiragjp.shinyapps.io/nhanes_occupational_exposures/.   497 
  498 
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 499 
 500 
Table 1. Population statistics of the categorical variables for 51,008 NHANES participants who 501 
are eligible to have an occupation title. NHANES sampling design is accounted in calculating 502 
percentages (%), while counts (N) pertains to the number of NHANES participants. 503 

 N (%) 
Sex  
Males 24723 (48·2) 
Females 26285 (51·8) 
Race  
Mexican 10049 (8·28) 
Other Hispanics 3712 (5·42) 
Non-Hispanic Whites 22424 (68·59) 
Non-Hispanic Blacks 11158 (11·50) 
Other Race/Multi-Racial 3665 (6·21) 
Cycle  
1999-2000 (Cycle 1) 6036 (10·93) 
2001-2002 (Cycle 2) 6627 (12·53) 
2003-2004 (Cycle 3) 6191 (12·10) 
2005-2006 (Cycle 4) 6132 (12·38) 
2007-2008 (Cycle 5) 6530 (12·65) 
2009-2010 (Cycle 6) 6875 (12·86) 
2011-2012 (Cycle 7) 6164 (13·14) 
2013-2014 (Cycle 8) 6453 (13·41) 

  504 
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 505 

 506 

Table 2. Distribution statistics of the categorical variables for 51,008 NHANES participants who 507 
are eligible to have an occupation title. NHANES sampling design is accounted in the calculations 508 
of the distribution statistics, while counts (N) pertains to the number of NHANES participants.  509 

 510 

 511 

  512 

 N (%) Minimum 5th 10th Median Mean (SE) 90th 99th Maximum 

Age (years) 51008 (100) 16 17 21 44 44·7 (0·20) 71 83 85 

Poverty Income Ratio (-) 46441 (91·0) 0 0·49 0·77 2·86 2·93 (0·031) 5 5 5 

Serum cotinine (ng/mL) 45376 (88·9) 0·011 0·011 0·011 0·061 58·55 (1·56) 250 514 1820 
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