Trait and state mindfulness modulate EEG microstates

Running title: Mindfulness modulates EEG microstates

Zarka D.1,2,*, Cevallos C.1,3, Ruiz P.1, Cebolla A. M.1, Petieau M.1, Bengoetxea A.2, and Cheron G.1,4

1 Laboratory of Neurophysiology and Movement Biomechanics, Faculty of Motor Sciences, Université Libre de Bruxelles, 1070 Brussels, Belgium
2 Research Unit of Osteopathy Sciences, Faculty of Motor Sciences, Université Libre de Bruxelles, 1070 Brussels, Belgium
3 Departamento de Ingeniería Mecánica, Facultad de Ingeniería Mecánica, Escuela Politécnica Nacional, Quito, Ecuador
4 Laboratory of Electrophysiology, Université de Mons, 7000 Mons, Belgium

* Correspondence: ZARKA David, david.zarka@ulb.be

Number of pages: 34 (whole manuscript); 23 (main text only);
Number of words: 260 (abstract)
Number of figures: 6

ACKNOWLEDGMENTS

This work was funded by the Université Libre de Bruxelles (Belgium), the Secretaria Nacional de Ciencia y Tecnologia (Senescyt, Ecuador) and the Fonds G. Leibu. We warmly thank L. Felz, F. Bauwens, C. Maskens who kindly took part in this research as mindfulness expert, as well as I. Kotsou for expert scientific advice. We also wish to express our gratitude to the participants of the study, as well as our thanks to E. Pecoraro, E. Hortmans, E. Toussaint, and T. D’Angelo for expert administrative and technical assistance.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

Microstates are consistent and discrete brain potential topographies reflecting transient large network dynamics. The present study aimed to characterize microstate dynamics induced by non-reactive attention underlying mindfulness. Electroencephalogram signals from eighteen trained meditators and a matched non-meditators group were recorded before, during, and after a non-reactive attention meditation or during three resting sessions respectively, while they were passively exposed to auditory stimulation. In a multimodal approach, microstate clusters decompositions, personality trait questionnaires, phenomenological reports, and microstates sources localization were analyzed. In meditators, microstate A decreased in frequency and microstate B was of longer duration after meditation. Further, both were correlated with a specific mindfulness personality trait after meditation. Microstate C at rest was less frequent and shorter than in the non-meditators group (trait effect), and it decreased in frequency after meditation (state effect). Further, the microstate C was associated with auditory distractibility reported by participants and its occurrence was negatively correlated to the non-reactivity trait of meditators for the three recording sessions. Source localization analysis revealed that the non-reactive trait effect on microstate C at rest was explained by the lower activity of the salience network (identified by the anterior cingulate cortex, thalamus, and insula), while the non-reactive attentional state effect relied on a strong contribution of (anterior and posterior) cerebellum during meditation. Our results showed that non-reactive attentional meditation affects microstates A, B, and C. While microstate A seems to be in relationship to rumination processes, microstate B and C seems to be in relationship with the non-reactive monitoring of mindfulness meditation, for which the cerebellum appears to play a crucial role.

Keywords: Mindfulness, Meditation, Phenomenology, EEG, Microstate, Source localization
HIGHLIGHT

- The present study aimed to characterize microstate dynamics induced by non-reactive attention meditation, by the use of multimodal analysis including EEG microstate temporal measures, personality trait questionnaires, phenomenological reports, and source localization analysis.

- The occurrence of microstate A, recognized to be related to phonological processing and depressive disorders, was negatively correlated to mindfulness trait and was decreased after OM meditation. These findings suggested that the occurrence of microstate A could represent a useful biomarker to monitor depression course and mental well-being, as well as objectify the efficiency of mindfulness-based interventions to prevent depression relapse.

- Temporal parameters of microstate C, recognized to be related to mind wandering, were lower at rest in meditators than non-meditators reflecting a personality trait effect on the activity of the salient network. Besides, the occurrence of microstate C decreased after meditation and was correlated to the non-reactivity of the meditators. These findings suggested that C occurrence might represent an index of the cognitive defusion enabled by non-reactive monitoring of mindfulness meditation.
INTRODUCTION

Ongoing oscillatory brain activities underlie the dynamic patterns of large-scale functional networks. Such patterns emerge even in the absence of an external afferent volley and shape the brain states [McCormick et al., 2020]. They rely on mechanisms of synchronization that orchestrate the activity of widely distributed neuronal populations which reconfigure dynamically to support ongoing cognition and behavior [Buzsáki, 2004]. Such cerebral dynamic patterns are known to produce scalp potential topographies measurable through electroencephalogram (EEG), which remain briefly stable (around 40-120 ms) before rapidly switching into a new one [Lehmann et al., 1987]. These discrete stable topographies, generally named microstates, are identified from data-driven clustering methods applied to the time series of EEG voltage maps [Michel and Koenig, 2018]. Microstate configurations are relatively homogenous across studies with four to seven classically distinct topographical patterns (generally labeled A to G) explaining about 70% of the recorded data. Simultaneous EEG-fMRI studies have shown that generators of resting microstates correspond to the fMRI hubs of resting-state functional networks which have been previously associated with phonological processing, visual imagery, attention reorientation, and interoceptive processing [Britz et al., 2010; Custo et al., 2017; Yuan et al., 2012].

The dynamic changes of microstate indicate millisecond time scale modifications of the large-scale networks' orchestration over time. Accordingly, microstates temporal dynamics are assumed to provide a window into the high order integration processes at the brain scale level [Michel and Koenig, 2018]. The most broadly described variables accounting for each microstate are the frequency of occurrence (occurrence, s⁻¹), the meantime of stability (duration, ms), the time percent of total explained signal it covers (coverage, %) and the percent of total variance it explains (GEV, %). The temporal dynamic of microstates was investigated in a wide range of studies related to conscious processes such as states of alertness [Brodbeck et al., 2012; Comsa et al., 2019; Zanesco et al., 2021a], spontaneous phenomenal experiences [Lehmann et al., 2010; Pipinis et al., 2017], self-generated cognition [Bréchet et al., 2019; Milz et al., 2016; Seitzman et al., 2017], personality trait [Schiller et al., 2020; Zanesco et al., 2020], psychiatric disorders [Damborská et al., 2019; Grieder et al., 2016; Rieger et al., 2016], as well as psycho-behavioral practices [Bréchet et al., 2021; Faber et al., 2017; Katayama et al., 2007; Panda et al., 2016; Zanesco et al., 2021b].
In this context, the present study aimed to investigate microstate dynamics underlying mindfulness meditation. Mindfulness meditations refer to a family of attention-based practices imported from Buddhist contemplative traditions [Dahl et al., 2015]. They rely on the ability to purposely maintain the attention instant-by-instant to the lived experience in a non-reactive stance toward the experience content [Kabat-Zinn, 1990]. These practices are thought to reinforce attention stability and meta-awareness abilities [Lutz et al., 2008]. They are generally divided into focused attention meditation (FA) and non-reactive attention meditation (OM, also called open-monitoring meditation) [Dahl et al., 2015]. FA relies on effortful control of attention (i.e selective attention, sustained focus, shifting attention) [Hasenkamp and Barsalou, 2012] and is frequently used to install attentional stability previously to OM. In contrast, OM relies on effortless, no-directed attention while keeping arousal, emphasizing a non-reactive stance towards experience (openness, vigilance, and non-reactivity) [Lutz et al., 2008]. This non-reactivity promotes an inhibitory state on the body and mind movement and attenuates the weight of emotional and cognitive habits to favor the ongoing awareness of the present experience [Fucci et al., 2018; Zorn et al., 2021]. It has been notably shown that OM is associated with a reduced attentional blink [van Vugt and Slagter, 2014], and attenuates acoustic startle reflex [Antonova et al., 2015; Levenson et al., 2012]. Further, consistent meditation training has been associated with long-term psychological changes that can be assessed as mindfulness traits through various questionnaires [Baer et al., 2006; Baer et al., 2008; Brown and Ryan, 2003].

Attentional-based meditations are known to engage several large-scale networks including the central executive network (including the attentional networks), the silence network (SN), and the default mode network (DMN) [Lutz et al., 2015]. However, most of the previous meditation studies focused on FA, and little is known about the OM-induced brain dynamics. Regarding microstate studies, in particular, a recent longitudinal study has indicated that 6-week digital training of breath-focused meditation-induced topographical changes in microstate clustering collected at rest in novice meditators [Bréchet et al., 2021]. Source localization methods showed that these topographical changes were supported by the modified activity of the insula, supramarginal gyrus (BA40), and superior frontal gyrus (BA10) [Bréchet et al., 2021]. Moreover, increased occurrence and duration of DMN-related microstates (generally referred to as C) has been reported at rest in expert meditators.
compared to the control group, and also in expert meditators during FA meditation compared to rest. Interestingly, these dynamic changes were associated with decreased PCC connectivity in meditators compared to controls, which further decreased during FA meditation [Panda et al., 2016]. In contrast, transcendental meditation, an FA-like meditation closer to OM practices [Travis and Parim, 2017], brings to internally generated thoughts detachment which has been related to the lower occurrence of microstates A and C, linked to phonological and interoceptive processing respectively [Faber et al., 2017]. 3 months of full-time meditation training involving both FA and OM, resulted in attentiveness and serenity increases, as reported by participants, which have been associated with microstates duration reduction at rest [Zanesco et al., 2021b].

In the present study, we focused on microstates dynamics induced by OM in participants after a standardized 8-week training. We hypothesized that the non-reactive attention underlying OM practices induce change in temporal dynamics of microstates, and more particularly they should reduce the temporal feature of the microstate C which has been linked to the salience network and the default mode network [Britz et al., 2010; Michel and Koenig, 2018]. Concretely, we compared EEG signals recorded before, after, and during OM in the trained participants, with those recorded at rest during equally, three periods of time in a matched control group of waitlist participants. During recordings, regular auditory stimuli were passively displayed in the background environment to assess participants’ reactivity to distractors. Mind-wandering, auditory distractibility, emotional charge, bodily discomfort, and sleepiness were rated by participants with a 5-Likert scale after each recording. Mindfulness traits were assessed with Five Facet Mindfulness Questionnaires (FFMQ) [Baer et al., 2006; Baer et al., 2008]. We expected that the trained meditators showed higher FFMQ scores, and were less affected by the sound environment compared to waitlist participants. We also expected in meditators less mind wandering during and after the OM than before. Sleepiness, bodily discomfort, and emotional charge were assessed as control aspects of experience, and no assumption was a priori formulated about these reports. Depression, anxiety, perceived stress, and sleep quality were also inspected.

To investigate microstate dynamics induced by OM and to dissociate the related state from trait effects, we performed k-means clustering segmentation in the two following different ways. First, we included data of the first resting recording from all the participants
(meditators and non-meditators) in the same clustering analysis to estimate the optimal set of topographies explaining the EEG signals and to identify the links between microstates temporal features, personality traits, and phenomenological resting-state experiences. Next, we applied predetermined fixed k-means clusters to assess the mental state-dependent changes in microstate temporal parameters according to groups and sessions. Correlational analyses were further performed between microstates temporal features, personality traits, and phenomenological ratings according to groups and sessions. Additionally, we estimated the cerebral and cerebellar sources accounting for the specific microstates related to OM. In line with previous studies, we expected to reveal the four to seven classical microstates. We hypothesized that (1) trained meditators should show different temporal characteristics of microstates compared to non-meditators [Zanesco et al., 2021b]. In particular, OM should induce microstate C temporal parameters to decrease compared to rest [Faber et al., 2017]. We also hypothesized that (2) microstate dynamics will be related to mindfulness traits and phenomenological aspects of experience. Additionally, (3) we questioned change previously reported in microstate topographies between groups induced by meditation training [Bréchet et al., 2021].

MATERIALS AND METHODS

PARTICIPANTS

Forty healthy volunteers (aged 25 to 65 years) were recruited during informative sessions of standard MBSR programs provided by the continuing education center of the Université Libre de Bruxelles (ULB HELSci, Brussels, Belgium). Exclusion criteria were having significant experience of mindfulness meditation, history of epilepsy, hearing troubles, attention deficit with/without hyperactivity, history of substance abuse, and antecedent of psychiatric disorder. All participants provided written consent after a full explanation of the investigation. This study was approved by the ethics committee of the academic hospital Erasme (Brussels, Belgium), in agreement with the Belgian law relative to research on humans [Dresse, 2005] and the Helsinki declaration [World Medical Association, 2013].

20 among the participants, followed a 8-week meditation training (MED, 10F/10M, mean age: 41.68 ±10.91 years) and the 20 others constituted a waitlist matched control group (noMED, 11F/9M, mean age: 43.50 ±15.76 years). The meditation training was dispensed by senior instructors certified by the Center for Mindfulness (UMass Medical School,
Massachusetts, USA) with more than 15 years of mindfulness teaching expertise. They followed the standard structure of the mindfulness-based stress reduction program [Crane et al., 2017; Kabat-Zinn, 1990] respecting the teaching assessment criteria [Crane et al., 2013]. Following these standards, the training program was composed of a 3-hour intensive group session per week for 8 weeks, plus one full day (7 hours, at week 6) intensive group session. The first 4 weeks emphasized attention stability reinforcement (FA), while the following 4 weeks (including the full day of practice) emphasized meta-awareness (OM). Participants were further encouraged to practice at home for 45 min daily during the 8 weeks using provided audio files. To assess participants’ commitment, they were instructed to report each day the type of exercises and the time spend to practice using a standardized table. One subject was unable to finish the training for personal reasons and was excluded from the study. Accordingly, the meantime of daily practice per participant was 23,41 (±11,25) min, totalizing a mean of 52,84 hours (±11,35h) of practice per participant during the training.

PERSONNALITY TRAIT ASSESSMENT

Participants engaged in the training program were asked to complete the French version of the Five Facets Mindfulness Questionnaire (FFMQ) [Baer et al., 2006; Heeren et al., 2011] before and after training. The FFMQ is a commonly used assessment of mindfulness trait showing good reliability and validity [Baer et al., 2008; de Bruin et al., 2012; Carmody and Baer, 2008; Heeren et al., 2011; Soler et al., 2012]. Its specificity is to be constructed as a multidimensional assessment based on five previous scales allowing to characterize mindfulness according to five sub facets: observing, non-reactivity to inner experience, non-judgment, describing, and acting with awareness [Baer et al., 2006; Baer et al., 2008]. FFMQ is responsive to various forms of mindfulness training [Khoury et al., 2013] as well as to the amount and quality of mindfulness practice [Goldberg et al., 2014]. Pre- versus post-training comparison confirmed that FFMQ scores were significantly increased after the 8-week training (paired t-test, FFMQ: t = 4.372, p < 0.001; observing: t = 2.929, p = 0.010; describing: t = 3.528, p = 0.003; non-reactivity: t = 0.331, p = 0.745; non-judgement: t = 4.737, p < 0.001; Acting with awareness: t = 3.378, p 0.004). To allow traits comparison between groups, wait-list participants were also asked to complete the FFMQ a few days before experiments. All participants were asked to complete the Hospital Anxiety and Depression Scale (HAD)
[Zigmond and Snaith, 1983], as well as the Perceived Stress Scale (PSS) [Cohen et al., 1983; Nielsen et al., 2016] and the Pittsburgh Sleep Quality Index (PSQI) [Buysse et al., 1989].

PROTOCOL

Recording sessions (RS/OM)

Experiments took place in the Laboratory of Neurophysiology and Movement Biomechanics (ULB) at Brussels, Belgium, a few days after the training program. The EEG recording was composed of three eyes-closed sessions of 8 minutes each. The first session corresponded to resting-state recordings for both groups (RS1). Participants were instructed to keep their eyes closed, motionless, to stay awake, and to wait for the end of the recording which was signaled by a bell. During equipment installation brief semi-structured conversation oriented to participants’ daily life was engaged by the experimenter (Supplementary Material 1). The second session corresponded to another resting-state recording for controls (RS2) and an not guided OM for meditators. In accordance with training program, OM was preceded by FA to stabilize attention and it was introduced by the same standardized oral instruction inviting to open the attentional scope to the experiential field. The non-meditators were instructed as in the first block and they respected the same amount of time that meditators. The last session (RS3) corresponded to a new period of resting-state for both groups, with similar instructions as the first block.

Phenomenological assessment

Concomitantly, auditory stimuli (540/440Hz, 80 dB, 101 ms duration, ISI: 3s) were presented via loudspeakers bilaterally placed behind the subject during the whole EEG recording. To avoid the surprise effect, participants were exposed to the stimuli for 30 seconds before recordings. They were instructed to not pay attention to them. At the end of each recording, participants were asked to rate on a 5-point Likert scale (1 = not present at all; 5 = extremely present) about their auditory distractibility, mind wandering, sleepiness, bodily discomfort, and emotional charge (positive or negative indifferently) during recording. Questions were formulated as “Please rate how tired you were” according to Brandemeyer et al. [2018] (Supplementary Material 2). Short structured interviews (adapted from Petitmengin et al. [2019]) oriented on the description of their experience according to each phenomenal aspect were also made. Reports were compared with a standardized criteria-based scale to
refine rating across participants (Supplementary Material 2). The experimenter performing the interviews was blinded regarding groups.

EEG SETUP AND PREPROCESSING

EEG recordings were made using the ASA system (ANT software, the Netherlands) with 128 Ag/AgCl sintered ring electrodes embedded in an active-shield cap (10-20 system) and shielded co-axial cables. Eye movements were recorded using two bipolar electrodes: one placed horizontally on each outer eye canthus, the other placed vertically above and below the right eye. All electrodes were referred to the ears lobes. The ground electrode was placed in the neck on the C7 spinous process. Impedances were kept below 10 kΩ and checked before each block recording. Signals were recorded with a sampling rate of 2048 Hz and a resolution of 16 bits. We used EEGLAB software [Delorme and Makeig, 2004] for offline data treatment. Data were band-pass filtered between 1 and 40 Hz. Filtered EEG was downsampled to 125Hz. Noisy electrodes (max 10%) were interpolated using three-dimensional spherical splines. Cleaned EEG was re-referenced to the average reference. EEG data was reduced to 110 channels to remove muscular artifacts originating in the neck and face. Six minutes of continuous EEG data per block were selected for the analysis. At this stage, data from three subjects (1 MED, 2 noMED) were rejected due to large artifacts. The final analysis concerns 36 subjects (18 MED, 10F/9M, mean age: 42.39 ±10.78 years; 18 noMED, 10F/8M, mean age: 43.22 ±16.02 years)

MICROSTATES ANALYSIS

Microstate analysis was performed with freely available Cartool Software 3.70 [Brunet et al., 2011]. Following standard procedures [Michel and Koenig, 2018], we used k-means clustering to estimate the set of topographies explaining the EEG signals for each participant and each session. Only data points at local maximum GFP (global field power) were considered for clustering to improve the signal-to-noise ratio. The polarity of the maps was ignored. The clusters maps of each participant were subjected to a second k-means cluster analysis across participants to estimate the set of topographies explaining the EEG signals for each group and session. To distinguish trait difference between groups and state difference between sessions, we performed two separate, trait and state, streams of cluster analysis. We first applied the k-means clustering on the first resting-state recording (RS1) data across all participants.
(according to Damborská et al. [2019] methods) to investigate the trait effect between groups. We used six independent optimization criteria merged in a single metacriterion to determine the optimal number of clusters [Pascual-Marqui et al., 1995; Bréchet et al., 2019]. We then applied the k-means clustering across participants according to groups and sessions (RS1, RS2/OM, RS3) (accordingly to Bréchet et al. [2021]) to investigate the state effect. Here, we fixed the number of clusters for each group and session accordingly to the optimal number of clusters determined by previous trait analysis.

For both streams of cluster analysis, each microstate map identified at the group level was spatially back-correlated (ignoring polarity) with the GFP-normalized map of each participant individually at each data point of their original recording. Thus, each time point of the participant’s original EEG was labeled with the microstate map with the highest correlation. EEG samples that had low spatial correlations (< 0.5) with all group-level microstates were left unassigned. To avoid artificially interrupting temporal segments of stable topography by noise during low GFP, we used a sliding window (half size = 3; Besag factor = 10) [Brunet et al., 2011]. All time points with the same label were then averaged to calculate the four mean maps per participant representing the four microstates. For each clustering decomposition, we calculated the GEV (global explained variance) as the sum of the microstates explained variance (weighted by the GFP at each moment in time) to assess the representativeness of the microstate composition in regards to the original EEG data. We then calculated the duration, occurrence, and coverage of each microstate for each participant and session. The duration is the average time (ms) of contiguous samples labeled according to a specific microstate. The occurrence is the average times per second (s^{-1}) a given microstate occurs in the continuous-time series. The coverage is the percent of the total time of the whole EEG recording (%), which was labeled according to a specific microstate [Michel and Koenig, 2018].
Figure 1: Microstate analysis method. (A) Eyes-closed EEG signals from 110 electrodes. Voltage maps at local GFP peaks are identified as periods of topographic quasi-stability. A first K-means clustering determined the subjects-level clusters from voltage maps at local GFP peaks; (B) After a second k-means clustering identifying global clusters from subjects-level microstates, the original EEG signals from each recording are continuously labeled with the best-correlated global microstate map. The occurrence, duration, and coverage for all microstates were calculated from these labeled EEG recording; (C) Set of four cluster maps best explaining the data as revealed by k-means clustering across all participants (meditators and non-meditators) at first 8-min eyes closed recording (RS1); (D) Set of four cluster maps identified by predetermined k-means clustering explaining the data according to groups (MED, noMED) and successive sessions (RS1, RS2/OM, RS3). Note that microstate labeled « C » showed different topographies between sessions within non-meditators (mean spatial correlation: 79.3 ±4.5%) and between groups in RS1 (69.1%) and RS2 (45.1%).
SOURCE ANALYSIS

To estimate the neuronal source accounting for topographical dissimilarities of microstates between groups and sessions, we used standardized weighted low-resolution electromagnetic tomography analysis (swLORETA, ASA Software, ANT Neuro, the Netherlands) [Cebolla et al., 2011; Cebolla et al., 2016; Cebolla et al., 2017; Leroy et al., 2017; Palermo-Soler et al., 2007; Zarka et al., 2020; Zarka et al., 2021]. Derived from the sLORETA method [Pascual-Marquès, 2002; Pascual-Marquès et al., 2002; Wagner et al., 2004], swLORETA models spatially distinct sources of neuronal activity from EEG signals without prior knowledge about the anatomical location of the generators even when two dipoles are simultaneously active, and permits the reconstruction of surface and deep sources incorporating a singular value decomposition-based lead field weighting the varying sensitivity of the sensors to current sources at different depths [Cebolla et al., 2011; Cebolla et al., 2016; Palermo-Soler et al., 2007].

We characterized the generators of each mean map per participant and session corresponding to the best spatial correlation with the given microstates on periods of 50 ms. Following standards, the current density of every voxel was divided by the mean current density value of all voxels for every participant and session. This gave us a normalized inverse solution in which a voxel value greater than 1 indicates greater activity than the mean. We then calculated the average of such normalized inverse solution in each session for both groups. To compare groups and sessions, we created an image resulting from subtracting the modulus of the swLORETA solution of one group or session to the modulus of the swLORETA solution of compared group or session.

The swLORETA solution was obtained using a 3D grid of 2030 points (or voxels) that represented possible sources of the signal. Based on the probabilistic brain tissue maps provided by the Montreal Neurological Institute [Collins et al., 1994], the solution was restricted to the gray matter and cerebellum. The 2030 grid points (10.00 mm grid spacing) and recording array (128 electrodes) were indexed by the Collins 27 MRI produced by the MNI [Evans et al., 1993]. The Boundary Element Model was used to solve the forward problem [Geselowitz, 1967]. The final coordinates (x,y,z, Talairach coordinates) were obtained using
ASA software and identified as Brodmann areas based on the Talairach atlas [Lancaster et al., 2000].

STATISTICAL ANALYSIS

For trait analysis, between-group comparisons were performed through independent t-tests for questionnaires (FFMQ, HADS, PSS, PSQI) and temporal parameters (duration, occurrence, and coverage) of each microstate identified by the k-means clustering across all participants at RS1. We applied the false discovery rate method provided by Cartool Software to correct statistics for multiple comparisons [Benjamini and Hochberg, 1995; Lindquist and Mejia, 2015]. We investigate associations between microstate dynamics, personality traits, and lived experience, through Spearman’s rank correlation coefficients between each microstate temporal parameter, scores related to questionnaires (and subscales), and scores related to phenomenological reports, across all participants.

Regarding state analysis, scores related to phenomenological ratings were analyzed through Kendall’s W and Mann–Whitney U tests for group and session comparisons. Repeated measure ANOVA was used to compare microstate temporal parameters between sessions (RS1, RS2/OM, RS3) and groups (MED, noMED). If needed, sphericity violations were corrected by Greenhouse-Geisser correction. Holms corrected paired t-tests were used as posthoc tests. We also calculated Spearman’s correlation between each microstate temporal parameter, scores related to questionnaires (and subscales), and scores related to phenomenological reports, within the groups and sessions.

For source analysis, the statistical differences between sessions were determined by non-parametric corrected permutations as proposed by Nichols et al. [2002] which uses the data itself to generate the probability distribution for testing against the null hypothesis and controls for the false positives that may result from performing multiple hypothesis tests [Nichols and Holmes, 2002]. To perform the permutation, we used the t-test as the value of merit. We compute the T-image (T value per voxel) by performing a one-sample t-test (one-tailed) for each voxel of the source space. The null hypothesis is that the distribution of the voxel values of the difference images had a bigger mean in one group/session than the other (and inversely). Instead of assuming a normal distribution to assess the statistical significance of the T-score at each voxel, we used the permutation method to create an empirical
distribution as explained in detail by Cebolla et al. [2011]. The Holmes maximal correction was calculated separately for each comparison between groups and sessions. The 95th percentile of the permutation distribution was used for the corrected maximal statistics which defines the 0.05 level of the significance threshold. Thus, we rejected the null hypothesis for voxel of the unpermuted T-image with t-values greater than the 95th percentile of the permutation distribution of the corrected maximal statistics [Holmes et al., 1996].

RESULTS

QUESTIONNAIRES SCORES

Although no group difference was highlighted for FFMQ total score (FFMQ: t(34) = 0.996, p = 0.326), we observed that meditators showed significant higher scores for observing (MED: 31.47 ±2.60, noMED: 27.06 ±6.13; t(34) = 2.744, p = 0.010) and non-reactivity to inner experience (MED: 24.53 ±3.18, noMED: 20.28 ±6.20; t(34) = 2.528, p = 0.016) facets compared to non-meditators. Other facets (describing, non-judgment and acting with awareness) did not showed significant difference between groups (all t < 2.00, p > 0.05). Also, meditators and non-meditators did not differ for sleep quality (PSQI: t(34) = -0.054, p = 0.958), perceived stress (PSS: t(34) = -1.007, p = 0.321) as well as anxiety and depression scores (HAD: t(34) = -0.348, p = 0.348; Anxiety: t(34) = -0.639, p = 0.527; Depression: t(34) = -0.907, p = 0.371) (Supplementary Data 1 for details).

PHENOMENOLOGICAL RATINGS

Non-meditators ratings showed no session effect on mind wandering and auditory distractibility (both $\chi^2 < 0.130$, p > 0.937). In contrast, meditators reported lower mind wandering during OM compared to the other sessions ($\chi^2 = 13.298$, p < 0.001; RS1: $z = -2.808$, p = 0.005; RS3: $z = -2.767$, p = 0.006), suggesting a successful commitment in meditation practice. They also reported lower auditory distractibility during RS3 compared to RS1 ($\chi^2 = 8.600$, p = 0.014; $z = -3.000$, p = 0.003). Group comparisons showed that meditators reported lower mind wandering during RS2/OM ($z = -3.616$, p < 0.001), as well as lower auditory distractibility during RS2/OM and RS3 (RS2/OM: $z = -1.991$ p = 0.046; RS3: $z = -2.785$ p = 0.010) compared to non-meditators. In addition, and regarding other phenomenal aspects controlled (Supplementary Data 2, 3 for details), group comparisons showed that meditators reported
lower emotional charge in RS1 and RS2/OM (z = -3.080, p = 0.004; z = -2.269, p = 0.023, respectively) than non-meditators.

TRAIT MICROSTATE ANALYSIS

Figure 1C illustrates the set of the most dominant topographies obtained by the meta-criterion of the clustering decomposition for RS1 across all participants. The k-means clustering determined that the optimal number of the microstates composition was four (A, B, C, D) explaining 70.18% of the global variance. The four microstate maps corresponded to the classical microstates labeled as A, B, C, and D in literature (Michel, 2018).

Microstate A occurrence and coverage were negatively associated with FFMQ total score (ρ(34) = -0.363, p = 0.032 and ρ(34) = -0.335, p = 0.49, respectively). These correlations were sustained by non-reactivity (respectively: ρ(34) = -0.333, p = 0.051; ρ(34) = -0.325, p = 0.057) and non-judgment (respectively: ρ(34) = -0.374, p = 0.027; ρ(34) = -0.420, p = 0.012) facets of FFMQ.

Microstate C temporal parameters were negatively correlated with non-reactivity facet of FFMQ (occurrence: ρ(34) = -0.325, p = 0.057; duration: ρ(34) = -0.357, p = 0.035; coverage: ρ(34) = -0.352, p = 0.038). Besides, the duration of microstate C was negatively correlated with observing facet of FFMQ (ρ(34) = -0.388, p = 0.021) and positively correlated with auditory distractibility (ρ(34) = 0.465, p = 0.004) across participants. Moreover, auditory distractibility and observing facet of FFMQ were negatively correlated (ρ(34) = -0.375, p = 0.026) (Figure 2).

Comparison between group revealed that meditators showed lower occurrence, duration, and coverage of microstate C compared to non-meditators (respectively: t(34) = 2.16, p = 0.038; t(34) = 2.34, p = 0.025 ; t(34) = 2.17, p = 0.037). No significant difference relative to temporal parameters of microstate A, B and D were found between groups (all t < 2.00, p > 0.05) (Supplementary Data 1).
Figure 2: Correlations between microstate C temporal parameters, mindfulness trait, and phenomenological reports across all participants during the first 8-min recording (meditators in black dots and non-meditators in grey dots). We found that (A) duration of microstate C was negatively correlated to score in non-reactivity and observing facets of FFMQ. Note that meditators showed lower duration of microstate C ($t(34) = 2.34$, $p = 0.025$) as well as higher score in non-reactivity ($t(34) = 2.528$, $p = 0.016$) and observing ($t(34) = 2.744$, $p = 0.010$) facets of FFMQ than non-meditators. (B) Duration of microstate C durations was positively correlated to auditory distractibility, while (C) observing facet scores were negatively associated with auditory distractibility reports.

STATE MICROSTATE ANALYSIS

Figure 1D illustrates the microstates compositions for both groups and sessions RS1, RS2, RS3 for non-meditators and RS1, OM, RS3 for meditators. The maps in meditators were highly similar across sessions (RS1, OM, RS2), and they corresponded to the canonical microstates labeled A, B, C, and D in literature (Fig. 1D, upper part). Spatial correlations of these 4 microstates between sessions were very high (mean per map: 96.2 ±2.4%). In contrast, non-meditators showed three microstate maps that corresponded to canonical microstates A, B, and D and another one being less consistent with canonical microstate C, and this particularly for RS1 and RS2 sessions (Figure 1D, lower part). Spatial correlation of these microstates between sessions showed strong correlation for B (96.5 ±1.5%) and D (97.9 ±1.3%), and weaker correlations for A (85.7 ±12.3%) and C (79.3 ±4.5%). Spatial correlation between groups showed strong correlations in the three sessions for maps A (94.8 ±6.6%), B (97.7 ±1.4%), and D (96.6 ±2.7%), and a weaker correlation for the fourth map C (69.1 ±24.0%) in particular for RS1 (69.1%) and RS2 (45.1%) sessions (RS3: 93.1%). In accord with the weaker spatial correlation concerning the fourth C map, we labeled it « C » across sessions in both groups (Figure 1D). The GEV values of each microstate’s composition were 72.2%, 72.5%, 72.4% for meditators in RS1, OM, RS3 sessions respectively and 66.7%, 66.9%, 68.3% for non-meditators in RS1, RS2 and RS3 sessions respectively. Note that microstates temporal parameters can be only compared between conditions if their microstates compositions...
present the same topographies [Bréchet et al., 2021; Grieder et al., 2016]. The distinctive topography of microstate « C » precluded comparisons between sessions within the non-meditator group, nor between groups. Although we have illustrated the values of non-meditators in graphs for informative purposes, repeated measure ANOVA concerned microstate temporal parameters comparisons between sessions (RS1, OM, RS2) within the meditator group only (Figure 3).

![Figure 3: Microstate temporal parameters comparisons within the meditators group (black dots). For informative purposes, non-meditators are illustrated in white dots. Error bars correspond to 95% confidence intervals.](image)

Microstate A

Repeated measure ANOVA revealed a session effect on occurrence of microstate A ($F(2,34) = 7.090, p = 0.003$) in meditators. Post-hoc tests highlighted significant decrease between RS1 and RS3 ($t = 3.725, p = 0.002$) and between OM and RS3 ($t = 2.339, p = 0.051$) (Figure 3). No effect was found about duration and coverage of microstate A (All $F < 1.130, p > 0.320$).
Spearman’s rank correlation revealed that microstate A occurrence and coverage during RS3 (but not during RS1 and OM) were negatively correlated with FFMQ total score ($\rho(18) = -0.547, p = 0.023; \rho(18) = -0.551, p = 0.022$) in meditators (but not in non-meditators ($\rho(18) = -0.236, p = 0.346; \rho(18) = -0.161, p = 0.523$)) (Figure 6A). These correlations were sustained by describing facet of FFMQ ($\rho(18) = -0.487, p = 0.048; \rho(18) = -0.487, p = 0.048$) (Figure 4A). Also, duration and coverage of microstate A in RS3 were correlated to auditory distractibility (occurrence: $\rho(18) = -0.324, p = 0.189$; duration: $\rho(18) = -0.608, p = 0.007$; coverage: $\rho(18) = -0.608, p = 0.007$) in this same group.

Microstate B

An session effect was found for microstate B duration ($F(2,34) = 4.102, p = 0.025$) and coverage ($F(2,34) = 4.696, p = 0.016$) in meditators. A trend for microstate B occurrence was also observed ($F(2,34) = 3.224, p = 0.052$). Post-hoc tests indicated significant increased microstate B duration ($t = -2.845, p = 0.022$) and coverage ($t = -3.052, p = 0.013$) between RS1 and RS3 (Figure 3).

The temporal parameters of microstate B during RS3 were positively correlated with non-reactivity facet of FFMQ in meditators (occurrence: $\rho(18) = -0.548, p = 0.023$; duration: $\rho(18) = -0.664, p = 0.004$; coverage $\rho(18) = -0.658, p = 0.004$) but not in non-meditators (occurrence: $\rho(18) = -0.279, p = 0.263$; duration: $\rho(18) = -0.006, p = 0.980$; coverage $\rho(18) = -0.154, p = 0.540$) (Figure 4B). Positive correlation was also found between coverage of microstate B during OM and observing facet of FFMQ ($\rho(18) = -0.507, p = 0.038$) in meditators. In contrast, temporal parameters of microstate B during RS1 and RS3 in non-meditators were negative correlation to observing facet of FFMQ (RS1: occurrence: $\rho(18) = -0.462, p = 0.054$; duration: $\rho(18) = -0.422, p = 0.081$; coverage $\rho(18) = -0.525, p = 0.025$; RS3: occurrence: $\rho(18) = -0.673, p = 0.002$; duration: $\rho(18) = -0.636, p = 0.005$; coverage $\rho(18) = -0.666, p = 0.003$).

In addition, microstate B temporal parameters in meditators was negatively correlated to auditory reactivity during RS1 (occurrence: $\rho(18) = -0.436, p = 0.071$; duration: $\rho(18) = -0.474, p = 0.047$; coverage: $\rho(18) = -0.502, p = 0.034$), and positively correlated to emotion charge during OM (occurrence: $\rho(18) = 0.494, p = 0.037$; duration: $\rho(18) = 0.513, p = 0.029$; coverage: $\rho(18) = 0.553, p = 0.017$) in meditators. No correlation was found between microstate B temporal parameters and phenomenological ratings in non-meditators.
Figure 4: Correlations between the microstates A and B temporal parameters and FFMQ according to groups and sessions. (A) Microstate A occurrence was not correlated to FFMQ score in non-meditators in RS1 and RS3. Microstate A occurrence was negatively correlated to FFMQ score in RS3, but not in RS1 in meditators. Note also the decrease of microstate A occurrence in RS3 compared to RS1 in meditators \((t = 3.725, p = 0.002) \). (B) The coverage of microstate B was negatively correlated to the FFMQ non-reactivity score in RS3 (but not in RS1) in meditators. Note also the increase of microstate B coverage during RS3 compared to RS1 in this group \((t = -3.052, p = 0.013) \).

Microstate « C »

Microstate « C » showed significant differences in occurrence \((F(2,34) = 3.691, p = 0.035) \) and coverage \((F(2,34) = 4.638, p = 0.017) \) between sessions in meditators. A trend was also observed for duration \((F(2,34) = 3.043, p = 0.061) \). Post-hoc tests indicated that these
microstate « C » temporal parameters decrease between RS1 and RS3 (occurrence: \(t = 2.715, p = 0.031 \); duration: \(t = 2.447, p = 0.059 \); coverage: \(t = 3.044, p = 0.013 \)) (Figure 3).

Occurrence of microstate « C » was negatively correlated with non-reactivity facet of FFMQ in the three sessions (RS1, OM, RS3) being more significant during OM (RS1: \(\rho(18) = -0.536, p = 0.026 \); OM: \(\rho(18) = -0.660, p = 0.006 \); RS3: \(\rho(18) = -0.528, p = 0.029 \)) for meditators but not for non-meditators (RS1: \(\rho(18) = -0.299, p = 0.229 \); OM: \(\rho(18) = -0.121, p = 0.631 \); RS3: \(\rho(18) = -0.112, p = 0.658 \)) (Figure 5).

In line with the trait analysis, the duration and the coverage of microstate « C » were positively correlated to auditory distractibility during RS1 in non-meditators (duration: \(\rho(18) = 0.602, p = 0.008 \); coverage: \(\rho(18) = 0.549, p = 0.018 \)) and in a lesser extend in meditators (duration: \(\rho(18) = 0.513, p = 0.029 \); coverage: \(\rho(18) = 0.417, p = 0.085 \)). Microstate « C » occurrence and coverage were also negatively correlated to the emotional charge ratings during RS2/OM in non-meditators (occurrence: \(\rho(18) = -0.487, p = 0.040 \); coverage: \(\rho(18) = -0.486, p = 0.041 \)), and in lesser extend in meditators (occurrence: \(\rho(18) = -0.522, p = 0.026 \); coverage: \(\rho(18) = -0.325, p = 0.188 \)). During RS3, temporal parameters of microstate « C » were negatively correlated to mind wandering only in the meditators (occurrence: \(\rho(18) = -0.606, p = 0.008 \); duration: \(\rho(18) = -0.451, p = 0.060 \); coverage: \(\rho(18) = -0.531, p = 0.023 \)) (Supplementary Data 4).

![Figure 5: Correlations between the temporal parameters of microstate « C » and FFMQ according to groups and sessions.](image)

The occurrence of microstate C was correlated to the FFMQ non-reactivity score in meditators in the three sessions.
Microstate D

No effect was found for temporal parameters of microstate D (all $F < 0.280, p > 0.678$) (Figure 3). Coverages of microstate D during RS1 and OM were positively correlated to non-judgment facet of FFMQ in meditators (RS1: $\rho(18) = 0.620, p = 0.008$; OM: $\rho(18) = 0.564, p = 0.018$; but not for non-meditators: RS1: $\rho(18) = 0.381, p = 0.118$; RS2: $\rho(18) = 0.147, p = 0.560$). More specifically, these correlations were respectively sustained by duration during RS1 ($\rho(18) = 0.518, p = 0.033$) and occurrence during OM ($\rho(18) = 0.559, p = 0.020$).

SOURCE LOCALIZATION ANALYSIS

Our results of the microstates characterization in the state stream analysis have revealed that microstate « C » differentiated between meditators and non-meditators for the RS1 and RS2/OM sessions, and the three sessions for non-meditators groups. Figure 6 illustrates the statistical maps of the source analysis of microstate « C » topographies compared between groups (upper part). In RS1, higher activity in the right hemisphere including retrosplenial cortex (BA30: 28.3, -46.6, 9.4), PCC (BA31: 19.1, -65.1, 16.9), and a part of cuneus (BA18: 19.2, -67.1, 15.8) in meditators compared to non-meditators. In contrast, non-meditators showed higher activity in the left hemisphere area peaking in the superior temporal gyrus (BA22: -50.8, 14.4, -0.9) compared to meditators (Figure 6, upper part, on the left). In RS2, microstate « C » showed local involvement of the right cerebellum (culmen: -10.1, -63.3, 9.5; declive: 10.3, -71.5, 17.3) and bilaterally in cuneus (BA18 L: -10.1, -78.1, 23.1; R: 11, -86.6, 14.1) in meditators with respect to non-meditators. Sources of microstate « C » in non-meditators in RS2 showed distributed nodes of activities localized in the supramarginal gyrus (BA40: -39.1, -51.7, 34.6), ventral premotor cortex (BA6: -32.2, 3.4, 23.0) of the left hemisphere, as well as in dorsal premotor cortex (BA6: 36.9, -6.3, 48.5) and dlPFC (BA9: 36.4, 3.7, 31.6) in the right hemisphere. Concerning RS3, no significant generators activity was highlighted between groups except for a marginal contribution of the left hemisphere in a localized frontal single node (BA8: -21.7, 20.5, 32.6) in non-meditators (Figure 6).

Additionally, we explored the statistical maps of the significant sources accounting for microstate « C » in RS1 and RS2 compared to RS3 within non-meditators (Figure 6, lower part), as we previously found high correlations of maps « C » between groups for this session (see...
above). Sources of microstate « C » were higher in the thalamus (pulvinar: 5.4, -36.2, 9.6), ventral ACC (BA24: 16.2, -6.0, 47.8), and insula (25.8, 26.0, 15.7) in the right hemisphere in RS1 than in RS3. Left dorsal ACC (BA32: -14.1, 31.8, 13.8) and bilateral cuneus (BA19 L: -28.2, -7.8, 24.1; BA18 R: 19.2, -68.1, 15.7) were higher in RS3 than RS1 session. Sources in RS2 presented higher activities than RS3 in supramarginal gyrus (BA40 L: -39.1, -51.7, 43.6), ventral premotor cortex (BA6: -42.2, 1.4, 29.2) and ventral PCC (BA23: -9.5, -36.7, 18.7) in left hemisphere, as well as supramarginal gyrus (BA40 R: 47.8, -36.7, 27.2), angular gyrus (BA39: 55.1, -53.5, 14.9) and dorsal premotor cortex (BA6: 27.1, -7.4, 49.3) in right hemisphere. RS3 showed higher activities in left cuneus (BA18: -18.1, -79.6, 24.8) and left caudate (body: -12.3, 6.0, 5.1) than RS2 (Figure 6).

Figure 6: Statistical maps of microstate « C » between groups and sessions. d/vACC: dorsal/ventral anterior cingulate cortex; PCC: posterior cingulate cortex; dlPFC: dorsolateral prefrontal cortex; d/vPM: dorsal/ventral premotor cortex; RSC: retrosplenial cortex; STG: supramarginal gyrus; V2: secondary visual cortex; BA8: Broadmann area 8, a part of frontal cortex including frontal eyes fields.

DISCUSSION

In the present study, we investigated the microstates dynamics induced by OM. We hypothesized that the non-reactive attention underlying OM practices induce changes in the
temporal dynamics of microstates. The present results showed a decrease of microstate A occurrence and an increase of microstate B duration after OM, both associated with mindfulness personality trait (describing and non-reactivity respectively) of the meditators. The values of the temporal parameters of microstate C were lower in meditators compared to non-meditators at rest before meditation, but also they decrease within the meditator group after OM. Moreover, the microstate C occurrence in meditators was correlated to their non-reactivity trait regardless of sessions. Topographic dissimilarities of microstates C were revealed between groups, and within the non-meditator group across sessions. Such topographic dissimilarities were underpinned by differences at the level of the generators.

Mindfulness trait modulates microstate C temporal parameters

Meditators revealed lower duration, occurrence, and coverage of microstate C than non-meditators during resting-state. The positive association between the microstate C duration and distractibility reports from the participants of both groups are in line with previous BOLD studies showing that microstate C reflects the activity of the SN [Britz et al., 2010]. Accordingly, lower temporal parameters of microstate C would reflect the lower activity of SN at rest in meditators. Further, negative correlations of observing facet of FFMQ with both the distractibility reports and the microstate C duration across participants reinforce the hypothesis of SN mediation in the relation between mindfulness trait and duration of microstate C.

Microstates C topographies were different in meditators and non-meditators at rest and their temporal parameters correlated with their respective distractibility ratings. We found that the microstate C topography was characterized by posterior cingulate cortex contribution in meditators while it was characterized by right superior temporal gyrus contribution (BA22, related to non-verbal sound processing) in non-meditators. Non-meditators showed a more significant contribution of the ventral anterior cingulate cortex (ACC), insula, and thalamus initially in RS1 than in the last RS3 session. Interestingly, these are three major nodes of the SN [Seeley, 2019].

These results are consistent with Custo et al. [2017] who highlighted that microstate C could collapse two microstates (C and F in their study): one related to the more posterior part of the DMN, and the other being related to the SN. More, it has been suggested that these
two microstates reflect anti-correlated networks activities [Zanesco et al., 2021a]. These two distinct microstates' topography is also in line with the report of Bréchet et al. [Bréchet et al., 2021] showing that 6-week meditation training leads to change in the microstate topography identification at rest. In our case, however, k-means clustering identified also distinct topographies between groups from RS2/OM recording, that could reflect an effect of OM on microstate topography. Nevertheless, topographies related to microstate C remained stable across sessions in meditators while those of non-meditators were surprisingly distinct across sessions.

Mindfulness stabilize microstate C topography

Correlations between microstate C occurrence and emotional charge in both groups suggested that both distinct topographies rely on emotional processes in RS2/OM. In this context, meditators reported lower emotional charges than non-meditators at RS1 and RS2/OM. This could be related to the activation of emotional salience successful integration networks [Britz et al., 2010] specifically in meditators explaining the clustering identification of microstate C. Source analysis within non-meditators also revealed that their microstate C maps were characterized by ventral ACC contribution at RS1 and by dorsal ACC contribution at RS3 that correspond to recognized emotional and cognitive parts of the ACC, respectively [Bush et al., 2000]. Also, microstate C at RS2 in this group was characterized by widespread activities including ventral PCC and supramarginal gyrus which are described in internally directed thoughts and self-generated emotions [Damasio et al., 2000; Kropf et al., 2019; Leech and Sharp, 2014].

In this emotional context, while the other microstate maps remained similar between groups, the lower coverage of the non-meditators’ microstate C (see Figure 6) could reflect higher variability in the temporal dynamics of brain activity in non-meditators as suggested by the lower GEV in this group (Figure 1). This higher variability could have induced different topographic identifications provided by fixed k-means clustering. In contrast, previous studies suggested that attentional control underlying meditation induced lower variability of brain networks dynamics through a decreased PCC connectivity in meditators [Panda et al., 2016]. Considering also reports showing that mindfulness uncouples brain areas related to sensory, affective, or evaluative aspects of lived experience [Grant et al., 2011; Zorn et al., 2020], it is,
therefore, possible that mindfulness leads specific and uncoupled brain sub-networks to work more stably.

Mindfulness state modulates microstate C temporal parameters

In line with our hypothesis, we found that in meditators the occurrence of microstate C decreased after the OM session. Interestingly, this result corroborated the study of Faber et al. [2017], showing that transcending\(^1\) was characterized by the lower occurrence of microstate C compared to mind wandering in expert meditators [Faber et al., 2017]. It is important to highlight that we found that the occurrence of microstate C during OM was correlated to the non-reactivity of the meditators and it was characterized at the source level by a strong activity of the cerebellum (anterior and posterior part) compared to non-meditators. In a previous study, we have recently suggested that the anterior part of the cerebellum contributes to automatic features of inhibition control integrating into its multiple internal representations the appropriate behavioral responses to stimuli [Zarka et al., 2021]. According to the critical role of the cerebellum in sensorimotor control and learning [Cheron et al., 2013; Cheron et al., 2016; De Zeeuw, 2021], this structure would represent a major neural substrate of non-reactivity behavior, motor and cognitive inhibition, underlying mindfulness meditation.

Beyond the sensorimotor aspect assumed by the anterior part of the cerebellum, the role of its posterior part in affective and (non-motor) cognitive functions is largely recognized [Argyropoulos et al., 2020; Stoodley and Schmahmann, 2018]. According to Schmahmann (2019), the cerebellum is an oscillation dampener smoothing out motor but also emotional and cognitive performance. It acts as a controller in sensorimotor, emotional, and cognitive functions using adaptive mechanisms based on internal predictive models for the detection of errors. This is at the basis of prevention, correction, or abort behavior that ensures the intended homeostatic baseline. Thus, the cerebellum modulates behaviors comparing the consequences of (non-)actions with the intended outcome, matching reality with perceived reality. In other words, the cerebellum could represent the essential neural substrate of cognitive defusion mechanisms underlying mindfulness meditation [Zorn et al., 2021] and

\(^1\) Transcending is a mental state characterized by a deep detachment to mental content [Brandmeyer et al., 2019; Travis and Parim, 2017]
associated salutary changes in the brain’s working memory system [Jha et al., 2019; Stoodley and Schmahmann, 2009; Stoodley and Schmahmann, 2018].

Mindfulness effects on microstate A and B temporal parameters

Finally, our data revealed a decrease in the occurrence of microstate A and an increase in the coverage of microstate B after OM, both correlated to specific mindfulness personality trait. While microstate B coverage was positively correlated to the non-reactivity facet of FFMQ, microstate A occurrence was negatively correlated to FFMQ total score and more specifically for the describing facet referring to the ability to label internal experiences with words [Baer et al., 2008]. Moreover, results from the trait analysis showed that the occurrence of microstate A at rest was negatively correlated to trait mindfulness across all participants. This correlation was highlighted in particular for the non-judgment facet of FFMQ, suggesting that microstate A occurrence was linked to a non-evaluative mental state toward thoughts and feelings [Baer et al., 2008]. These results are in line with the association classically proposed between microstate A and phonological processes [Britz et al., 2010]. A recent report indicated that the occurrence of microstate A would be positively correlated with depression severity [Damborská et al., 2019]. These findings suggested that the occurrence of microstate A could reflect processes related to rumination, for which mindfulness aims to mitigate. Considering the well-established benefice of mindfulness meditation for depressive conditions and more generally for mental health-related quality of life [Goyal et al., 2014; Goldberg et al., 2018], these findings strongly encourage more research to assess the use of the microstate A occurrence as a clinical biomarker to monitor depression course and mental well-being, as well as objectify the efficiency of mindfulness-based interventions to prevent depression relapse.

CONCLUSION

In the present study, we aimed to characterize microstate dynamics induced by open-monitoring meditation. In a multimodal approach combining microstates cluster decomposition, personality trait questionnaires, phenomenological reports, and microstates sources localization analysis, we showed that OM affects microstates A, B, and C. While microstate A would be related to rumination processes weakening, the microstate C might represent an index of the cognitive defusion enabled by the non-reactive monitoring of mindfulness meditation, for which the cerebellum appears to play a crucial role.
DATA AVAILABILITY STATEMENT

The data of the study will be available on Figshare at the following link:

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

CONFLICT STATEMENT

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

REFERENCES

