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Abstract 

New vector-control technologies to fight mosquito-borne diseases are urgently needed, the 

adoption of which depends on efficacy estimates from large-scale cluster-randomized trials 

(CRTs). The release of Wolbachia-infected mosquitoes is one promising strategy to curb 

dengue virus (DENV) transmission, and a recent CRT reported impressive reductions in dengue

incidence following the release of these mosquitoes. Such trials can be affected by multiple 

sources of bias, however. We used mathematical models of DENV transmission during a CRT 

of Wolbachia-infected mosquitoes to explore three such biases: human movement, mosquito 

movement, and coupled transmission dynamics between trial arms. We show that failure to 

account for each of these biases would lead to underestimated efficacy, and that the majority of 

this underestimation is due to a heretofore unrecognized bias caused by transmission coupling. 

Taken together, our findings suggest that Wolbachia-infected mosquitoes could be even more 

promising than the recent CRT suggested. By emphasizing the importance of accounting for 

transmission coupling between arms, which requires a mathematical model, our results highlight

the key role that models can play in interpreting and extrapolating the results from trials of 

vector control interventions.
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Introduction

Dengue virus (DENV) poses a risk to around half the world’s population due to the widespread 

abundance of its Aedes mosquito vectors [1]. Historically, the success of dengue control has 

been limited by challenges such as the expanding distribution of Aedes aegypti due to 

urbanization and land-use changes, and ineffective or sub-optimally applied control strategies 

[2,3]. One novel control strategy that holds promise is the release of mosquitoes infected with 

Wolbachia, a vertically transmitted intracellular bacteria that reduces the ability of Aedes aegypti

mosquitoes to transmit DENV [4]. A cluster-randomized, controlled trial conducted between 

2018 and 2020 in Yogyakarta, Indonesia (Applying Wolbachia to Eliminate Dengue, AWED) 

[5,6] estimated that release of Wolbachia-infected mosquitoes had a protective efficacy against 

symptomatic, virologically confirmed dengue of 77.1% (95% confidence interval: 65.3-84.9%) 

[7]. 

There are at least three factors that can result in underestimated efficacy in this type of 

trial. All operate by making outcomes in treatment and control clusters appear more similar than 

if these factors were not at play, although they result in this for different reasons. First, the 

movement of humans between control and treated clusters can increase the exposure to DENV 
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of study subjects residing in treatment clusters and lower the exposure of subjects residing in 

control clusters [8]. Second, the movement of mosquitoes between arms can lead to an 

appreciable proportion of mosquitoes in control clusters infected with Wolbachia, lowering these

mosquitoes’ ability to transmit DENV and introducing a source of contamination across trial 

arms. Third, the dynamic, spatially localized nature of DENV transmission [9,10] implies that 

suppression of transmission in treated clusters could influence transmission in neighboring 

control clusters, thereby reducing incidence in both trial arms. Hereafter, we refer to each of 

these three forms of bias as “human movement,” “mosquito movement,” and “transmission 

coupling,” respectively. 

In their per-protocol analyses, Utarini et al. [7] acknowledged the potential effects of 

human and mosquito movement in their per-protocol analysis, and by incorporating recent travel

and Wolbachia prevalence into their efficacy calculations did not detect a difference in efficacy 

from that estimated in the intention-to-treat analysis. Nevertheless, the analysis of the AWED 

trial by Utarini et al. [7] did not account for transmission coupling, and they noted that follow-up 

analyses were needed to further explore the potential for bias due to human and mosquito 

movement.

Understanding the magnitude of such biases is important when seeking to extrapolate 

the impact of interventions across contexts. Such extrapolation has been recently undetaken for

the RTS,S/AS01 vaccine [11,12] and the endectocide ivermectin [13] for malaria. If failing to 

account for such transmission dynamics contributes to an underestimated biological effect of 

Wolbachia on DENV, we risk incorrectly assessing its broader impact. Given the myriad 

intervention options available to public health officials for dengue control [14], it is important for 

the potential impacts of each to be understood as well as possible.

In this study, we used a mathematical model of DENV transmission to gain insight into 

the possible magnitudes of the three aforementioned sources of bias. Our approach involved 

translating model inputs of the basic reproduction number (R0), the spatial scale of human 
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movement (b), and the proportional reduction in R0 afforded by Wolbachia-infected mosquitoes 

(ε) into outputs of the infection attack rate (IAR) in control and treatment arms of a trial, in 

accordance with a seasonal, two-patch susceptible-infectious-recovered (SIR) model [15]. We 

used the outputs of IAR in treatment and control arms (IARt and IARc, respectively) to obtain an 

estimate of the odds ratio (OR) of infection and, thereby, an estimate of the efficacy of the 

intervention, Eff = 1 - OR. We constructed six different model versions for estimating efficacy, 

each of which includes different combinations of the three biases, all of them, or none of them. 

Henceforth, we refer to the efficacy observed in the AWED trial as “observed efficacy,” and the 

efficacy estimated by a given model and ε as “estimated efficacy.” Finally, we quantify each bias

as the difference in the efficacy estimated by a model including that bias and a model which 

does not include that bias (see Methods for more details of our methods).

Fig. 1: The spatial scales of transmission and trial design. A: Idealized trial design. We 
used a checkerboard pattern to approximate the design of the AWED trial of Wolbachia-infected
mosquitoes to control dengue [7]. ρij represents the amount of time an individual who lives in 
arm i spends in arm j, where i and j can represent either control (c) or treatment (i). b describes 
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the scale of human movement. B: The relationship between the scale of human movement and 
the amount of time individuals spend in clusters of the same type as their home cluster. C: The 
relationship between the reduction in R0 (ε) required to reproduce the observed efficacy in the 
AWED trial and the time people spend in their allocated arm. In this panel and panels E and F, 
the dark blue line corresponds to the observed mean estimated in the AWED trial whereas the 
light blue line and shaded region correspond to the 95% confidence intervals. D: The 
relationship between ε and the estimated efficacy when b = 60 m. The black line shows the 
theoretical relationship between a reduction in R0 and observed efficacy, assuming no mosquito
movement and no human movement between arms. The blue line shows this relationship if we 
include these two factors as well as the effect of transmission coupling. The dark and light blue 
squares indicate the mean and the 95% confidence interval respectively of the observed 
efficacy in the AWED trial and the corresponding reduction in R0. E: The relationship between 
the amount of time people spend in their allocated arm and the estimated efficacy. F: The 
relationship between the size of the clusters and the estimated efficacy. The dashed line 
indicates the estimated efficacy at the baseline cluster size (1000m). In all panels, parameters 
are at their baseline given in Table S1 unless otherwise stated. 

Results

We assumed a checkerboard pattern of control and treatment arms of 1 km2 to 

approximate the design used in the AWED trial, which covered the entire city of Yogyakarta, 

with neighboring areas assigned to one arm or another in an (approximately) alternating pattern 

(Fig. 1A) [7], and assume that individuals are evenly distributed within each cluster such that 

they have no internal spatial structure. The time that humans spend away from their home is 

assumed to follow a Laplace distribution (Fig. 1A, top right), which takes a single parameter, b, 

that we refer to as the scale of human movement. By assuming that individuals are evenly 

distributed within each cluster, we can then estimate the average proportion of time that 

individuals in each trial arm spend in their own arm (ρtt and ρcc) and in the opposite arm (ρtc and 

ρct  － see the Apportionment of time at risk section in Methods for details). Larger values of b 

imply that people spend less time in their allocated arm, and for large values of b individuals 

spend roughly equal amounts of time in both arms (Fig. 1B).

The relationship between the efficacy estimated by the model with all three forms of bias

(the estimated efficacy) and the reduction in R0 (ε) was dependent on the amount of time people

spent in their allocated arm (Fig. 1C)—the less time individuals spent in their allocated arm, the 

higher the reduction in R0 that was needed to recreate the observed efficacy from the AWED 
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trial. If individuals spent less than 83.9% of their time in their allocated arm, it was impossible to 

generate the observed efficacy (77.1%), as that would have implied that ε exceeded 1. 

Assuming that individuals spent 92.9% of their time in their allocated arm (i.e., ρii = 92.9%, 

corresponding to b = 36.9 m  － see the Spatial Scale of Human Movement section in Methods 

for details and justification), we found that the observed efficacy (77.1% [95% CI: 65.3% - 

84.9%]) corresponded to an ε of 49.9% (95% CI: 30.8% - 73.1%) (Fig. 1D, blue line). If we 

instead assumed that there was no movement between trial arms, we observed that much 

smaller values of ε were needed to explain the observed efficacy (6.3% [95% CI: 4.8% - 8.1%]). 

The difference between these estimates provides an indication of the extent of bias introduced 

by assuming that humans and mosquitoes remain in their allocated arms, when they in fact do 

not (Fig. 1D). 

When we fixed ε to the value that reproduces the observed efficacy in the AWED trial 

and increased human movement between arms by increasing b, the estimated efficacy by the 

model accounting for all three forms of bias decreased (Fig. 1E). For example, increasing the 

average distance in one direction between transmission pairs (b) from 36.9 m to 70 m caused a 

relative reduction of 20.0% in estimated efficacy, highlighting the sensitivity of efficacy to the 

spatial scale of human movement. This effect occurs for two reasons: first, as people spend less

time in their allocated arm, the proportion of time that people spend under the intervention 

becomes more similar between arms; and secondly, in the presence of transmission coupling, a

reduction in prevalence in the intervention arm reduces transmission in the control arm more as 

people spend less time in their allocated arm. Relatedly, estimated efficacy depended on the 

dimensions of the trial clusters, which we set to 1 km2 by default (Fig. 1F). When we reduced 

the cluster dimensions to 500 m x 500 m, estimated efficacy dropped from 77.1% to 60.3%, 

representing a 21.8% relative reduction. This effect occurs because, as the cluster dimensions 

are reduced, people spend less time in their home cluster. Hence, the time spent in each trial 

arm approaches parity (i.e., 50%). Increasing cluster dimensions above 1 km2 had somewhat 
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less of an effect on estimated efficacy. For example, increasing the cluster dimensions to 2 km x

2 km resulted in an estimated efficacy of 86.7%, a relative increase of 12.4%.

Our approach enabled us to directly and separately model each of the three potential 

sources of bias: (1) mosquito movement, (2) human movement, and (3) transmission coupling. 

Movement of Wolbachia-infected mosquitoes is modeled by including a time-varying level of 

coverage, and we assume that mosquito movement does not contribute to DENV transmission 

(See Methods - wMel coverage). When we assumed that ε was equal to 49.9%, allowing for 

mosquito movement but not human movement produced an estimated efficacy of 99.1%, 

because there was almost no transmission in the intervention arm in that case (Fig. 2A, Fig. 

S7). If we allowed for both mosquito movement and human movement, we observed a lower 

estimated efficacy of 93.6%. Although there was little transmission in the intervention arm in this

case, individuals residing in the intervention arm could be infected in the control arm. 

Additionally, those assigned to the control arm experienced lower overall risk due to their time 

spent in the intervention arm. When we accounted for transmission coupling between trial arms 

alongside human and mosquito movement, thereby allowing for more transmission in the 

intervention arm, risk was the most similar across the trial arms of all scenarios, leading to the 

lowest estimated efficacy of 77.1% for an ε equal to 49.9%.
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Fig. 2: Sources of bias in efficacy estimates. In both panels, yellow refers to mosquito 
movement, red to human movement, and blue to transmission coupling. A: The relationship 
between the reduction in R0 (ε) and the estimated efficacy for the six possible models. The black
line here is the relationship for a model with no human movement or mosquito movement. 
Where a line has more than one color, it represents the model which includes each of the types 
of bias represented by those colors. The difference between this line and each of the colored 
lines represents the bias introduced by not accounting for the features present in the model 
described by that colored line. B: the contribution of each source of bias to the total bias. Eff(0) 
refers to the estimated efficacy from a model with none of the biases, Eff(h) to the estimated 
efficacy from a model with human movement only, Eff(m) to the estimated efficacy from a model 
with mosquito movement only, Eff(hm) to the estimated efficacy from a model with human and 
mosquito movement, Eff(ht) to the estimated efficacy from a model with human movement and 
transmission coupling, and Eff(hmt) to the estimated efficacy from a model with all three biases. 

We quantified total bias as Eff(hmt) - Eff(0), where Eff(hmt) is the estimated efficacy under the

model with all sources of bias and Eff(0) is the estimated efficacy under the model without human

or mosquito movement. We then computed the difference in the bias produced by pairs of 
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models to decompose overall bias into each of its three sources (Fig. 2B, Fig. S8-9, see 

Methods for details). At the baseline ε of 49.9%, 17.6% of the total bias was attributable to 

mosquito movement, 8.3% to human movement, and 74.1% to transmission coupling. At all 

values of ε, the greatest source of bias was transmission coupling between trial arms. When ε 

was below a value of around 10%, the effective reproduction number at the start of the trial 

exceeded 1 in both arms. This value of ε varied slightly based on the model used (Fig. S8-9). If 

ε was below this critical value, increasing it in the context of coupled transmission reduced 

incidence in the control arm and caused smaller reductions in incidence in the intervention arm 

than if transmission had been uncoupled (Fig. S7, e.g. panels D vs. F). This implies that the bias

introduced by transmission coupling increases as ε increases up to ~10% under our model’s 

parameterization (Fig. 2B). Increasing ε past this point only leads to small reductions in 

incidence in the intervention arm in an uncoupled model, as incidence is already very low. 

Discussion

Our results highlight three sources of bias (human movement, mosquito movement, and 

transmission coupling) that arise in large, cluster-randomized, controlled trials of interventions 

against mosquito-borne diseases, and have implications for how to mitigate these biases. 

Biases arising due to human movement and mosquito movement are typically able to be 

addressed through careful statistical analysis of trial data or in the design of the trial [8]. For 

instance, in the per-protocol analysis of the AWED trial, Utarini et al. accounted for these two 

forms of bias by combining self-reported recent travel and local Wolbachia prevalence into an 

individual-level Wolbachia exposure index [7]. Comparing groups with the highest and lowest 

Wolbachia exposure did not lead to higher efficacy estimates than their primary analysis. 

Another approach to addressing contamination involves describing the effectiveness of the 

intervention at the boundary between clusters using a sigmoid function [16–18]. Our results 

suggest that failure to take steps such as this to account for human and mosquito movement 
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would typically lead to underestimated efficacy, while failure to account for transmission 

coupling would lead to an even greater underestimate, particularly at intermediate reductions in 

R0. 

Bias arising from human and mosquito movement could also be mitigated at the stage of

planning the trial. The classical design to achieve this is the ‘fried-egg’ design, in which a treated

buffer-zone is placed between intervention and control clusters [19]. A more recently proposed 

approach involves excluding a subset of clusters from the trial completely, thereby increasing 

the distance between clusters and leading to disconnected clusters at less risk of contamination 

[20]. While both of these approaches do mitigate the risk of contamination directly, they also 

necessitate a larger trial area and may be logistically infeasible in a trial taking place in a single 

city, as was the case for the AWED trial. Another approach could include reducing the number 

of clusters, but keeping the total area fixed, leading individuals to spend more time in their 

assigned arm and reducing mosquito movement by reducing the boundary between clusters. 

Our results show that the efficacy estimated from cluster-randomized, controlled trials of 

interventions against mosquito-borne diseases is highly sensitive to cluster size (Fig. 1F). Had 

the dimensions of the clusters in the AWED trial been much smaller, then the estimated efficacy

may have been substantially lower. However, having fewer, yet larger clusters would likely 

introduce new biases by making the arms less comparable, which may not be an acceptable 

trade-off. 

While bias due to human and mosquito movement can be mitigated through trial design 

and statistical methods, our results highlight a third source of bias, transmission coupling, that 

requires additional tools to fully address. Accounting for this bias first requires data on the 

spatial distribution of the intervention and on human movement, similar to that used in the 

supplementary analysis of the AWED trial. However, it also requires interfacing these data with 

a dynamical transmission model to account for the fact that, in the presence of movement 

between arms, incidence in each arm depends on prevalence in both arms [21]. Many common 
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trial designs will lead to reduced bias due to transmission coupling  － for instance by allocating 

a greater proportion of the trial area to the control arm, with small intervention clusters situated 

among larger control clusters so that transmission suppression in the intervention arm has less 

of a population-level effect. The ratio of area allotted to treatment and control would depend on 

many factors, including the expected strength of the intervention, the local force of infection, and

logistical constraints such as the size and length of the trial. Utilizing a dynamical model 

synthesizing these factors in the design of a trial could aid in understanding how different 

designs might affect bias due to transmission coupling [21]. More work is needed to understand 

what types of spatial clustering patterns, among other features of trial design, would minimize 

this form of bias. 

Although our modeling approach allowed us to account for different potential sources of 

bias and to attribute the total bias to each of those sources, it has at least four limitations. First, 

our model was deterministic, yet stochasticity could be important for a highly efficacious 

intervention with potential to reduce transmission to very low levels [22]. This simplification 

implies that our estimates are likely conservative, as these effects could increase the bias due 

to transmission coupling if a highly effective intervention increases the probability of 

transmission fadeouts. Second, our simple model does not reflect all of the complexities of 

DENV transmission. For example, we did not account for spatial heterogeneities in transmission

or interactions between serotypes. Accurately quantifying the contribution of these effects to 

bias would require a more detailed model, but the qualitative results would likely be similar. 

Third, we did not calibrate our model to trial data, so incidence in our model may not reflect the 

actual incidence during the trial. However, our aim here was not to precisely quantify bias in the 

AWED trial, but rather to highlight some potential sources of bias in trials of that nature and to 

understand how these biases are influenced by transmission dynamics and human mobility. 

Moreover, our model was calibrated to actual incidence from past years in Yogyakarta, and so 

still reflects transmission typical of that location. It is also worth noting that an earlier version of 

11

21

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

22

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 20, 2022. ; https://doi.org/10.1101/2021.11.19.21266602doi: medRxiv preprint 

https://paperpile.com/c/P9CLhT/emU8O
https://paperpile.com/c/P9CLhT/Pobxc
https://doi.org/10.1101/2021.11.19.21266602
http://creativecommons.org/licenses/by/4.0/


the manuscript, which used a simpler static model based on epidemic attack rate formulae, had 

qualitatively similar findings [23]. Finally, we don’t account for heterogeneity between clusters, 

such as regions of the city with systematically higher mosquito abundance, or greater human 

movement, or within clusters, such as that transmission may be higher at the edge of control 

clusters.

In conclusion, without accounting for human movement, mosquito movement, and 

transmission coupling, the efficacy of Wolbachia-infected mosquitoes as an intervention to 

control dengue is likely to be underestimated. As the estimate of efficacy in the AWED trial was 

already very high (77.1% [95% CI: 65.3% - 84.9%]) [7] and, as we show, likely underestimated, 

Wolbachia-infected mosquitoes have potential to be a game-changing tool in the fight against 

dengue. Even as vaccines against dengue become available, a variety of vector control 

approaches are likely to remain key tools in the fight against dengue [2,14]. Although we 

focused our study on a trial of Wolbachia-infected mosquitoes, our findings are applicable to any

efficacy trial of an intervention that has the potential to contaminate the control arm, such as 

gene drive mosquitoes or ivermectin as interventions against malaria [24,25]. As trials of these 

interventions continue, it will be important to learn what lessons we can from transmission 

dynamic modeling when designing and interpreting future trials to ensure that we understand 

the true promise of these interventions.

Methods

Transmission model

We simulated DENV transmission using a four-serotype, two-patch seasonal SIR model. In this 

model, fully susceptible individuals may become infected with any of the four serotypes. Once 

infected, individuals have an exponentially-distributed period of cross-immunity to all other 

serotypes with a mean of two years. Individuals with prior exposure to one or more serotypes 

but that are not currently in their period of cross-immunity are immune to the serotypes they 
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have previously been infected with. We implicitly assume that all four serotypes circulate in 

equal proportions. Births and deaths are modeled so that the population size remains constant, 

and the mortality rate is the reciprocal of the mean life expectancy, taken from the United 

Nations World Population Prospects database [26]. The transmission parameter, β(t), varies 

seasonally according to a sine curve with a period equal to one year. The model equations are 

as follows, with parameter definitions and values given in Tables S1 and S2, and the model 

diagram is shown in Fig. S1. 

d S0
dt

=μ (1−S0)−Ρ×(1−ϵ C( t)) β (t)
I
N

S0

d I 1
dt

=P×(1−ϵ C (t )) β(t )
I
N

S0−(γ+μ)I 1

d R1
dt

=γ I 1−(ω+μ)R1

d S1
dt

=ωR1−Ρ×(1−ϵ C (t )) β( t)
3
4

I
N

S1−μ S1

d I 2
dt

=P×(1−ϵ C (t)) β( t)
3
4

I
N

S1−(γ+μ)I 2

d R2
dt

=γ I 2−(ω+μ)R2

d S2
dt

=ωR2−Ρ×(1−ϵ C(t )) β (t)
1
2

I
N

S2−μ S2

d I 3
dt

=P×(1−ϵ C (t )) β( t)
1
2

I
N

S2−(γ +μ)I 3

d R3
dt

=γ I 3−(ω+μ)R3

d S3
dt

=ωR3−Ρ×(1−ϵ C( t)) β (t)
1
4

I
N

S3−μS3

d I 4
dt

=P×(1−ϵC (t))β (t)
1
4

I
N

S3−(γ+μ) I 4
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d R4
dt

=γ I 4−μ R4

I=I 1+ I 2+ I3+ I 4

β (t)=β0(1+ βasin(
2π (θ+t)
365.25

))  (S1)

Table S1. Model parameter values 

Symb
ol

Definition Value Source

μ Mortality rate (day-1) 1/(71.4 x 365.25) UN World 
Population 
Database [26]

ϵ Transmission reduction due to Wolbachia varied N/a

Ρ A 2x2 matrix describing the proportion of 
time people spend in their home and non-
home patches

varied See Model 
parameterization 
section

C (t) A 1x2 vector describing the time-varying 
coverage of Wolbachia in each patch

See Fig. S6 Utarini et al. [7] 

γ Recovery rate (day-1) 1/7 Burattini et al. [27]

ω Waning rate of cross-immunity (day-1) 1/(2 x 365.25) Reich et al. [28]

R0 Basic reproduction number 3.21 See Model 
parameterization 
section

α Amplitude in rate of effective contact calibrated
bounds: (0, 0.2)
estimate: 0.0588

N/a

θ Offset in seasonality (days) calibrated
bounds: (0, 180)
estimate: 77.8 

N/a

υ Proportion of infections reported as cases calibrated
bounds: (0.01, 0.2)
estimate: 0.0601

N/a

Table S2. All state variables are 1x2 vectors describing the number in each of the two patches. 
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Symbol Definition

Si Number of susceptible individuals with i prior infections

I i Number of infectious individuals with i prior infections

Ri Number of immune individuals with i prior infections; individuals in this group 
are immune to all serotypes until their cross-immunity wanes

Fig. S1: Model diagram. The superscripts refer to the number of times individuals in that 

compartment have been infected. Susceptible individuals (Si) experience a reduced force of 

infection according to the number of prior infections they have experienced. We assume all 

serotypes circulate equally. Following infection, individuals experience a temporary period of 

immunity to all serotypes (Ri). Mortality occurs at an equal rate from all compartments and is not
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shown.

Transmission model calibration

We calibrated the model to data on reported cases of dengue fever over a ten year period [29] 

(Fig. S2). We first averaged the monthly number of reported cases, to capture the average 

dynamics across the period. We ran the model for 100 years to reduce the influence of initial 

conditions, and then fitted model years 101-110 to the 10 average years from the data using 

maximum likelihood. We used a Poisson likelihood function,

L(xmodel , ν∣xdata)=
(xmodel ν )

xdatae−xmodel ν

xdata !
, (S2)

where xmodel is the number of infections per month predicted by the model and xdatais the number

of cases per month in the data.

Fig. S2: Model calibration. Calibration of seasonal SIR model to data on dengue cases from 

Yogyakarta. The faint red line and points show the data on the monthly number of cases from 

2006 to 2017 in Yogyakarta, taken from Indriani et al. [29]. The solid red lines and points show 

this data average by month. The gray polygon shows the model calibrated to the average 

number of monthly cases.
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Efficacy models

Let ε represent the effectiveness of the intervention, defined as the proportional reduction in the 

pre-intervention basic reproduction number, R0, when the intervention is applied at full coverage 

in a treatment cluster. Hence, in the absence of human or mosquito movement,

R0 , t=(1−ε )R0 (S3)

R0 , c=R0. (S4)

Our interest is in quantifying the infection attack rate (IAR), , within each cluster during a trial.  𝜋

To do this, we simulate the model for two years, and calculate the infection attack rate in each 

arm during that time. We estimate the initial proportion in each compartment by first simulating 

the model for 100 years. We do this with six different models that include combinations of three 

different types of bias: human movement between arms, mosquito movement between arms, 

and transmission coupling between arms. The six resulting models are described below (note 

that transmission coupling can only occur in the presence of human movement). Each model is 

defined by different values for P and C(t).

1. No bias

In the absence of contamination from human movement or mosquito movement between arms, 

we can essentially use equations (S3) and (S4) to describe the reproduction in each arm. This 

amounts to setting C(t) = (1, 0) and P = I, the identity matrix.

2. Bias from mosquito movement

We represent the coverage of the intervention—i.e., the proportion of Wolbachia-infected 

17

33

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

34

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 20, 2022. ; https://doi.org/10.1101/2021.11.19.21266602doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.19.21266602
http://creativecommons.org/licenses/by/4.0/


mosquitoes—in the two arms with Ct(t) and Cc(t). In the case of mosquito movement, there may 

be non-zero coverage of intervention in the control arm (i.e., Cc>0), and less than 100% 

coverage in the treatment arm (i.e., Ct < 1). Hence we set C(t) = (Cc(t), Ct(t)) and P = I.

Here we are assuming that movement of mosquitoes between trial arms does not 

directly contribute to DENV transmission via movement of DENV-infected mosquitoes. This 

discrepancy can be reconciled by the fact that the spread of dengue virus occurs within a single 

mosquito generation, whereas the spread of Wolbachia occurs over the course of multiple 

generations.

3. Bias from human movement

Let ϱij represent the ijth element of P,—i.e., the proportion of the total time at risk that a resident 

of cluster i spends in cluster j. To account for human movement, but no transmission coupling, 

we set C(t) = (ϱct, ϱtt) and P = I. This is because in this scenario, the wMel coverage in the 

treatment arm is 1, and in the control arm is 0, so the experienced wMel exposure reduces to 

the time spent in the treatment arm. 

4. Bias from human movement and mosquito movement

We now have both human and mosquito movement, so we set 

C(t) = (ϱccCc(t) + ϱctCt(t), ϱtcCc(t) + ϱttCt(t)), and P = I. Note that, by definition, 𝜚tt + 𝜚tc = 1 and 𝜚cc +

𝜚ct = 1.

5. Bias from human movement and transmission coupling

Thus far, we have assumed that transmission in each arm is only a function of prevalence in 

that arm, and not in the other. To relax this assumption, we couple transmission between the 

two arms by varying P. In the presence of human movement but not mosquito movement, we 

set C = (0, 1) and P = (ϱcc, ϱct; ϱtc, ϱtt).
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6. Bias from human movement, mosquito movement, and transmission coupling

Finally, we include all three forms of bias by again setting P = (ϱcc, ϱct; ϱtc, ϱtt), and 

C = (Cc(t), Ct(t)).

Efficacy calculation

The ratio of the IARs in the treatment and control clusters is an infection risk ratio. However, the 

AWED trial based their efficacy calculations upon an odds ratio [7], with symptomatic, 

virologically-confirmed dengue as the end point. That is, efficacy in the trial was computed as 1-

ptnc/pcnt, where pi and ni represent enrolled test-positives and test-negatives, respectively, in trial

arm i. To generate a comparable quantity, we computed the efficacy according to model x as 

Ef f (x)
=1−

π (x)
t

π(x)
c

1−π( x)
c

1−π (x)
t

, (S5)

where 𝜋(x)
i is the infection attack rate in trial arm i {∈ c,t} for model x {∈ 0,h,m,hm,ht,hmt}. Here, 

we are assuming that the ratio of infections to enrolled test-positives does not differ between 

arms (i.e., pi=kp𝜋i for i {∈ c,t}) and similarly the ratio of those uninfected to enrolled test-negatives

also does not differ between arms (i.e., ni=kn(1-𝜋i) for i {∈ c,t}). If either of these assumptions 

were violated, for instance if the intervention affected either the proportion of dengue infections 

that were symptomatic, then our estimate of efficacy would be less comparable to the estimate 

used in the AWED trial.

Bias calculation

We calculated the bias due to a particular source as the difference in the efficacy between a 

model with that source of bias and a model without that source of bias. As biases appear in 
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multiple models, this led to three ways to embed the models, and three corresponding ways to 

quantify each bias. The three embeddings are: A) no bias → mosquito movement → human 

movement + mosquito movement → full model; B) no bias → human movement → human 

movement + mosquito movement → full model; and C) no bias → human movement → human 

movement + transmission coupling → full model. The difference between efficacy estimates for 

adjacent models in an embedding will lead to an expression for the bias which differs between 

the two models. Hence, the three possible ways to calculate each of the three sources of bias 

yields

bia s(m)

A=Ef f (m)
−Ef f (0) (S6A)

bia s(m)

B=Ef f (hm)
−Ef f (h) (S6B)

bia s(m)

C=Ef f (hmt)
−Ef f (ht ) (S6C)

bia s(h)A=Ef f (hm )
−Ef f (m ) (S7A)

bia s(h)B=Ef f (h)
−Ef f (0) (S7B)

bia s(h)C=Ef f (h)
−Ef f (0)  (S7C)

bia s(t )A=Ef f (hmt)
−Ef f (hm)  (S8A)

bia s(t )B=Ef f (hmt)
−Ef f (hm)  (S8B)

bia s(t )C=Ef f (ht )
−Ef f (h). (S8C)

We then calculate the average total bias caused by each source of bias as

bia s(i)=
∑

j∈{A ,B , C }

bia s(i)j

3
, (S9)

where i {∈ h,m,t}. Note that bias(t)
A=bias(t)

B and bias(h)
B=bias(h)

C, but it is necessary to include each 
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as a separate term so that each of the three model embeddings is included equally.

Model Parameterization 

Apportionment of Time at Risk

We considered a checkerboard arrangement for the treatment and control clusters in a trial 

across a two-dimensional landscape (Fig. 1A, Fig. S10). Under this scenario, we assume that 

the population density per unit area is constant and that transmission potential, as captured by 

R0, is homogeneous across the landscape prior to initiation of the trial.

At the core of this derivation is the assumption that the location where an individual j 

resides who was infected by an individual i is determined by an isotropic transmission kernel,

k (|x i−x j|,|y i− y j|), where x and y are the spatial coordinates for the residence of each of i and 

j. We use a Laplace distribution with marginal density functions for each of the x and y 

coordinates, 

k (x j∣μ=x i , b)=
1
2b

e
−|x j− μ|

b  (S10)

k ( y j∣μ= y i , b)=
1
2b

e
−|y j−μ|

b . (S11)

where  is the location parameter and  𝜇 b is the scale parameter [30]. The scale parameter b is 

equal to the average distance in one direction between the locations where infector and infectee

reside. 

Under the checkerboard arrangement, we considered alternating squares of width δ 

corresponding to treatment and control clusters within a contiguous urban area (Fig. 1A). 

Although any such area would have borders in reality, we ignored any possible edges effects 

and assumed that the extent of interactions between squares of type t and c in the interior of the
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checkerboard provide a suitable characterization of overall interaction between individuals 

residing in t and c, as summarized by ρtt and ρcc. Because the area and arrangement of t and c 

squares are identical, ρtt = ρcc and ρtc = ρct (Fig. 1A). 

We approach this problem by first calculating the proportion of time at risk that an 

individual i residing on a line within in an interval of width 𝛿=𝜇r-𝜇l experiences in an adjacent 

interval of width Δ. Let the former interval span [𝜇l,𝜇r] and the latter interval span [𝜇r,𝜇r+Δ]. If i 

resides specifically at , then the proportion of its time at risk in the other interval is  𝜇

F (μr+Δ∣μ ,b)−F (μr∣μ ,b). (S12)

where F(·) is the Laplace distribution function. To average across all individuals i, we can 

integrate according to 

Aδ , Δ=
1
δ∫μl

μr

(F(μr+Δ∣μ ,b)−F (μr∣μ ,b))d μ. (S13)

which gives the proportion of time in the interval of length Δ for an individual who resides in the 

interval of length . Given that the Laplace distribution function is  𝛿 F(x ,b|𝜇 )=1-½exp(-(x-𝜇)/b) 

when x >𝜇 , eqn. (S25) evaluates to 

Aδ , Δ=
b
2δ

(1−e−δ /b
−e−Δ/b

+e−(δ+Δ)/b
). (S26)

We can quantify the proportion of time at risk in the interval of width  for individuals who reside  𝛿

there as 
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Aδ=1−2 lim
Δ→∞

A δ , Δ=1−
b
δ
(1−e−δ /b

). (S14)

We also need to calculate the time at risk in a non-adjacent interval of width 𝛿3 whose edge is 

spaced distance 𝛿2 away from the nearest edge of the interval where the individual resides, 

which has width 𝛿1. Applying similar reasoning as in eq. (S25), we obtain

Aδ 1 ,δ2 , δ3
=

b
2δ1

(e−δ2 /b−e−(δ1+ δ2)/b−e−(δ2+δ3)/b+e−(δ1+ δ2+δ3 )/b). (S15)

We can calculate the proportion of time spent in like squares by applying the probabilities used 

to calculate the proportions of time at risk for residents who live under treatment or not. Going 

out three layers from a focal square (Fig. S10), the proportion of time spent in like squares is 

B=A δ
2
+4 A δ ,δ

2
+4 Aδ ,δ , δ Aδ+4 A δ , δ , δ

2
+8 A δ , 2δ ,δ A δ , δ+4 Aδ , 2δ ,δ

2 , (S16)

and the proportion of time spent in unlike squares is 

C=4 Aδ , δ A δ+8 Aδ ,δ , δ A δ , δ+4 Aδ ,2δ , δ Aδ+8 Aδ ,2δ , δ A δ ,δ ,δ. (S17)

The total proportion of time under treatment or not is then 

ρcc=ρtt=
B

B+C
(S18)

ρtc=ρct=
C

B+C
. (S19)
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Hence, for a checkerboard arrangement of clusters, the proportion of time which each individual

spends in each arm of the trial is uniquely determined by the width of each cluster (δ) and the 

scale of human movement (b).

Calculation of  Initial Susceptibility, force of infection, and R0

To obtain an estimate of initial susceptibility, we followed ten Bosch et al. [31] and calculated the

proportion of the population exposed to n serotypes, ∀n {0,1,2,3,4}, as a function of age. ∈

Following ten Bosch et al. [31], we defined ei(a) as the proportion of individuals of age a that 

have been exposed to i serotypes and ri(a) as the proportion of individuals of age a experiencing

temporary heterologous immunity following exposure to i serotypes. The dynamics of how 

individuals progress through these classes as they age follows 

d e0
da

=−4 Λe0 (S20)

dr i

da i=1,..,4

=(4−(i−1))Λe(i−1)−σ r i (S21)

d ei
da i=1,..,4

=σ ri−(4−i) Λe i. (S22)

In eqs. (S33-S35), Λ = 0.0457 is the force of infection, and σ  is the rate at which individuals lose

heterologous immunity, which we set to 0.5/yr [31]. 

We computed the proportion of the population in Yogyakarta, Indonesia that is of age a 

using estimates from the United Nations World Population Prospects database [32] and 

computed the proportion of the population that is susceptible to their (i+1)th infection as 

Ei=∑
a

( p(a)e i(a)). (S23)

24

47

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

48

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 20, 2022. ; https://doi.org/10.1101/2021.11.19.21266602doi: medRxiv preprint 

https://paperpile.com/c/P9CLhT/dcfE
https://paperpile.com/c/P9CLhT/463od
https://paperpile.com/c/P9CLhT/463od
https://paperpile.com/c/P9CLhT/463od
https://doi.org/10.1101/2021.11.19.21266602
http://creativecommons.org/licenses/by/4.0/


It follows that initial susceptibility is equal to 

S '=E0+
3
4
E1+

1
2
E2+

1
4
E3, (S24)

provided that the force of infection for each serotype has been constant over time. For the 

assumed values of Λ and σ, S’ = 0.341 for Yogyakarta, Indonesia. 

We used data on seropositivity by age from Yogyakarta [29] to estimate the mean 

annual force of infection using the above catalytic model (Fig. S3). This led to an estimate of the

mean annual per-serotype force of infection of 0.0457.

25

49

536

537

538

539

540

541

542

543

544

545

50

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 20, 2022. ; https://doi.org/10.1101/2021.11.19.21266602doi: medRxiv preprint 

https://paperpile.com/c/P9CLhT/vOuk
https://doi.org/10.1101/2021.11.19.21266602
http://creativecommons.org/licenses/by/4.0/


Fig. S3: Force of infection estimation. The circles show the proportion of individuals that are 

seropositive by age group in Yogyakarta, and the thin vertical lines show the 95% binomial 

confidence intervals, both from Indriani et al. [29]. The thick black line shows the proportion that 

would be expected to be seropositive according to the catalytic model with a per-serotype force 

of infection of 0.0457.

To estimate R0 from Λ and S’, we use the formula:
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R0=
log (S f )− log (S ' )

S f−S '
, (S25)

where Sf is the proportion susceptible after an outbreak. Here we estimate R0 based on one 

season’s transmission, i.e., Sf=S ' exp(−4 Λ), yielding R0 = 3.21. We incorporate this estimate 

of R0 into the transmission model by assuming that the mean value of β(t) (i.e. β0) is related to 

R0 by β0=R0 γ, i.e. we assume that R0 represents the number of secondary infections in a fully 

susceptible population in the absence of seasonality. It is likely that this leads to an 

overestimate of β0, though our model still accurately recreates the typical epidemic peaks and 

troughs of Yogyakarta (Fig. S2).

Spatial Scale of Human Movement

Our calculations of the apportionment of time at risk depend upon a value of b, the spatial scale 

of human movement, a quantity that is challenging to parameterize. To do this, we first estimate 

the relative risk (RR) of 100% wMel coverage compared to 0% wMel coverage, based on the 

per-protocol analysis in Utarini et al. In that analysis, the authors estimated a weighted wMel 

exposure level based on human movement diaries and local wMel frequency over time. This is 

essentially the product of the wMel frequency in a location and the amount of time an individual 

spent there, and then summed over all of the locations at which that individual spent time. They 

then binned individuals into five equal width groups based on their exposure index and 

calculated the RR of infection compared to the lowest exposure group (Fig. S4). To estimate the

RR of 100% exposure compared to 0%, we fit a logistic curve to the binned RR values (using 

the midpoints of each bin) and calculate the RR of 100% compared to 0%. This yields a RR of 

0.18, or equivalently an efficacy of 82%.
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Fig. S4. Efficacy adjusted for human movement. Circles and associated confidence intervals

show the relative risk at different levels of the wMel exposure index compared to the [0, 0.2) 

group, according to the per-protocol analysis in Utarini et al. [7]. The horizontal red lines show 

the relative risk from the intention-to-treat analysis in the same paper. The dashed horizontal 

indicates a relative risk of 1. The black line indicates a logistic curve fit to the estimates of 

relative risk from the per-protocol analysis.
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To inform our selection of b, we compared the model with all of the biases included to 

the one with only human movement and transmission coupling. We then selected a value of b 

which enabled us to select a single value of ε that would lead to 77% efficacy in the full model, 

and 82% efficacy in the model with human movement and transmission coupling (Fig. S5). This 

yielded a value of b=36.9m, corresponding to ρtt=ρcc=0.929 and ρtc=ρct=0.071 for the 

checkerboard arrangement. 
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Fig. S5: Estimation of scale of human movement. 

wMel coverage

When modeling mosquito movement between trial arms, we use data on the time-varying wMel 

coverage in each trial arm from the AWED trial [7]. We average across clusters within each arm 

to find the average coverage over time. As we don’t explicitly model mosquitoes or their 

movement, these averaged time series are then used directly in the model. They are shown in 

Fig. S6 and are represented in the model by C(t) = (Cc(t), Ct(t)), where Cc(t) is given in the left 

panel and Ct(t)  in the right. When mosquito movement is not modeled, C(t) = (0, 1), for all t.

Fig. S6. wMel frequency in the AWED trial [7]. Each thin gray line shows the wMel frequency 

over time in one of the treatment (A) or control (B) clusters. The red line and points show the 

average of these, which is what was used in the model. 
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Supplementary Figures

Fig. S7: Infection attack rates for each of the six models, delineated by control and 
intervention arms.
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Fig. S8: The total bias introduced by each of the three biases. These biases are calculated 
by subtracting the efficacy of a model with that bias from a model without it, and as biases 
appear in multiple models there are three possible ways to quantify each bias. These different 
ways are shown with different line types. For transmission coupling and human movement, two 
of the ways are equivalent and so these are shown with a thicker line. 
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Fig. S9: The contribution of each source of bias to the total bias. Each panel shows a 
different way of calculating the contribution due to that source of bias, which is calculated as the
difference in efficacy of a model without that bias and a model with that bias. This can be 
thought of as embedding the models, and subtracting adjacent pairs of models, so that the sum 
of each pair of models is equal to the total bias. The embeddings in each panel are: A: no 
bias→mosquito movement→human movement + mosquito movement→full model. B: no 
bias→human movement→human movement + mosquito movement→full model. C: no 

36

71

706
707
708
709
710
711
712
713

72

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 20, 2022. ; https://doi.org/10.1101/2021.11.19.21266602doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.19.21266602
http://creativecommons.org/licenses/by/4.0/


bias→human movement→human movement + transmission coupling→full model.

Fig. S10: Diagram of the checkerboard arrangement. Cell coloring refers to whether or not 
someone is the treatment or control cluster. In this case, the central cluster is an individual’s 
home cluster. Ai describes the proportion of time someone spends in a cluster i clusters from 
their home cluster in one direction. AiAj is then the proportion of time someone spends in a 
cluster i clusters away in one direction, and j in the other.
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