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Abstract 
 

The amount of time and resources invested in bringing novel therapeutics to 

market has increased year over year with fewer successful treatments reaching 

patients. In the lifecycle of drug development, the clinical phase is a major contributor to 

this decreasing efficiency in the development of clinical trials. One major barrier to the 

successful execution of a randomized control trial (RCT) is the attrition of patients who 

no longer participate in a trial either following enrollment or randomization. To address 

this problem, we have assembled a unique dataset by integrating multiple public 

databases including ClinicalTrials.gov and Aggregate Analysis of ClincalTrials.gov 

(AACT) to assemble a trial sponsor-independent dataset. This data spans 20 years of 

clinical trials and over 1 million patients (3,175 cohorts consisting of 1,020,085 patients 

and 79 curated features) in the respiratory domain and enabled a data-driven approach 

to identify top features influencing patient attrition in a trial. Top Features included 

Duration of Trial, Duration of Treatment, Indication, and Number of Adverse Events. We 

evaluated multiple machine learning models and found the best performance on the 

Test Set with Random Forest (Test subset: n=637 cohorts; RMSE 6.64). We envisage 

that our work will enable clinical trial sponsors to optimize trial run time by better 

anticipating and correcting for potential patient attrition using patient-centric strategies to 

improve patient engagement, thus enabling new therapies to be delivered to patients 

more quickly.  

 
Introduction 
 

Drug development has become more costly with fewer successful new 

treatments brought to market year-after-year with one major contributor being the 

increasing time taken to complete clinical trials necessary to prove efficacy (Dickson & 

Gagnon, 2004; Scannell, Blanckley, Boldon, & Warrington, 2012). Large, randomized 

control trials (RCTs) in the clinical setting are complex endeavors that face many 

challenges to successful completion and determination of efficacy for a therapeutic 
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agent. In addition to the efficacy of the agent being evaluated, as shown in Figure 1 

successful completion of RCTs faces depend on many variables, including patient 

recruitment and patient retention that can delay the trial start, prolong the trial duration 

and result in failure to ascertain efficacy for the desired indication. (Stefan Harrer, Pratik 

Shah, Bhavna Antony, & Hu, 2019). 

 Patient attrition, also referred to as dropout or patient withdrawal, occurs when 

patients enrolled in a clinical trial either withdraw or are lost to follow-up by the clinical 

site and trial sponsor. Attrition can occur before trial randomization or after patients are 

randomized with the latter case having downstream effects that could lead to bias in trial 

populations where there is an interaction between a subpopulation and the treatment or 

protocol (Bell, Kenward, Fairclough, & Horton, 2013). Bias in trials can result in missing 

data and lead to failure to provide efficacy due to an insufficiently powered study, as has 

occurred in a few major cases. In one example from respiratory trial, COPD patients 

assigned to the placebo group withdrew due to an increased rate of adverse events 

(Burge et al., 2000; Jarad, Wedzicha, Burge, & Calverley, 1999). 

Observed attrition rates in trials vary by indication, agent and trial protocol and 

can range up to 67% in the case of placebo groups in antipsychotic trials (Khan, Khan, 

Leventhal, & Brown, 2001). One review of dropout rates in trials published in leading 

journals found that 18% of trials surveyed had patient dropout rates above 20% (Wood, 

White, & Thompson, 2004). Drivers of attrition in previous analyses of clinical trials have 

been found to be specific to indication, population, quality of medical care and 

socioeconomic conditions. As one example, age of caretaker was one of the strongest 

observed predictors of patient dropout in pediatric asthma trials (Zebracki et al., 2003). 

Variability in patient attrition for a given trial context is poorly understood and it would be 

ideal for clinical trial sponsors to utilize a data-driven approach with past clinical trial 

data from different indications leveraged with techniques in the field of machine 

learning.  

 Recent years have seen rapid advances in machine learning and a general 

eagerness to adopt these methods in new domains, particularly in the clinical trials and 

biomedical space (Shah et al., 2019). Precision medicine in cardiology is being enabled 

through new applications of existing algorithms to imaging data and patient stratification 
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(Johnson et al., 2017; Johnson et al., 2018). Recent work has even demonstrated 

automated interpretation of echocardiograms, raising the possibility of reducing clinician 

burden when interpreting this type of data (Ghorbani et al., 2020). Other efforts have 

developed imaging algorithms that can classify skin cancer with dermatologist-level 

performance and predict non-small-cell lung cancer (NSCLC) mutations from 

histopathological slides (Coudray et al., 2018). Machine learning models have also been 

developed to predict patient discharge diagnosis from electronic health record (EHR) 

data and leverage natural language processing (NLP) to interpret EHR-based radiology 

reports to predict oncologic outcomes (Kehl et al., 2019; Rajkomar et al., 2018). Could 

machine learning methodology be applied to the problem of patient dropout to yield 

clinical insight or improve trial optimization? 

 We propose a data-driven approach (see Figure 1) to addressing the problem of 

patient attrition using machine learning algorithms trained on publicly available industry 

sponsor-agnostic clinical trial data from the Aggregate Analysis of ClinicalTrials.gov 

(AACT) database sponsored by the Clinical Trials Transformation Initiative (CTT) 

(Alexander, Corrigan-Curay, & McClellan, 2018; Harrer, Shah, Antony, & Hu, 2019; 

Zarin, Tse, Williams, Califf, & Ide, 2011). The AACT database gives us the opportunity 

to investigate drivers of patient attrition in a sponsor agnostic manner and for the work 

presented in this study we have focused on respiratory studies. 

 
Results 
 
Assembly and characterization of a Respiratory Clinical Trials Dataset using 
public data from AACT 
 

We first investigated the general characteristics of patient withdrawal in the 

AACT dataset in a sponsor agnostic manner across therapeutic areas (Figure 2A). The 

AACT database collects both aggregate data on individual clinical trials and also 

observations of deidentified, aggregated patient-level data associated with a given trial 

in the cohort or sub-group level. This observation-level data includes demographic 

information and adverse events. The largest fraction of patient drop-withdrawals in 

AACT was found in oncology trials with a 61% dropout rate observed followed by Renal 
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trials (41%), Metabolic (31%), Immune (31%), Cardiovascular (23%) and Respiratory 

trials (23%). For our initial analysis, we chose to focus on building machine learning 

models of Respiratory trial patient attrition as, based on the prior literature of clinical 

trials in this therapeutic area, this area has been less well characterized. As such, we 

selected a cohort of cross-sponsor and cross-indication respiratory trials, see Figure 3A 

for the distribution of indications in this cohort. Overall, this dataset consisted of 

observations from 1,020,085 patients from 3,175 cohorts in 1,325 respiratory clinical 

trials. 

 As we focused on respiratory trials, we next examined the distribution of reasons 

that a patient dropped out or was lost to follow-up for a trial (Figure 2B). Most frequently 

attributed reasons to a patient dropping out included “Unknown”, “Subject”, “Site” and 

“Adverse Event”. Less frequently observed reasons included “Deviation” and “None.” 

 Lastly, we examined the distribution of indications within the Respiratory 

therapeutic area as this is the subset of AACT data that we considered for building a 

dataset from AACT and training machine learning models (Figure 2C). The remaining 

indications in the dataset with percentage of patients dropped were Pulmonary Arterial 

Hypertension (24%), Asthma (22%), COPD (16%), Allergic Rhinitis (15%), Influenza 

(15%), Other (10%), Fibrosis (9%) and Pneumonia (4%). 

 We next examined the distribution of trials in our respiratory trials dataset by 

indication (Figure 2). Trials selected from the AACT dataset over the past 20 years in 

the respiratory TA included 1,325 Clinical trials consisting of 3,175 cohorts. The majority 

of trials used for further analysis were for indications including Infectious Diseases (805 

trials), COPD (737) and Asthma (614) as detailed in Figure 3A. The dataset assembled 

consisted of cohorts predominantly in Phase II (1193 cohorts) and Phase III (1565 

cohorts) trials with 525 patient cohorts in Phase 4 respiratory trials included (Figure 3B). 

Of these patient cohorts, 89% were in trials run by a sponsor (Figure 3C). For a detailed 

overview of the assembly of the respiratory trials dataset, please see the end-to-end 

project workflow (Figure 4). 

 

Characterization of Features from AACT Respiratory Clinical Trials Dataset using 
for Machine Learning 
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A total of 79 features were extracted from the dataset (Supplemental Table 1). 

Baseline Cohort-level Features included the cohort size, Female Fraction, Age Mean, 

African American Fraction, Asian Fraction and Native Fraction (includes American 

Indian or Alaska native and native Hawaiian or other pacific islander). Trial-level 

features included Disease, Pediatric Status, Socioeconomic Status, Trial Length, 

Treatment Length, Trial Phase and Industry Role. Adverse Events at the Cohort-Level 

include AE Severe, AE Other and 65 Adverse Event Features (see Top 15 AEs by 

frequency in Figure 5). The top 2 features, Duration of Trial and Duration of Treatment, 

were examined across indications and found to influence patient attrition variably across 

indication (Supplemental Figure 1). We noted that different disease indications have 

different patient attrition rate across clinical trials respiratory therapeutic area 

(Supplemental Figure 2 and 3). Fibrosis (18.99%), Sleep apnea (18.19) and cancer 

(16.21) trials were the indications with average dropout rate.     

Recursive Feature Elimination (RFE) was performed to determine feature 

importance (Figure 6A). To determine the optimal number of features, RFE was 

performed with 10-fold cross validation and the optimal number of features evaluated by 

Root Mean Square Error (RMSE; Figure 6B) and Mean Absolute Error (MAE; Figure 

6C). Based on this analysis, the top 8 features by RFE ranking were included in further 

analysis. These top features include Duration of Trial, Duration of Treatment, Disease, 

Serious AE Total, N Total, GDP Weighted, African American Fraction and Age Mean. 

 

Training of Machine Learning Models and Selection of Best Model for Predicting 
Clinical Trial Attrition 
 

Following selection of features, multiple machine learning models were trained to 

predict patient attrition (Table 1). Random Forest was the best performing model with a 

RMSE of 6.64 (see Table 1 for metrics for all models examined.) Other models tested 

included by order of performance Super Learner (an ensemble method unique to the 

SuperLearner R package, see Methods), Support Vector Machines, Bagging 
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Regression, Bayesian Generalized Linear Models, Generalized Linear Models, Ordinary 

Least Squares and Generalized Linear Models via penalized maximum likelihood. 

For thoroughness, we examined model performance of the top model on the Test 

set to determine that the top 8 Features determined by RFE generated optimal 

performance on the test set as well. In this context, Random Forest performance on the 

test set was evaluated by RMSE (Table 1). Model performance of Random Forest, the 

top model from SuperLearner, using the top 8 Features demonstrated that Random 

Forest was the optimal algorithm for predicting patient attrition with a RMSE of 6.25 

(Table 2). 

 
Discussion 
 

This work assembled the first large-scale sponsor independent clinical trial 

dataset to develop a data-driven approach to elucidate the drivers of patient attrition in 

clinical trials. The advantage of clinical trial sponsors adopting this approach to 

modeling is that the development and deployment of such algorithms enable clinical trial 

sponsors to evaluate dropout rates for a given therapeutic area across the entire 

industry for a period of time without bias. Interestingly, features identified in this work 

correspond well to drivers of enrollment identified in prior work. 

 Patient attrition can occur pre-randomization (early attrition) and post-

randomization with the setting of attrition having different impacts on the trial. Early 

attrition will result in a delay of randomization and trial start until sufficient numbers of 

patients are obtained to begin the trial. Late attrition can disrupt study outcomes through 

loss of statistical power, missing data and introduces the possibility of bias, either 

between treatment cohorts or through loss of heterogeneity in the participants for one 

group or another (Bell et al., 2013; Leon, Demirtas, & Hedeker, 2007). An excellent 

example of such bias from differential withdrawal has been observed in COPD placebo 

groups where the treatment group may experience symptomatic benefits (Vestbo et al., 

2011). In the respiratory therapeutic area, this has been of particular issue for large 

COPD trials as the placebo cohorts were typically treated with corticosteroids prior to 

the trial (Calverley & Rennard, 2007). 
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 One analysis of early versus late dropout reasons in two oncology studies found 

differential factors contributed to dropout based on when the patient withdrew (Siddiqi, 

Sikorskii, Given, & Given, 2008). Factors found to contribute to the early phase included 

minority race, screening duration and education where symptom severity and quality of 

life became factors driving late dropout. Another study of 18 oncology trials found that 

features predicting attrition included study duration, minority race, education and 

adverse events (Hui, Glitza, Chisholm, Yennu, & Bruera, 2013). Unfortunately, the 

available data for our analysis did not have educational or quality of life features and did 

not distinguish between early and late attrition. We did, however, find that both minority 

race and adverse events were top-ranked features used in the final and highest-

performing model. It is likely that due to the loss of resolution on early relative to late 

trial attrition resulted in a feature set and model predicting both. 

 More interestingly is the fact that this work was able to demonstrate a performant 

model for patient attrition across trials and sponsors without a resolution on the trial 

sites. Prior work has identified clinical trial site performance as a major predictor of 

patient attrition, with wealthier countries demonstrating higher rates of dropout 

(Gheorghiade et al., 2014; Greene et al., 2018). Although this relationship has not been 

as explicit in respiratory studies as in recent heart failure trials, it is possible that the 

identification of country income-level as demonstrated by weighted Gross Domestic 

Product per capita (GDP PPP) is capturing this effect in a novel therapeutic area based 

on 20 years of sponsor agnostic clinical trial data. 

The current approach to addressing attrition adopted by most sponsors is to 

inflate the initial cohort size using data from previous trials (Little et al., 2012). A more 

comprehensive data-driven approach using machine learning models trained on data 

from hundreds of clinical trials in a given therapeutic area provides a more principled 

approach to addressing attrition and better assessment of the necessary cohort 

composition to avoid bias. 

Although the dataset and modeling in this work was limited to trials in the 

respiratory therapeutic area, there are other promising applications of this approach. 

Recent Heart Failure (HF) trials have demonstrated geographic heterogeneity and it will 

be interesting to see how well this approach generalizes across other cohorts in 
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therapeutic areas covered by the AACT database. While there are highly contextual 

features that are not captured by our present dataset that have been demonstrated to 

predict dropout, such as treatment failure in COPD or age of caregiver in pediatric 

asthma trials, our model demonstrates good performance across respiratory cohorts 

(Musuamba et al., 2015; Robinson, Adair, Coffey, Harris, & Burnside, 2016). In many 

cases such niche features might be a barrier for a trial sponsor to accurately obtain due 

to variability across trials, making a performant model to predict patient attrition from 

more general trial features even more critical.  

 Patients may discontinue participating in a trial due to a variety of reasons. 

Patient attrition can be broadly classified as clinical (adverse events, injury, unrelated 

illness, comorbidities, etc.) personal (life-changing events like wedding, pregnancy etc.), 

or operational (unable to commute to the clinical trial sites, PI moved to another 

organization etc.) reasons. Understanding the precise reason for patient attrition and 

leveraging innovative strategies to use the information to improve patient engagement 

may lead to reduce the attrition rates. Further attrition factors could be incorporated into 

different clinical trial design scenarios including clinical trial forecasting, sample size 

estimation and planning. Such approaches would not only help to reduce the attrition 

but would help to address low Fragility Index (Tignanelli & Napolitano, 2019) of RCTs 

(Kipp, 2019). 

 The application of machine intelligence in the setting of drug discovery is 

attributed to an end-to-end transformation. However, large, enterprise-scale digital 

transformation is challenging and thus need a digital nudging approach. Where an 

individual process can be automated and transformed using intelligent automation and 

algorithms. While several works has been proposed to improve different facets of 

clinical trials using machine learning methods (Andrew, 2019; Lo, 2019; Lutz et al., 

2018; Pedersen, Mansourvar, Sortso, & Schmidt, 2019; S & A, 2017; Vamathevan et 

al., 2019; Woo, 2019), our work is the only development of a machine learning 

model(Pedersen et al., 2019) for patient attrition developed using a large-scale sponsor 

agnostic dataset to date. Our data-driven approach represents a new approach to 

addressing one of the most critical barriers to drug development and bringing new 

therapeutics to market to address the patient’s needs. Application of this methodology 
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to other therapeutic areas and deployment within the design of respiratory trials could 

lead to efficiencies that enable faster clinical trials and improved patient care. 

 

Methods 
Data was collected from clinicaltrials.gov by filtering criteria - completed studies, 

respiratory diseases for phases 2, 3 and 4. We also filtered trials between 01/01/1998 

to 12/31/2018 which resulted in 6039 trials. The AACT database provided aggregate 

information on patients who did not complete the trial and the reasons for their 

withdrawal. These trials identifiers were then matched with AACT database to derive the 

withdrawal reasons, which mainly related to subject, site and adverse related reasons. 

Similarly, age fraction, gender fraction and race were calculated from different tables 

within AACT database. 

Disease category was extracted and then cleaned to get category we clubbed 

disease type for example: SCLC, Sarcoma etc was tagged as Cancer for further 

processing. Citeline data was also extracted in batches and compared with our data to 

realize that only 1679 trial identifiers could be found. 

The main imputations performed after merging Citeline data with AACT was 

imputing “median_female_fraction per disease age group”, “baseline counts”, 

“Female_fraction”, “Mean_Age_Female”. We imputed the median age per disease from 

the age group calculated by imputing 46 values missing age group data. Random forest 

was used to predict “Duration.Treatment” for imputation. “Duration.Enrollment” and 

“race” information had missing values; hence a Random forest model was used to 

predict these values. To address missing data in baseline final dataset columns of 

“Female fraction” - zero was introduced and “Age_mean” was introduced, race fractions 

variable with missing values was updated as zeros. 

 After an initial evaluation of the AACT dataset, our first application of machine 

learning algorithms to this dataset aimed at predicting patient attrition in clinical trials 

focused on the respiratory therapeutic area. Final data set was stored with 1,020,085 

patients in 1,325 trials, 3,175 cohorts and 79 listed predictors. This dataset represents 

both cross-sponsor and cross-indication respiratory trials taking place over 20 years 

with both aggregate trial-level characteristics as well as patient-level observations 
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regarding reasons for trial dropout or withdrawal. All analysis presented was at the 

cohort-level. 

A total of over 3,175 completed respiratory cohorts were selected based on 

criteria including indication (see Figure 3A), Phase (Phase II to Phase IV; Figure 3B) 

and sponsor (Figure 3C). 

Our analysis aimed to investigate multiple competitive machine learning 

algorithms in different settings, including an ensemble model that took optimal weighted 

averaged of our separate algorithms. Criteria to select machine learning models for 

further exploration depended on evaluation of model performance through cross-

validation. Following cleaning and extraction, transformation and loading (ETL) of the 

dataset in the R programming language (see associated code and dataset artifacts), we 

split the entire data set into 80% and 20%, training and testing respectively. We then 

trained different machine learning models on our training set with parameter estimation 

based on 10-fold cross validation and gained our performance evaluation result on the 

testing set. Candidate models were considered into our modeling pool starting with our 

benchmark model Ordinary Least Squares as the baseline. To enhance our predictive 

accuracy as well as statistical interpretability, we also applied linear model with feature 

selection and regularization from either Bayesian or Frequentist Maximum likelihood 

perspective (Bayesian Generalized Linear Models, Support Vector Machines, 

Generalized Linear Models via penalized maximum likelihood). Besides typical 

regression-based models, we further explored tree-based approaches which have been 

shown to have better performance in the literature when dealing with large feature sets. 

In order to take the maximum use of the existing separate models, we applied 

aggregated algorithms such as Bagging, Super Learner model ensemble method. With 

all these algorithms implemented supported by SuperLearner (van der Laan, Polley, & 

Hubbard, 2007), we listed their performance based on RMSE values shown in Table 1, 

where we figured out that Random Forest had the potentiality towards further 

investigation.  

          To dig deeper into our random forest algorithm for performance enhancement, we 

implemented further hyperparameter tuning through grid search and feature selection 

via RFE. As random forest comprises multiple hyperparameters such as number of 
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trees we used in the forest, maximum number of features considered for splitting, 

bootstrap strategy and etc., we implemented a grid search on the former two as the key 

ones that led to high impact of the model performance. Simultaneously, we applied RF-

RFE (Granitto, Baiasioli, Furlanello, & Gasperi, 2006) which is a well-established feature 

selection method that is adapted to Random Forest, where it fits the algorithm and 

removes the weakest features iteratively until the performance metric reaches its 

optimal point.  

 

Data Availability 
Dataset, data dictionary, and code of model development and feature selection is 

available at the GitHub URL: https://github.com/AstraZeneca/CTELC-Patient-Attrition-

Model 

 

Competing Interests 

All authors were employees of AstraZeneca at the time of the execution of this 

work.  

 

Acknowledgements 
 Authors would like to thank Dr. Christopher Miller, and Rosa Lamarca for their 

help with the data preparation.  

 

Author Contributions  

EH compiled a first draft of the manuscript with contributions from all coauthors. 

YZ, SN, INK performed the analyses. VM compiled an initial version of the data and 

model. SN and INK compiled the final version of the data. KS designed the study and 

supervised the data science team. FK and JW provided critical feedback and reviewed 

the manuscript. 

 
 
 
 
 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 14, 2021. ; https://doi.org/10.1101/2021.11.12.21266277doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.12.21266277
http://creativecommons.org/licenses/by/4.0/


Table 1: Model performance. The super learner is an ensemble model, all estimates 
were run on 79 features. 

Algorithm RMSE 

Super Learner 6.66  
Discrete Super Learner 6.63  
Random Forest 6.64  
Support Vector Machines 7.29  
Bagging Classification 7.70  
Bayesian Generalized Linear Models 7.99  
Generalized Linear Models 8.01  
Ordinary least squares 8.01  
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Table2: Table of results for Random Forest and Linear models with 8 predictors. 
Predictive Model RMSE 

Random Forest, 8 predictors 6.25 

Linear Regression, 8 predictors 8.37 
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Figures and Legends 
 
Figure 1: Overview of the problem of patient attrition in the clinical trial phase of drug 
development. 
 
Figure 2: Industry-wide view of clinical trial patient drop/withdrawal reasons for the 
Respiratory Therapeutic Area. A. Clinical trial patient drop-withdrawal for all trials by 
therapeutic area of trial. B. Distribution of reasons for patient dropped or withdrawn from 
a clinical trial. C. Clinical trial patient drop-withdrawal within Respiratory trials by primary 
indication of trial. (N= 1,325) 
 
Figure 3. Characteristics of respiratory-focused AACT dataset for modeling patient 
attrition. A. Distribution of trials by Respiratory Disease. B. Number of trials by clinical 
trial phase. C. Datasets by industry role. 
 
Figure 4. Workflow diagram for development of machine learning models of patient 
attrition based on AACT respiratory dataset. 
 
Figure 5: Features from AACT Respiratory Dataset Used for Development of Machine 
Learning Models. A. Overview of Baseline Cohort-level, Trial-level and AE Cohort-level 
features used in training models. B. Frequency of Adverse Event (AE) across patient 
population, top 15 AEs out of 65 displayed. 
 
Figure 6: Models examined. (A) Variables ranked using Recursive Feature Elimination 
(RFE) with top 8 selected variables displayed. RMSE (B) and MAE (C) in analysis 
resampled by ranked features showing that there is no additional gain after the top 8 
features. 
 
Figure 7: Evaluation & selection of features. Table1. (A) Table of metrics for all models 
examined. RMSE (B). Table2. (A) Table of results for Random Forest and Linear 
models with 8 predictors. 
 
Supplemental Figure 1. Respiratory trails from AACT. (A) Effect of Trial Duration and 
Duration of Treatment, Drop withdrawal by disease (B) by disease –, Longer Trials and 
Longer Treatment cause higher Patient Attrition. It also differs by Disease, i.e. higher in 
Cancer, Fibrosis, Pulmonary Hypertension 
 
Supplemental Figure 2. Indications associated with average patient attrition rates across 
the respiratory therapeutic area 
 
Supplemental Figure 3. Box plots of 11 indications and percentage level attrition rates 
compiled from the study cohort  
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Supplemental Table 1. List of 79 features and their importance based on mean 
decrease in accuracy. 
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Figure 1Dropout =  # of subjects did not complete the trial / # total subjects randomized
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