
Using patient biomarker time series to determine mortality
risk in hospitalised COVID-19 patients: a comparative
analysis across two New York hospitals

Ben Lambert1,2¶*, Isaac J. Stopard3¶, Amir Momeni-Boroujeni4, Rachelle Mendoza5,
Alejandro Zuretti6

1 Department of Computer Science, University of Oxford, Oxford, Oxfordshire, UK
2 Department of Mathematics, College of Engineering, Mathematics and Physical
Sciences, University of Exeter, Exeter, UK
3 MRC Centre for Global Infectious Disease Analysis, School of Public Health, Faculty
of Medicine, Imperial College London, London, UK
4 Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY,
USA
5 SUNY Downstate Health Sciences University Department of Pathology, Brooklyn, NY
6 SUNY Downstate Health Sciences University and Maimonides Medical Center,
Department of Pathology, Brooklyn, NY 11219

¶These authors contributed equally to this work.
*Corresponding author: ben.c.lambert@gmail.com (BL)

Abstract

A large range of prognostic models for determining the risk of COVID-19 patient
mortality exist, but these typically restrict the set of biomarkers considered to
measurements available at patient admission. Additionally, many of these models are
trained and tested on patient cohorts from a single hospital, raising questions about the
generalisability of results. We used a Bayesian Markov model to analyse time series
data of biomarker measurements taken throughout the duration of a COVID-19
patient’s hospitalisation for n = 1540 patients from two hospitals in New York: State
University of New York (SUNY) Downstate Health Sciences University and Maimonides
Medical Center. Our main focus was to quantify the mortality risk associated with both
static (e.g. demographic and patient history variables) and dynamic factors (e.g.
changes in biomarkers) throughout hospitalisation, by so doing, to explain the observed
patterns of mortality. By using our model to make predictions across the hospitals, we
assessed how predictive factors generalised between the two cohorts. The individual
dynamics of the measurements and their associated mortality risk were remarkably
consistent across the hospitals. The model accuracy in predicting patient outcome
(death or discharge) was 72.3% (predicting SUNY; posterior median accuracy) and
71.3% (predicting Maimonides) respectively. Model sensitivity was higher for detecting
patients who would go on to be discharged (78.7%) versus those who died (61.8%). Our
results indicate the utility of including dynamic clinical measurements when assessing
patient mortality risk but also highlight the difficulty of identifying high risk patients.

Introduction 1

As the coronavirus disease 2019 (COVID-19) pandemic continues to overwhelm many 2

health services, accurate prognosis remains essential to improved clinical care and 3
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decisions regarding the equitable allocation of insufficient intensive care resources [1]. 4

Since the beginning of the pandemic, many novel prognostic factors have been identified 5

and applied in prognostic models to predict the course of infection of hospitalised 6

COVID-19 patients [2]. Substantial inequality in the burden of COVID-19 exists, and 7

many social determinants of the outcome of infection have been identified, such as 8

deprivation [3–7]. External validation of novel COVID-19 prognostic factors across a 9

range of different settings is therefore vital. Multivariable models may partially 10

reconcile differences in samples used for model training, though external validation is 11

essential because overfitting and confounding of unknown, yet important, variables are 12

likely to limit the out-of-sample predictive accuracy [8]. Indeed, a systematic validation 13

of 22 prognostic models to an external dataset found none performed better than using 14

the best univariable predictor: age [9]. In an additional study of 107 surveyed 15

prognostic models, many were found to suffer from small sample sizes and have a high 16

risk of bias in the dataset participants [2]. 17

A number of biomarkers at presentation, including C-reactive protein, lymphocyte 18

count, oxygen saturation and urea concentration, are important predictors of 19

hospitalised COVID-19 patient deterioration (defined as the requirement of ventilatory 20

support, critical care or death) and were included in a recently developed prognostic 21

model of patient deterioration which achieved robust predictive accuracy (C-statistic: 22

0.77) when internally and externally validated on a dataset of 66,705 patients [10]. 23

Similarly, peripheral oxygen saturation, urea level and C-reactive protein at 24

presentation are used to predict patient mortality [11]. Patients are, however, admitted 25

to hospital at different states of disease progression, and their biomarkers change 26

throughout the course of hospitalisation [12–15]. Emerging evidence indicates a number 27

of time-dependent biomarkers changes may therefore be useful prognostic factors: 28

increases in platelets and eosinophil percentage are indicative of reduced mortality risk, 29

whilst increases in alkaline phosphatase may indicate increased mortality risk [15]. 30

Incorporating dynamic changes in biomarkers can improve the predictive accuracy of 31

prognostic models when internally validated [14, 15], but the external validation of these 32

prognostic factors is still required. The role of time-dependent biomarkers in different 33

patients remains a key question [16]. We previously developed a prognostic Markov 34

model, which allows the quantification of daily mortality risk and the impact of dynamic 35

changes in biomarkers on this quantity and fit the model to data from State University 36

of New York (SUNY) Downstate Medical Center [15]. In this study, we fit the model to 37

new data from a different New York hospital: Maimonides Medical Center (henceforth 38

“Maimonides”). We then compare the impact of dynamic changes in patient biomarkers 39

on in-hospital mortality risk (i.e. patient outcomes), across SUNY and Maimonides. In 40

doing so, we obtain an external validation of the model. More importantly, this allows 41

us to appraise the use of dynamic biomarker measurements for determining patient 42

mortality risk in hospitalised COVID-19 patients, which is our main contribution. 43

Materials and methods 44

Case selection, data extraction and processing 45

Study approval was obtained from the State University of New York (SUNY) 46

Downstate Health Sciences University Institutional Review Board (IRB#1595271-1) 47

and Maimonides Medical Center Institutional Review Board/Research Committee 48

(IRB#2020-05-07). 49

A retrospective query was performed among the patients who were admitted to 50

SUNY Downstate Medical Center and Maimonides Medical Center with 51

COVID-19-related symptoms, which was subsequently confirmed by RT PCR, from the 52
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beginning of February 2020 until the end of May 2020. Stratified randomization was 53

used to select at least 500 patients who were discharged and 500 patients who died due 54

to the complications of COVID-19. Patient outcome was recorded as a binary choice of 55

“discharged” versus “COVID-19 related mortality”. Patients whose outcome was 56

unknown were excluded. Demographic, clinical history and laboratory data were 57

extracted from the hospital’s electronic health records. The raw data were cleaned and 58

processed for analysis as described in §S1.2. We make the data for this study available 59

through a Zenodo repository [17]. 60

Estimating risk of mortality for variables available at 61

presentation 62

To compare the factors affecting mortality risk across the two hospitals, we calculated 63

the odds ratios (ORs) for each of the variables available at presentation. To do so, we 64

converted the initial biomarker values to binary categories: above (1) or below (0) the 65

pooled sample mean across the two hospitals (in our Markov model, discussed later in 66

Methods, we allow continuous, opposed to binarised impacts of variables on patient 67

outcomes). Laboratory test values at presentation were included only if 150 or more 68

patients in each of the hospitals had data for this test available. If laboratory tests were 69

repeated on the first day of admission, we took the mean value taken on this day to be 70

the value at presentation. Odds ratios were calculated for each variable by estimating 71

the proportion dying for each subgroup and then taking the ratio of these proportions. 72

We assumed the observed counts of individuals expiring were binomially distributed, 73

Xj
0 ∼ B(N j

0 , θ
j
0), Xj

1 ∼ B(N j
1 , θ

j
1), (1)

where j indicates the binary variable under consideration (for example, whether an 74

individual was aged 0-40 or whether they had a history of asthma); Xj
0 and Xj

1 indicate 75

the counts of individuals dying for the two subgroups (e.g. whether an individual was 76

aged 0-40 or not); N j
0 and N j

1 are the observed counts of individuals in the two 77

subgroups; and θj0 and θj1 are the estimated proportions dying in the corresponding 78

subgroups. Parameters were estimated using a Bayesian framework: the estimated ratio 79

of θj1/θ
j
0 defined the OR for variable j and was estimated by taking 100,000 independent 80

draws from the posterior distributions of each of θj1 and θj0 assuming uniform priors. 81

Laboratory value time trends 82

To determine average trends in laboratory values over the course of a patient’s 83

hospitalisation, we carried out a series of regressions for each laboratory test stratified 84

by patient outcome and hospital. To do so, we calculated the percentage change in each 85

patients’ biomarker values relative to their values at presentation. These were scaled to 86

have a mean of 0 and standard deviation of 1. Infinite (i.e. when the first biomarker 87

value was zero), missing or extreme observations (the absolute value of the percentage 88

change exceeded the 98% quantile) were excluded from the regression so that our results 89

focused on the bulk of observations, opposed to the extremes. The percentage change in 90

test value was modelled as a function of a quadratic time trend, allowing for fixed effect 91

trends but including individual patient slopes of both the linear and quadratic terms of 92

the trend. These models were estimated in a frequentist framework using the lme4 R 93

package [18], and we extracted the fixed effect estimates of the trends for each model. 94

Bayesian Markov models of dynamic risk 95

The univariate OR estimates described thus far do not account for the impact of other 96

covariates when determining risk. Furthermore, these methods consider a static outcome 97
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(whether a patient dies at some point during their hospitalisation) and do not account 98

for the time taken for the outcome to occur, or allow dynamic variables to be included. 99

A patient’s underlying risk of death may, however, change throughout the course of 100

their hospitalisation, which can be indicated by changes in certain biomarkers [15]. 101

Here, we briefly describe a multivariate discrete time Markov model which aims to 102

identify the importance of different prognostic factors on COVID-19 mortality risk and 103

estimate the change in individual patients’ mortality risk throughout the course of 104

hospitalisation. (The model has previously been described more fully here: [15].) The 105

model specifically accounts for the competing risks of discharge and death. Note, it is 106

possible to use cause-specific hazards models (Cox regressions for each event of interest, 107

treating the other event as censored) to estimate the cumulative incidence function but, 108

in these models, it is not possible to assess the impact of individual covariates on the 109

cumulative incidence function [19,20]. By considering the sequence of outcomes for each 110

day each patient was in hospital, Markov models can simultaneously account for the risk 111

of discharge versus mortality: on the first day, patients are admitted and begin in the 112

“hospital” state; at the end of the first day, they either remain in hospital or transition 113

to the “discharged” or “death” states. On subsequent days, patients that remained in 114

hospital can undergo the same possible transitions. The probabilities different 115

transitions occur were modelled as a function of each patient’s demographic 116

characteristics, comorbidities, laboratory test values at presentation and dynamic trends 117

in laboratory test values (as measured by their percentage changes relative to their 118

values at presentation). A schematic of the model is provided in Fig 1. The 119

un-normalised probabilities of each possible transition are modelled using a log link: 120

qdischargedit = exp(α0i +α′
1xit), qdeathit = exp(β0i + β′

1xit), qhospitalit = 1, (2)

where i indicates a given patient; t indicates the day of hospital stay post-admission for 121

a given patient; α1 and β1 are vectors of regression coefficients relating to the vector of 122

(potentially time-varying) regressors in xit; α0i and β0i are patient-specific intercepts. 123

The normalised probabilities of transitions between the states are then given by the 124

ratio of the un-normalised probabilities to the sum of all these: 125

qtotalit = qdischargedit + qdeathit + qhospitalit ; so that, for example, pdischargedit = qdischargedit /qtotalit . 126

admitted day 1 day 2 day 3

p11
hospital p12

hospital p13
hospital

p21
hospital p22

discharged

p14
death

day 4

× × ×

×

pa
tie

nt
 1
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tie

nt
 2

hospital
death
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Fig 1. Markov model of patient trajectories during clinical care. For two
hypothetical patients, we illustrate how the probability of their observed trajectory is
calculated. Note that pit refers to the probability of an observed transition, which is a
function of the patient (i) and day (t): the time-dependence of probabilities is realised
through eq. (2) and is due to (potential) changes in covariates.

Using this model, we performed six separate regressions, each with different groups 127

of independent variables (i.e. different xit in eq. (2)). In the first of these, we included 128
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only a single variable in an analysis to examine the influence of each variable in 129

isolation. The second regression included patient demographic characteristics (“patient” 130

variables), including their age, sex and ethnicity, and the day they were admitted to 131

hospital. The third regression (“pat. + comorbidities”) supplemented the patient 132

variables with the recorded comorbidities for each patient: whether they had 133

hypertension, diabetes etc. (n = 13 conditions in total). The fourth regression 134

(“admission”) supplemented the third with the initial measurements for each patient for 135

each of the n = 18 clinical tests common across the two hospitals (one test, MCHC, was 136

dropped from these regressions since it is directly calculated from MCH and MCV). The 137

fifth regression (“post-admission”) then included the percentage changes in each clinical 138

test measurement from the initial values for each patient. Both the initial values and 139

the dynamic values were scaled to give a mean of 0 and a standard deviation of 1, so 140

that the ORs were estimated on a scale that was consistent across the different 141

laboratory tests and represented the typical clinical variation in these values. The 142

biomarkers included in the study along with the acronyms used are given in Table S1. 143

The final regression considered used both the static variables of the pat. + 144

comorbidities regression and the raw values of the tests (standardised by subtracting 145

the sample mean and dividing through by the sample standard deviation). The aim of 146

this regression was to investigate whether relative changes from baseline or, rather, the 147

absolute covariate values which were most predictive of outcomes. 148

The model was estimated in a Bayesian framework using the Stan’s NUTS 149

sampler [21,22]. We used priors for the regression coefficients that induce sparsity: 150

meaning that only the most predictive covariates would be estimated to have non-zero 151

effects. The priors for the parameters are shown in Table S2. The univariate models 152

were run for 2000 iterations; the multivariate models were run for either 2000 iterations, 153

then a further 2000-6000 iterations if not converged. In all cases, we ran the model 154

using four chains with the first half of iterations discarded as warm-up. The Markov 155

chains satisfied R̂ < 1.01 and bulk- and tail-ESS > 400 for all parameters, consistent 156

with convergence. The Stan code for the model is provided in §S1.3. 157

Generalisation of predictions 158

Next, we assessed whether the sets of factors considered in this paper can be used to 159

predict patient outcomes that generalise across both hospitals. To do so, we fitted the 160

Markov model to data from each hospital in turn, then used it to predict patient 161

outcomes (i.e. whether the patient ultimately died in hospital or was discharged) in the 162

other held-out hospital. In this analysis, we did not consider the time taken for death or 163

discharge to occur, and future work could consider also these outcomes (although our 164

previous work has demonstrated that predicting timings is likely difficult [15]). As 165

discussed in Methods, we scaled both the initial laboratory values and the dynamic 166

values using the sample mean and standard deviation. When performing 167

between-hospital prediction, we used the mean and standard deviation of values of the 168

training hospital to scale variables in the independent hospital test set. This ensured 169

that we only used information available in the training set when making predictions. 170

To check that the Markov model provided a reasonable fit of the underlying data, we 171

performed a series of posterior predictive checks (PPCs) (see, for example, [23,24]). But, 172

in order to assess their generalisation of the fitted models, we performed the PPCs on 173

independent hold-out sets. For the Markov model with the post-admission set of 174

variables, we compared the model-estimated and actual mortality rates, separately for 175

models trained on data from SUNY and Maimonides. In S1 Fig, we show the estimated 176

(black point-ranges) and estimated (orange points) mortalities across groupings of our 177

binary predictor variables for a model fit to data from SUNY and used to predict the 178

outcome in an independent test set also from SUNY. These graphs indicate a good 179
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correspondence in the majority of cases. In S2 Fig, we show a similar plot but for the 180

dynamic biomarkers where we compare mortality rates for groups of individuals with 181

last recorded laboratory values above or below the mean: again, this plot illustrates a 182

reasonable fit. In S3& S4 Figs, we show the same plots but when fitting to data from 183

SUNY but predicting outcomes in Maimonides. These fits were noticeably poorer than 184

for the within-SUNY fits, although the general trends in outcome across the binarised 185

groups tended to be similar. In S5-S8 Figs, we repeat the same analysis, but using 186

Maimonides as the data used to train the model. 187

Results 188

There were notable differences in demographics across the 189

hospitals 190

The hospital cohorts (n = 553 patients in SUNY; n = 987 in Maimonides) differed in 191

demographic variables and underlying comorbidities (Table 1). Patients of SUNY 192

predominantly self-reported as black, whereas those of Maimonides predominantly 193

self-reported as white. Diabetes was more prevalent in the SUNY cohort, whereas 194

coronary artery disease and congestive heart failure were more prevalent in the 195

Maimonides cohort. The presence of multiple conditions within individual patients 196

differed substantially between the two cohorts (S9 Fig). There were minor differences in 197

the distributions of the laboratory test values at admission (available across both 198

hospitals) of the two hospital cohorts, with the exception of BASO PCT and MCHC 199

(S10 Fig). 200

There was consistent mortality risk associated with static factors 201

To compare the mortality risk for those variables available at presentation (including 202

demographic variables, comorbidities and laboratory test values at admission), which 203

were common across the two hospitals, we estimated the ORs measuring the risk of 204

death associated with each of the variables. 205

There was a significant positive correlation between the OR estimates of the 206

demographic and comorbidity variables of the two hospitals (using median posterior 207

estimates: ρ = 0.82, t19 = 6.33, p < 0.01; here and throughout, ρ indicates Pearson 208

correlation coefficient estimates)(Fig 2A). In Maimonides, the variables tended to be 209

less associated with risk than for SUNY (regression slope of posterior median estimates 210

for Maimonides on those from SUNY: β̂ = 0.65, t19 = 3.48, p < 0.01 against H0 : β = 1). 211

Similarly, there was a significant positive correlation between the OR estimates of the 212

laboratory values at admission between the two hospitals 213

(ρ = 0.85, t17 = 6.77, p < 0.01), and the regression slope was not significantly different 214

from 1 (t17 = 0.22, p > 0.05) indicating there was no systematic differences in ORs 215

between hospitals for these variables (Fig 2B). 216

The dynamics of biomarker values were remarkably similar 217

across the hospitals for patients with the same outcomes 218

We next considered dynamic changes in the n = 19 laboratory biomarkers which were 219

available across both hospitals, which we plot in Fig 3. This illustrates that, irrespective 220

of patient outcome, there is considerable inter-patient variability in the time series of 221

these biomarkers. 222

To compare the average dynamics of laboratory test values for patients throughout 223

the course of their hospitalisation, we also estimated hospital-specific time trends for 224
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Variable SUNY Maimonides

outcome: discharged 342 (61.8%) 496 (50.3%)
outcome: expired 211 (38.2%) 491 (49.7%)
sex: female 271 (50.3%) 437 (44.3%)
sex: male 268 (49.7%) 550 (55.7%)
ethnicity: black 472 (86.8%) 119 (12.3%)
ethnicity: hispanic 17 (3.1%) 2 (0.2%)
ethnicity: other or unrecorded 39 (7.1%) 271 (27.5%)
ethnicity: white 25 (4.6%) 595 (61.7%)
age: 0-40 26 (4.8%) 116 (11.8%)
age: 40-50 43 (7.9%) 57 (5.8%)
age: 50-60 93 (17.2%) 112 (11.3%)
age: 60-70 140 (25.8%) 201 (20.4%)
age: 70-80 137 (25.3%) 210 (21.3%)
age: 80+ 103 (19.0%) 291 (29.5%)

asthma 24 (4.4%) 89 (9.0%)
cancer 16 (2.9%) 89 (9.0%)
cerebrovascular disease 25 (4.6%) 80 (8.1%)
congestive heart failure 23 (4.2%) 292 (29.6%)
chronic kidney disease 19 (3.5%) 76 (7.7%)
copd 25 (4.6%) 96 (9.7%)
coronary artery disease 44 (8.0%) 391 (39.6%)
dementia 13 (2.4%) 120 (12.2%)
diabetes 229 (41.9%) 348 (35.3%)
endstage renal disease 54 (9.9%) 50 (5.1%)
hepatitis 4 (0.7%) 24 (2.4%)
hyperlipidemia 103 (18.8%) 270 (27.4%)
hypertension 350 (64.0%) 516 (52.3%)

Table 1. Summary characteristics of patient groups from the two hospitals.
Note, that in some cases, data were missing meaning that patients counts across all
shown categories do not aggregate to n = 553 for SUNY and n = 987 for Maimonides.
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Fig 2. Comparing univariate mortality ORs across the hospitals. The two
panels compare ORs associated with demographic and disease history variables (panel
A) and initial laboratory test values (panel B). Points show the posterior median ORs;
the whiskers display the 25% and 75% posterior quantiles. The orange dashed lines
show the OR = 1 cases; the dashed black lines indicate equality in the ORs across the
two hospitals. The blue line shows least squares regression lines using the posterior
median ORs.

each patient group (see Methods). Across the majority of variables, there was a high 225

degree of correspondence in these average trends across the two hospitals (Fig 3). 226

Indeed, the correlation between the regression estimates of the percentage change in 227

laboratory values at 15 days post admission (after this point, only a minority of patients 228

were still hospitalised) was correlated across the hospitals: for both the discharged and 229

expired groups, these correlations were significant and positive (discharged: 230

ρ = 0.94, t17 = 11.25, p < 0.01; expired: ρ = 0.94, t17 = 11.58, p < 0.01). 231

The biomarkers associated with mortality risk were generally 232

similar across the hospitals 233

In Fig 4, we compare the ORs associated with daily mortality risk for each of the 234

common biomarkers across the two hospitals as derived from the Markov model 235

(described in Methods). Across the univariate and multivariate model estimates, there 236

was strong positive correlation in the ORs between the hospitals (univariate: 237

ρ = 0.84, t16 = 6.52, p < 0.01; multivariate: ρ = 0.65, t16 = 3.45, p < 0.01; in both cases, 238

using posterior median estimates). With few exceptions the estimates agreed in terms of 239

their “sign”: for the univariate model, 15/18 tests had posterior median estimates where 240

either both odds ratios were above one across the two hospitals or both were below one; 241

for the multivariate model, the corresponding figure was 14/18 tests. A notable outlier 242

was MCV, which was estimated to have a substantially stronger effect in the 243

Maimonides cohort in the multivariate model, although this was not recapitulated in 244

the univariate analysis suggesting caution interpreting this further. 245

Based on these estimates, increases in MCV, decreases in LYM PCT, and decreases 246

in CO2 throughout a patient’s stay were associated with the strongest increase in 247

mortality risk. 248

June 29, 2022 8/17

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 29, 2022. ; https://doi.org/10.1101/2021.11.12.21266248doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.12.21266248
http://creativecommons.org/licenses/by/4.0/


Maimonides SUNY

0 5 10 15 0 5 10 15

0%

200%

400%

600%

Creatine

Maimonides SUNY

0 5 10 15 0 5 10 15

−100%

0%

100%

200%

300%

400%

MONO ABS

Maimonides SUNY

0 5 10 15 0 5 10 15

0%

2 500%

5 000%

7 500%

EOS PCT

Maimonides SUNY

0 5 10 15 0 5 10 15

0%

500%

1 000%

1 500%

2 000%

BASO PCT

Maimonides SUNY

0 5 10 15 0 5 10 15

−100%

0%

100%

200%

LYM ABS

Maimonides SUNY

0 5 10 15 0 5 10 15

−50%

−25%

0%

25%

50%

RBC

Maimonides SUNY

0 5 10 15 0 5 10 15

−100%

0%

100%

200%

300%

400%

NEU ABS

Maimonides SUNY

0 5 10 15 0 5 10 15

−100%

0%

100%

200%

300%

WBC

Maimonides SUNY

0 5 10 15 0 5 10 15

−100%

0%

100%

200%

LYM PCT

Maimonides SUNY

0 5 10 15 0 5 10 15
−40%

−20%

0%

20%

40%

RDW

Maimonides SUNY

0 5 10 15 0 5 10 15

−10.0%

−5.0%

0.0%

5.0%

10.0%

MCH

Maimonides SUNY

0 5 10 15 0 5 10 15

−10.0%

−5.0%

0.0%

5.0%

10.0%

MCHC

Maimonides SUNY

0 5 10 15 0 5 10 15

−40%

0%

40%

NEU PCT

Maimonides SUNY

0 5 10 15 0 5 10 15

−10%

0%

10%

MCV

Maimonides SUNY

0 5 10 15 0 5 10 15

−100%

0%

100%

200%

PLAT

Maimonides SUNY

0 5 10 15 0 5 10 15

−20%

0%

20%

Calcium level

Maimonides SUNY

0 5 10 15 0 5 10 15

0%

200%

400%

600%

BUN

Maimonides SUNY

0 5 10 15 0 5 10 15
−100%

−50%

0%

50%

100%

CO2

Maimonides SUNY

0 5 10 15 0 5 10 15

−100%

0%

100%

200%

Glucose random

Outcome

Discharged

Expired

Days post admission

C
h

a
n

g
e

 in
 b

io
m

a
rk

e
r

Fig 3. Comparing time trends in laboratory values across hospitals. The
horizontal axis shows the days post admission and the vertical axis shows the
percentage change in biomarker values from their initial values. Each panel displays
trends for an individual biomarker; within the subpanels of each of these, we show the
results for each of the hospitals. Individual graphs show the dynamics of the individual
patients’ laboratory values (thin coloured lines) and the time trends (thick coloured
lines) estimated assuming a quadratic regression function. Line colouring indicates the
outcome of an individual patient (thin lines) or overall group being considered for
regressions (thick lines). Note that for plotting we only display data up until day 15 post
admission, since, after this point, there were relatively few patients still hospitalised.

The models generalised well across hospitals and fared better in 249

predicting the outcome of patients who were discharged 250

Across the different regressor sets, out-of-sample predictive accuracy was consistent 251

across the hospitals (Fig 5A). In all cases, the posterior median predictive accuracy 252

using data from Maimonides resulted in slightly higher prediction accuracy than when 253

using data from SUNY: likely due to the higher sample size for Maimonides. The results 254

also show the predictive power of dynamic laboratory measurements (included in the 255

“post-admission” set), which resulted in a substantial boost in accuracy across both 256

hospitals over a model including only those available at admission (“admission”). 257

We next used the model using all available post-admission variables to probe its 258

predictive performance for those groups of patients who went on to be discharged and 259

died. To do so, we pooled predictions across both independent hospital testing sets: 260

note, that in both cases, these predictions were formed using out-of-sample testing sets. 261

The resultant confusion matrix is shown in Fig 5B. This indicates that the model had a 262
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Fig 4. Comparing ORs for dynamic laboratory measurements. Panels A/B
compare the ORs for the univariate/multivariate models. The horizontal axes displays
the ORs for daily mortality risk from SUNY and the vertical axes show the ORs from
Maimonides. Points show the posterior median ORs; the whiskers display the 25% and
75% posterior quantiles. The orange dashed lines show the OR = 1 cases; the dashed
black lines indicate equality across ORs calculated across the hospitals. The blue line
shows least squares regression lines using the posterior median ORs.

higher sensitivity to determine patients that would eventually be discharged (posterior 263

mean: 79.2%) compared to those who would go on to die (61.0%). 264

We next assessed the reduction in accuracy when predicting patient outcomes in the 265

same hospital versus a different hospital. We did this by using validation sets either 266

comprised of separate data from the same hospital (“within’) or a different hospital 267

(“between”). In S11 Fig, we show the predictive accuracy for models fitted using data 268

from SUNY (left panel) and Maimonides (right panel). Point colour indicates whether 269

the validation set comprised patients from within the same hospital (green) or a different 270

hospital (orange). Note that, in this analysis, the requirement for an independent 271

within-hospital datasets to fit the model meant that the training datasets were smaller 272

than those used to produce Fig 5A: resulting in slightly lower overall accuracy. In 273

almost all cases, median predicted accuracy when predicting outcomes within the same 274

hospital was higher than that when predicting those in a different hospital. The 275

difference, however, was relatively small (mean difference in posterior medians: 2.1%), 276

indicating that the predictions generalised well from one location to another. 277

To determine whether there were subgroups of patients where the model performed 278

better or worse, we examined the factors that influenced the predictive accuracy for 279

those patients who went on to die in each of the hospitals. To do so, we used the models 280

that were trained on all the data from one hospital (i.e. those used to produce Fig 5A). 281

We then used a random forest to predict posterior median predictive accuracy for each 282

of the patients, as a function of their time-invariant characteristics. Then using the 283

“impurity” measure of variable importance, we identified those variables that were 284

associated with differences in predictive accuracy (S12 Fig). The top three factors were: 285

the time since the first patient was admitted to that hospital with COVID-19, whether 286

the patient had a history of coronary artery disease and whether their self-reported 287
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Fig 5. Model predictive accuracy in patient outcomes for held-out hospital.
Panel A shows the accuracy in predicting outcomes across four regression sets. Colours
indicate the hospital whose data was used to train the model: so, for example, “SUNY”
indicates that data from this hospital was used to fit the model which was then tested
on data from Maimonides. The horizontal axis shows the accuracy in predicting patient
outcomes (i.e. death or discharge) using a Markov regression model with covariate sets
as named on the vertical axis. The points and whiskers indicate the posterior medians
and 2.5%-97.5% posterior intervals for the percentage of patients whose outcome was
correctly determined across posterior draws. Panel B shows a confusion matrix for
between-hospital prediction using Markov model with the post-admission covariate set.
Here, the values show the mean percentage of each outcome type correctly predicted
across all posterior samples.

ethnicity was categorised as BAME. These three variables were then included in a linear 288

regression to predict median predictive accuracy. This regression indicated that having 289

a history of coronary artery disease led to improved predictive power 290

(β = 0.14, t478 = 5.66, p < 0.01); other factors were insignificant. 291

Relative changes in biomarker values and their raw values are 292

similarly predictive of outcomes 293

We tested the hypothesis that the biomarker values themselves opposed to their relative 294

changes from a patient-specific baseline were most important in determining outcomes 295

by fitting our multivariate Markov model using the biomarker values as covariates: we 296

term this model the “absolute values” analysis to distinguish it from the “relative 297

changes” analysis. 298

To do so, we compared the predictive power of the absolute values analysis with that 299

of the relative changes one. In S13 Fig, we show the predictive accuracy in determining 300

patients’ outcomes for an independent hold-out hospital across the two analyses. This 301

illustrates very similar accuracies across the two analyses, and that it is not possible for 302

us to conclude whether the absolute biomarker values or the changes from baseline are 303

most clinically relevant. 304

To explore whether the two analyses led to different conclusions about clinically 305

relevant changes in biomarker values, we compared the ORs for mortality risk across the 306

analyses. The ORs from the absolute values analysis were, like those from the relative 307

changes analysis, very consistent across the hospitals (S14 Fig; 308

ρ = 0.88, t16 = 7.40, p < 0.01; using posterior median estimates). We also compared the 309

ORs across the two analyses (S15 Fig). The ORs produced across the two analyses were 310

of the same sign for 15/18 biomarkers for SUNY and for 15/18 for Maimonides, and the 311
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ORs were strongly positively correlated for both hospitals (SUNY: 312

ρ = 0.77, t16 = 4.88, p < 0.01; Maimonides: ρ = 0.94, t16 = 11.4, p < 0.01; both using 313

posterior median estimates). Overall, there were six biomarkers whose increases were 314

associated with increases in mortality risk across the two analyses and hospitals: BASO 315

PCT, Creatine, LYM ABS, MCV, RDW and WBC; and a set of seven biomarkers 316

whose increases led to reductions in risk: CO2, EOS PCT, Glucose Random, LYM PCT, 317

MCH, MONO ABS and NEU ABS. 318

Discussion 319

A number of studies have demonstrated that dynamic changes in certain laboratory tests 320

may have potential as COVID-19 prognostic factors [12,14,15]. Here, we demonstrate 321

the external validation of a number of these dynamic biomarkers. In accordance with 322

existing studies, we find a number of biomarkers at presentation (or when measured at a 323

single time-point) increased mortality risk across both hospital cohorts (univariate ORs): 324

these included eosinopenia [25], thrombocytopenia [26,27], lymphocytopenia [27,28] and 325

increased blood urea concentration (in our case indicated by BUN) [11]. In addition, we 326

quantified the reduction in mortality risk associated with dynamic variation in 327

biomarkers and, across the two hospitals found remarkably consistent estimates. 328

Interestingly, we identified biomarkers that have little prognostic value at presentation 329

whereas their dynamic changes do: increases in MCV, for example, increased mortality 330

risk. These results highlight the potential importance of measuring dynamic changes in 331

biomarkers for patient prognosis. Our model could better predict outcomes for patients 332

who went on to be discharged opposed to those who eventually died, indicating the 333

challenges in assessing mortality risk in hospitalised COVID-19 patients. 334

Our study suffered from a number of limitations. Data availability limited the 335

prognostic factors tested, and future work is therefore required to quantify the mortality 336

risk associated with dynamic changes in other prognostic factors that are known to be 337

important at presentation. These include abnormal biomarkers of inflammation, 338

myocardial injury, acute respiratory distress syndrome (ARDS) and 339

coagulopathy [26,28]. We also did not include time-dependent changes in certain 340

chemokines and cytokines, which can also indicate disease progression [12,29]. 341

Additionally, we did not account for the potential impact of patient treatment on 342

dynamic changes in biomarkers or on outcomes. Mechanical ventilation of patients with 343

ARDS, for example, is used to maintain certain arterial pCO2 values, and both 344

mechanical ventilation and certain COVID-19 pharmaceutical treatments can influence 345

inflammatory markers [30,31]. We considered patients solely hospitalised during early 346

to mid-2020 within a single region (New York), but novel variants and existing 347

immunity may alter survival [32]. Within certain settings, patient survival has improved 348

throughout the course of the pandemic [33], and temporal recalibration of multivariate 349

regression models, which aim to quantify the OR of survival for different prognostic 350

factors, is therefore necessary to ensure survival is not under- or overestimated [34]. By 351

using a relatively simple model (which assumed a linear functional form on the log-odds 352

scale), we focused on the ability of our model to explain not predict [35]. Using this 353

approach, it is possible that we missed important contributions from the interactions 354

between factors, and future work could investigate the use of models such as Bayesian 355

Additive Regression Trees [36], which allow non-linear interactions between regressors. 356

Whilst our model performed well across the two cohorts examined, we caution 357

against its use as a dynamic prognostic model in clinical settings. In order for it to be 358

used as thus, any such model requires training and evaluation over a much larger sample 359

size across multiple settings including the full set of factors implicated with risk. The 360

ease of use in a clinical setting and effects on clinicians’ behaviour, comparison with 361
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existing prognostic models, cost-effectiveness and impact on patient health must also be 362

assessed prior to the implementation of any prognostic model [37]. 363
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Supporting information 474

• S1 Table. Biomarker abbreviations. 475

• S2 Table. Priors used to estimate Markov model. 476

• S1 Fig. Posterior predictive checks: demographic factors for SUNY 477

predicting an independent SUNY dataset. Each panel corresponds to a 478

different binary variable, with the horizontal axis indicating its value. Orange 479

points indicate observed mortality; black point-ranges indicate model estimated 480

mortality, with the middle point indicating the posterior median, and the ranges 481

indicating the 25%-75% ranges. The predictions were produced using the 482

“postadmission” regression set in the Markov model. 483
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• S2 Fig. Posterior predictive checks: dynamic factors for SUNY 484

predicting an independent SUNY dataset. Each panel corresponds to a 485

different binarised variable (details of binarisation in text), with the horizontal 486

axis indicating its value. Orange points indicate observed mortality; black 487

point-ranges indicate model estimated mortality, with the middle point indicating 488

the posterior median, and the ranges indicating the 25%-75% ranges. The 489

predictions were produced using the “post-admission” regression set in the 490

Markov model. 491

• S3 Fig. Posterior predictive checks: demographic factors for SUNY 492

predicting an independent Maimonides dataset. Each panel corresponds to 493

a different binary variable, with the horizontal axis indicating its value. Orange 494

points indicate observed mortality; black point-ranges indicate model estimated 495

mortality, with the middle point indicating the posterior median, and the ranges 496

indicating the 25%-75% ranges. The predictions were produced using the 497

“post-admission” regression set in the Markov model. 498

• S4 Fig. Posterior predictive checks: dynamic factors for SUNY 499

predicting an independent Maimonides dataset. Each panel corresponds to 500

a different binarised variable (details of binarisation in text), with the horizontal 501

axis indicating its value. Orange points indicate observed mortality; black 502

point-ranges indicate model estimated mortality, with the middle point indicating 503

the posterior median, and the ranges indicating the 25%-75% ranges. The 504

predictions were produced using the “post-admission” regression set in the 505

Markov model. 506

• S5 Fig. Posterior predictive checks: demographic factors for 507

Maimonides predicting an independent Maimonides dataset. Each panel 508

corresponds to a different binary variable, with the horizontal axis indicating its 509

value. Orange points indicate observed mortality; black point-ranges indicate 510

model estimated mortality, with the middle point indicating the posterior median, 511

and the ranges indicating the 25%-75% ranges. The predictions were produced 512

using the “post-admission” regression set in the Markov model. 513

• S6 Fig. Posterior predictive checks: dynamic factors for Maimonides 514

predicting an independent Maimonides dataset. Each panel corresponds to 515

a different binarised variable (details of binarisation in text), with the horizontal 516

axis indicating its value. Orange points indicate observed mortality; black 517

point-ranges indicate model estimated mortality, with the middle point indicating 518

the posterior median, and the ranges indicating the 25%-75% ranges. The 519

predictions were produced using the “post-admission” regression set in the 520

Markov model. 521

• S7 Fig. Posterior predictive checks: demographic factors for 522

Maimonides predicting an independent SUNY dataset. Each panel 523

corresponds to a different binary variable, with the horizontal axis indicating its 524

value. Orange points indicate observed mortality; black point-ranges indicate 525

model estimated mortality, with the middle point indicating the posterior median, 526

and the ranges indicating the 25%-75% ranges. The predictions were produced 527

using the “post-admission” regression set in the Markov model. 528

• S8 Fig. Posterior predictive checks: dynamic factors for Maimonides 529

predicting an independent SUNY dataset. Each panel corresponds to a 530

different binarised variable (details of binarisation in text), with the horizontal 531

axis indicating its value. Orange points indicate observed mortality; black 532
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point-ranges indicate model estimated mortality, with the middle point indicating 533

the posterior median, and the ranges indicating the 25%-75% ranges. The 534

predictions were produced using the “post-admission” regression set in the 535

Markov model. 536

• S9 Fig. Comorbidity correlations in each of the hospitals. The color of 537

each bubble indicates the sign and magnitude of the correlation in presence of 538

paired correlations; the size of each bubble indicates the number of individuals 539

with both conditions. 540

• S10 Fig. Comparing laboratory values at admission across hospitals. 541

Each panel shows data for one of the n = 19 common tests across the hospitals. 542

• S11 Fig. Assessing between- versus within-hospital predictive accuracy. 543

The horizontal axis shows the accuracy in predicting patient outcomes (i.e. death 544

or discharge) using a Markov regression model with covariate sets as named on 545

the vertical axis. The points and whiskers indicate the posterior medians and 546

2.5%-97.5% posterior intervals for the percentage of patients whose outcome was 547

correctly determined across MCMC draws. Each panel indicates the hospital 548

whose data was used to train the model. 549

• S12 Fig. Variable importance metrics from a Random Forest regression. 550

See text for more information. 551

• S13 Fig. Comparing the predictive power of raw biomarker values with 552

the relative changes from baseline. The horizontal axis shows the accuracy in 553

predicting patient outcomes (i.e. death or discharge) using a Markov regression 554

model across each hospital. The different colours indicate the two covariate types 555

included in the analysis: either the raw biomarker values (denoted “absolute 556

values”) or the relative changes from baseline (denoted “relative changes”). The 557

points and whiskers indicate the posterior medians and 2.5%-97.5% posterior 558

intervals for the percentage of patients whose outcome was correctly determined 559

across MCMC draws. 560

• S14 Fig. Comparing the ORs for mortality risk for the dynamic factors 561

across hospitals from the absolute values analysis. The horizontal axes 562

displays the ORs for daily mortality risk from SUNY and the vertical axes show 563

the ORs from Maimonides. The ORs were estimated using the multivariate 564

Markov model. Points show the posterior median ORs; the whiskers display the 565

25% and 75% posterior quantiles. The orange dashed lines show the OR = 1 cases; 566

the dashed black lines indicate equality across ORs calculated across the hospitals. 567

The blue line shows least squares regression lines using the posterior median ORs. 568

• S15 Fig. Comparing the ORs for the relative changes analysis with those 569

from the absolute values analysis. The horizontal axes displays the ORs for 570

daily mortality risk from the relative changes analysis and the vertical axes show 571

the ORs from the absolute values analysis. The ORs were estimated using the 572

multivariate Markov model. Points show the posterior median ORs; the whiskers 573

display the 25% and 75% posterior quantiles. The orange dashed lines show the 574

OR = 1 cases; the dashed black lines indicate equality across ORs calculated 575

across the hospitals. The blue line shows least squares regression lines using the 576

posterior median ORs. Each panel corresponds to a different hospital. 577
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