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ABSTRACT 

Background 

Early detection through screening programs has proven to be the most effective strategy to reduce the 

incidence and mortality of colorectal cancer. The most widely implemented non-invasive screening test is 

the fecal immunochemical test, which presents an inadequate sensitivity for the detection of precancerous 

advanced adenomas. This fact, together with the modest participation rates in screening programs, 

highlights the need for a blood test that could improve both the adherence to screening and the selection to 

colonoscopy.  

Methods 

In this study, we conducted a serum-based discovery and validation of circulating cell-free DNA (cfDNA) 

methylation biomarkers for colorectal cancer screening in a multicentre cohort of 433 serum samples 

including healthy controls, benign pathologies, advanced adenomas, and colorectal cancer. First, we 

performed an epigenome-wide methylation analysis with the MethylationEPIC array in 280 cfDNA samples 

using a pooling approach, followed by a robust prioritization of candidate biomarkers for the joint detection 

of advanced adenomas and colorectal cancer (advanced neoplasia). Then, candidate biomarkers were 

validated by pyrosequencing in independent individual 153 cfDNA samples.  

Results 

We report GALNT9, UPF3A, WARS, and LDB2 as new non-invasive methylation biomarkers for the early 

detection of colorectal advanced neoplasia. A model composed of GALNT9, UPF3A, WARS, and LDB2 

reported a sensitivity of 62.1% and a specificity of 97.4% for the detection of advanced neoplasia. On the 

other hand, the combination of GALNT9 and UPF3A by logistic regression discriminated advanced neoplasia 

with 78.8% sensitivity and 100% specificity, outperforming the commonly used fecal immunochemical test 

and the methylated SEPT9 blood test. 
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Conclusions 

Serum methylation levels of GALNT9, UPF3A, WARS, and LDB2 represent highly specific and sensitive novel 

blood-based biomarkers for the detection of colorectal cancer and premalignant advanced adenomas of 

both distal and proximal locations. The reported results show the feasibility of DNA sample pooling 

strategies for biomarker discovery. Overall, this study highlights the utility of cfDNA methylation for the early 

detection of colorectal neoplasia, with the potential to be implemented as a non-invasive test for colorectal 

cancer screening. 

Keywords: Advanced adenomas, Circulating cell-free DNA, Colorectal cancer, DNA methylation, Non-invasive 

biomarkers, Liquid biopsy, Screening, Serum.  
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BACKGROUND 

Colorectal cancer (CRC) is the third cancer with the highest incidence worldwide and the second leading 

cause of cancer death in both sexes [1]. Diagnosis at advanced symptomatic stages is responsible for low 

survival  (14% for stage IV) compared to 90% five-year survival for stage I and II [2]. A recent decrease in CRC-

related mortality and incidence has been reported, mainly due to the implementation of screening programs 

that enable early detection of preclinical CRC and the removal of precancerous colorectal adenomas [3–5]. 

Despite strong evidence supports the reduction of both CRC incidence and mortality related to screening 

[6,7], the overall participation rate in stool-based screening programs using the fecal immunochemical test 

(FIT) followed by a confirmatory colonoscopy remains modest (49.5% in Europe and 43.8% worldwide) [4,8]. 

Also, although FIT reports high specificity (90-94%) and convenient sensitivity (73-88%) for colorectal tumors, 

the sensitivity for the detection of AA is moderate to low (22-56%) [9–12]. Since the effectiveness of a 

screening test relies not only on the diagnostic performance of the test but also on its acceptance by the 

target population, test preference for CRC screening has been evaluated. A survey-based study reported as 

first choice a blood test over a stool one [13];  similarly, among screening-enrolled individuals who refused 

colonoscopy, 83% preferred a non-invasive blood-based test, 15% chose a fecal test and 3% refused any test 

[14]. Therefore, participation in screening programs could significantly improve by offering a non-invasive 

blood-based test. 

Liquid biopsy has emerged as a non-invasive alternative to traditional procedures for sampling. Blood-based 

screening has the advantage of being easily available, repeatable, and minimally invasive for the patient [15]. 

Circulating cell-free DNA (cfDNA) can be detected in body fluids and has been proposed as a source of liquid 

biopsy biomarkers as it reflects alterations occurring during neoplastic transformation, such as aberrant 

methylation in colorectal carcinogenesis [16,17]. Recent epigenome-wide methylation analyses have 

reported that alterations in DNA methylation arise during the early stages of tumor progression and that the 

heterogeneity of the different pathways to CRC is already detectable in colorectal adenomas [18,19]. The 

Illumina MethylationEPIC BeadChip array has proven to be reliable and consistent for DNA methylation 
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analysis [20], and its combination with sample pooling represents a particularly suitable strategy for the cost-

effective analysis of large sample sets aiming to discover differentially methylated signatures [21,22]. In this 

study, following a cfDNA pooling strategy, we aimed to identify non-invasive methylation biomarkers for the 

early detection of both colorectal cancer and advanced precancerous lesions. Here we report the discovery 

and independent validation of combined serum-based methylation biomarkers that provide a new highly 

specific and sensitive non-invasive test for the screening and early detection of colorectal cancer and 

advanced adenomas. 
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METHODS 

Study design 

The study was conducted in three phases: (i) a high-throughput discovery analysis, paired with a statistically 

robust biomarker prioritization, was performed to identify candidate non-invasive methylation biomarkers 

for CRC screening (joint detection of AA and CRC), using a sample pooling strategy. Next, targeted assays 

were designed and optimized for the quantification of the candidate biomarkers in an independent cohort of 

patients (individual serum samples). The targeted analysis was divided into (ii) a preliminary evaluation of 

the candidate biomarkers in a small subset of samples, followed by the application of penalized regression 

models to further reduce the number of biomarkers and to obtain specific predictive biomarkers subsets; 

and (iii) a subsequent validation and final statistical model construction in a larger serum sample set, based 

on the selected biomarkers. The final classification models were also evaluated in non-colorectal tumors. An 

overview of the study design is shown in Figure 1.  
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Figure 1. Study workflow. The study was divided into (i) a biomarker discovery phase, (ii) a candidate biomarker 
evaluation phase, and (iii) a selected biomarker validation. cfDNA: cell-free DNA; CRC: colorectal cancer (AJCC staging 
system); IBD: inflammatory bowel disease; NCF: no colorectal findings; BEN: benign pathology; NAA: non-advanced 
adenomas; D-AA: distal advanced adenomas; P-AA: proximal advanced adenomas; NN: no neoplasia; AN: advanced 
neoplasia; DMP: differentially methylated position; RRBS: reduced representation bisulfite sequencing. 

Patients and samples 

Individuals were recruited from the following Spanish Hospitals: Complexo Hospitalario Universitario de 

Ourense (Ourense), Hospital Clínic de Barcelona (Barcelona), Hospital Donostia (San Sebastián), and Hospital 

General Universitario de Alicante (Alicante). A total of 435 individuals between 50-75 years old were 

selected. Exclusion criteria included a personal history of CRC, digestive cancer or inflammatory bowel 
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disease, a severe synchronic illness, and a previous colectomy. All individuals included in the study 

underwent a colonoscopy which was performed by experienced endoscopists following the 

recommendations from the Spanish guidelines on quality of colonoscopy [23]. Blood samples were obtained 

immediately before the colonoscopy procedure. Blood samples were coagulated and subsequently 

centrifuged according to the manufacturer’s instructions for serum collection. Circulating cell-free DNA 

(cfDNA) was extracted from 0.5-2 mL serum according to availability. Serum samples were stored at −20 °C 

until cfDNA extraction.  

Individuals were classified according to the most advanced colorectal finding. Lesions were considered 

‘proximal’ when located only proximal to the splenic flexure of the colon and ‘distal’ when found only in the 

distal colon or in both distal and proximal colon. Advanced adenomas (AA) are defined as adenomas ≥ 1 cm, 

with villous components or high-grade dysplasia. 

We performed a stratified random sampling using colorectal findings and sex as stratifying variables. Strata 

were matched by age and recruitment hospital. This multicenter cohort was separated into two independent 

subsets: Biomarker discovery sample set (n=280; 140 female and 140 male) and Biomarker validation sample 

set (n=153; 73 female and 80 male). A description of the independent cohorts is presented in Table 1. 

Biomarker discovery sample set included 30 individuals with no colorectal findings (NCF), 50 with benign 

pathologies (BEN: hemorrhoids and diverticula), 50 with non-advanced adenomas (NAA), 50 with proximal 

AA (P-AA), 50 with distal AA (D-AA), and 50 CRC cases (17 stage I, 13 stage II, 13 stage III and 7 stage IV), 

according to the AJCC staging system [24]. On the other hand, the Biomarker evaluation and validation 

sample set comprised 22 NCF individuals, 20 BEN, 18 NAA, 31 D-AA, 27 P-AA, and 35 CRC cases (11 stage I, 

11 stage II, 6 stage III, and 7 stage IV). ‘Advanced colorectal neoplasia’ (AN) was defined as AA or CRC. In 

contrast, NCF, BEN, and NAA were considered together as ‘no neoplasia’ (NN). 

The specificity of the biomarkers for the detection of colorectal cancer and advanced adenomas was 

evaluated in an independent cohort of 16 patients with different cancer types, including breast (n=4), kidney 

(n=2), lung (n=5), ovary (n=1), and prostate (n=4) cancer (Supplementary Table 4). Additionally, 8 pairs of 
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matched serum and plasma samples from the same individual were used to account for differences in the 

methylation levels between serum and plasma (3 NCF, 2 BEN, and 3 NAA). 

 
 

Discovery cohort 
n=280 

 
Biomarker 

evaluation cohort 
n=48 

 
Biomarker 

validation cohort 
n=105 

  AN NN  AN NN  AN NN 
Total (n)  140 140  27 21  66 39 

Age median  
     (range) 

 62.0 
(51-72) 

62.0 
(51-72) 

 62.5 
(50-75) 

62.0 
(51-75) 

 63.5 
(50-75) 

63.0 
(50-72) 

Sex          
Male  70 70  14 10  36 20 

Female  70 70  13 11  30 19 

          
NCF  - 30  - 7  - 15 

          
BEN  - 50  - 7  - 13 

Hemorrhoids  - 25  - 3  - 8 
Diverticula  - 25  - 4  - 5 

          
NAA  - 50  - 7  - 11 

          
AA  100 -  16 -  42 - 
AA histology   -       

T (size >10mm)  52 -  11 -  24 - 
TV  36 -  3 -  15 - 

V  12   2 -  3 - 
AA dysplasia          

Without dysplasia  7 -  . -  5 - 
LGD  89 -  13 -  31 - 
HGD  4 -  3 -  7 - 

AA localization          
Distal  50 -  8 -  23 - 

Proximal  50 -  8 -  19 - 

          
CRC  50 -  11 -  24 - 
CRC AJCC stage          

Stage I  16 -  3 -  8 - 
Stage II  14 -  3 -  8 - 

Stage III  14 -  4 -  2 - 
Stage IV  6 -  1 -  6 - 

CRC localization          
Distal  39 -  9 -  12 - 

Proximal  11 -  2 -  12 - 

Table 1. Independent cohorts used for discovery, evaluation, and validation of biomarkers. The number of 

patients, age median and range, sex, and colorectal findings are provided for each sub-cohort. AN: advanced neoplasia; 
NN: no neoplasia; NCF: no colorectal findings; BEN: benign pathology; NAA: non-advanced adenomas; D-AA: distal 
advanced adenomas; P-AA: proximal advanced adenomas; T: tubular; TV: tubulovillous; V: villous; LGD: low-grade 
dysplasia; HGD: high-grade dysplasia; CRC: colorectal cancer; AJCC: American Joint Committee on Cancer staging 
system. 
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DNA extraction and sample pooling 

cfDNA from samples used for biomarker discovery was extracted with a phenol-chloroform protocol as 

described by Hufnagl et al. [25], with minor modifications. DNA was quantified in each sample using Qubit 

dsDNA HS Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA). For methylation biomarker discovery we 

followed a DNA pooling strategy. A detailed description of the pooling protocol can be found in [22]. 28 

independent cfDNA pooled samples were constructed using equal amounts of cfDNA from 5 men and 5 

women from the same pathological group, recruitment hospital- and age-matched. Pools were divided into 

no neoplasia (NN) and advanced colorectal neoplasia (AN). The NN group comprised 13 cfDNA pooled 

samples: 3 pools of NCF individuals, 5 pools of BEN (hemorrhoids and diverticula), and 5 pools of individuals 

with NAA. On the other hand, the 15 cfDNA pooled samples of advanced neoplasia (AN) included 5 pools of 

individuals with AA located only in the proximal colon (P-AA), 5 pools of individuals with AA located in the 

distal colon of both proximal and distal locations (D-AA), 3 pools of CRC patients stages I and II, and 2 pools 

of CRC stages III and IV (Supplementary Table 2). The cfDNA pools were stored at − 20 °C and were sent to 

the Cancer Epigenetics and Biology Program (PEBC) facilities at the Bellvitge Biomedical Research Institute 

(IDIBELL, Barcelona, Spain) for processing and methylation quantification. 

The QIAmp Circulating Nucleic Acid Kit (Qiagen, Hilden, Germany) was used for cfDNA extraction from serum 

and plasma samples in the evaluation and validation phase. Individual cfDNA samples were bisulfite-

converted using EZ DNA Methylation-Direct Kit (Zymo Research, Irvine, CA, USA) according to the 

manufacturer’s protocol. Bisulfite treated cfDNA samples were stored at -80°C. 

Genome-wide DNA methylation measurements 

DNA methylation of pooled samples was measured with the Infinium MethylationEPIC BeadChip array 

(Illumina, San Diego, CA, USA). Pooled samples were bisulfite-treated and arrays were hybridized following 

the manufacturer’s instructions. A total of 865,859 CpG sites were quantified throughout the genome, 

covering promoter CpG islands, RefSeq genes, open chromatin, and enhancer intergenic regions identified by 
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FANTOM5 and ENCODE projects [26–28]. Importantly, to minimize the potential impact of batch effects and 

confounder variability, samples of each pathological group were randomly allocated to the slides. 

Methylation biomarker discovery 

Illumina methylation data were preprocessed and analyzed using the R environment (versions 3.3.3 and 

3.4.0) [29] with R and Bioconductor [30] packages (see Additional File 2 information for details on quality 

control and preprocessing). Methylation levels were expressed as beta-values for visualization and intuitive 

interpretation of the results. Methylation expressed as M-values (logit transformation of the beta-values) 

were used for differential methylation analysis and biomarker selection, as recommended by Du et al. [31]. 

To test for differentially methylated positions (DMPs) between AN (AA or CRC) and NN (NCF, BEN, or NAA) 

we used the limma package [8]: linear models were fitted for each CpG site across all samples by generalized 

least squares, and an empirical Bayes method was used to compute the p-values. As recommended by 

Mansell et al., [32] linear regression assumptions were checked for each model using the gvlma package 

[33]. 

To select and prioritize the DMPs as candidate biomarkers we first applied the constraint-based Statistically 

Equivalent Signature (SES) algorithm for feature selection, contained in the MXM package [34]: multiple CpG 

sets with minimal size and maximal predictive power for the binary classification problem NN vs AN were 

obtained by iteratively comparing logistic regression models through a chi-square test. Then, the different 

CpG subsets were used to build classification models based on support vector machine (e1071 package) [35], 

random forest (randomForest package) [36], and logistic regression. Models were cross-validated to select 

candidate CpG biomarkers with minimum prediction error for NN vs AN classification. 

Methylation microarray data were compared with an external RRBS (Reduced Representation Bisulfite 

Sequencing) dataset targeting CpG-rich regions of 20 AA and 27 CRC cases, with matched adenoma/tumor, 

healthy mucosa, and serum samples of each patient; and 24 serum samples from healthy controls. A subset 

of CpG sites that reported concordance in methylation differences between NN and AN in both datasets 

were added to the biomarker list. 
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Targeted methylation quantification by bisulfite pyrosequencing 

The methylation levels of the candidate biomarkers, together with the v2 promoter region of the SEPT9 

gene, were evaluated by bisulfite pyrosequencing in 153 individual serum samples. PCR and sequencing 

primers were designed with the PyroMark Assay Design software (version 2.0.1.15, Qiagen, Hilden, 

Germany). Bisulfite-converted cfDNA (2 μl) was subjected to PCR amplification using primers flanking the 

CpG candidate biomarkers. Multiplex reactions including 3-6 candidate markers were performed, followed 

by nested singleplex PCR reactions using a biotin-labeled primer. Primers and PCR conditions for multiplex 

and singleplex PCR are provided in the supplementary information (see Additional File 2 and Supplementary 

Table 3). Biotin-labeled amplicons were further resolved and visualized on 3% agarose gels. Pyrosequencing 

was performed using a PyroMark Q96 ID pyrosequencer (Qiagen, Hilden, Germany) according to the 

manufacturer's protocol for CpG methylation quantification. Data acquisition and methylation 

measurements were conducted at the Biomedical Research Institute of Malaga facilities (IBIMA, Málaga, 

Spain) using PyroMark Q96 ID software, CpG analysis mode (version 1.0.11). 

Fully methylated and unmethylated controls were included in each run and were used to check bisulfite 

conversion, the performance of the assay, and to account for batch‐to‐batch variation. DNA extracted from 

peripheral blood from a donor was used to prepare controls. For the fully methylated control DNA was 

treated with CpG methyltransferase (M.SssI; New England Biolabs, Ipswich, MA, USA), while for the 

unmethylated control whole genome amplification was performed to eliminate methylation marks (illustra 

GenomiPhi V2 DNA Amplification Kit, GE Healthcare; Chicago, IL, USA).   

Biomarker selection and classification model development 

Both raw and log10-transformed methylation percentages were subjected to multivariate analyses for the 

development and validation of methylation-based classification models. The validation set of 153 individual 

samples was randomly divided for the multi-step process of methylation panel development (Table 1).  
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First, a preliminary evaluation of the methylation levels of the candidate biomarkers was carried out in a 30% 

sample subset (n=48, 21 NN, 8 D-AA, 8 P-AA, and 11 CRC cases). Penalized logistic regressions Least Absolute 

Shrinkage and Selection Operator (LASSO) and Elastic net were applied to the candidate biomarkers, age, 

and sex for feature selection, with the glmnet R package [37]. The minimum mean cross-validation error was 

used to define the penalty factor for LASSO and Elastic net models. Biomarkers present in the LASSO and 

Elastic net-derived models were selected for validation. Then, multivariate logistic regressions were fitted in 

the remaining 70% samples (n=105, 39 NN, 23 D-AA, 19 P-AA, and 24 CRC cases) to derive models based on 

the selected biomarkers.  

Statistical analyses 

All statistical analyses were performed with the R environment (version 3.4.0). In the epigenome-wide 

methylation analyses, p-values were adjusted for multiple testing with the Benjamini-Hochberg procedure to 

control the false discovery rate (FDR). One-sided Fisher’s exact tests were used to assess the significance of 

the enrichment of the DMPs to functionally annotated elements using the annotation of the complete array 

as background. To assess the performance of the classification models, receiver-operating characteristic 

(ROC) curves were elaborated, derived by the leave-one-out cross-validation approach, and AUC, sensitivity, 

and specificity values were estimated with their corresponding 95% confidence intervals. The best cut-off 

values were determined by the Youden Index method [38]. Negative and positive predictive values (NPV, 

PPV) were also estimated for the best cut-off values. Fisher's exact tests were employed to compare the 

proportion of distal and proximal lesions detected. Wilcoxon rank-sum test was used to compare the 

methylation levels between NN and AN in individual serum samples. Non-parametrical Wilcoxon signed-rank 

test was used to compare methylation levels between matched serum and plasma samples. 
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RESULTS 

Sample pooling 

A total of 28 cfDNA pooled samples were used in the epigenome-wide methylation analysis for biomarker 

discovery. As described in [22], 10 individuals with the same colorectal pathology were included in each pool 

and were matched by recruitment hospital, sex, and age (median 62, range 51-72). The final quantity of 

cfDNA in the pools ranged from 62 to 403 ng. There was no statistically significant difference in the mean 

age between pools (ANOVA, p-value < 0.05). The age range matches the USPSTF guideline recommendation 

for CRC screening (50-75 years) [39]. The NN group comprised 13 cfDNA pooled samples (3 NCF, 5 BEN, and 

5 NAA), while the AN included 15 cfDNA pooled samples (5 D-AA, 5 P-AA, 3 CRC stages I/II, and 2 CRC stages 

III/IV). A detailed description of the pooled samples can be found in Supplementary Table 2. 

Epigenome-wide biomarker discovery 

MethylationEPIC BeadChip was used for quantitative DNA methylation profiling in the 28 cfDNA pooled 

samples. We correctly detected 97.78% of the total probes present on the array. All failed positions (1,795 

probes with a detection p-value > 0.01 and 17,452 probes with a bead count < 3) were removed before 

analysis. After quality control and data preprocessing, 18,035 probes were discarded as they did not hold the 

assumptions for linear regression model fitting (i.e. linearity, homoscedasticity, uncorrelatedness, and 

normality of the standardized residuals). After quality control and preprocessing, a total of 741,310 CpG sites 

mapped to the human genome assembly GRCh37/hg19 were left for differential methylation testing. No 

samples were removed due to quality issues. 

The purpose of screening programs includes the early detection of preclinical CRC and the detection and 

removal of AA [3,40]; therefore, differential methylation was assessed between NN and AN groups. The 

analysis between these cfDNA pools revealed 376 differentially methylated positions (10% FDR, BH-adjusted 

p-value) (Fig. 2A), annotated to a total of 290 gene regions and 183 CpG islands. Chromosomes 1 and 2 hold 

the majority of DMPs (10.4% and 7.7%, respectively) possibly due to their larger length. Most CpG sites (326 
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DMPs, 86.7%) were found to be hypermethylated in AN (Fig. 2B). Concerning the distribution across 

functional elements, DMPs were mainly located in open sea regions (51.59%) and CpG islands (23.67%) (Fig. 

2C). Differentially hypermethylated positions were significantly enriched in CpG islands, shelves, and gene 

body regions (Fig. 2D). Clustering analyses of all pooled samples based on the methylation values of the 376 

DMPs (Fig. 3A) suggest the capacity of this differentially methylated signature to discriminate advanced 

neoplasia from no neoplasia controls. 

 
Figure 2. Distribution and annotation of differentially methylated positions (DMPs) between advanced neoplasia and 
no neoplasia pools. A. Manhattan plot for differential methylation. The -log10(p-value) for the 741,310 probes analyzed 
are sorted by chromosome location. Significant DMPs (376) appear above the red dashed line (FDR 10%) B. Volcano 
plot showing the -log10(p-value) versus differences in methylation levels (Δbeta: obtained by subtracting the DNA 
methylation levels (beta-values) of NN from AN). Significant hypermethylated (Δbeta > 0) and hypomethylated (Δbeta < 
0) positions appear highlighted in color and above the red dashed line (FDR 10%). C. Distribution of the DMPs relative to 
CpG islands and functional genomic locations. D. Enrichment of DMPs in relation to CpG island annotation and 
functional genomic regions. The color scale indicates the fold enrichment of all DMPs (grey), hypermethylated (red), 
and hypomethylated (blue) positions. The bolded numbers indicate annotations that are enriched with respect to the 
distribution of probes on the MethylationEPIC array (one-sided Fisher’s exact test p-value < 0.05). Functional 

characterization of probes according to the Methylation EPIC Manifest (R package version 0.6.0) [41]: CpG island: region 

of at least 200bp with a CG content > 50% and an observed-to-expected CpG ratio ≥ 0.6; CpG island-shore: sequences 2 
kb flanking the CpG island, CpG island-shelf: sequences 2 kb flanking shore regions, opensea: sequences located outside 
these regions, promoter regions (5′UTR, TSS200, TSS1500, and first exons), intragenic regions (gene body and 3′UTR), 
and intergenic regions. TSS200, TSS1500: 200 and 1500 bp upstream the transcription start site, respectively.  
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Figure 3. Unsupervised clustering analyses of the 28 cfDNA pooled samples. A. Hierarchical clustering and heatmap 
showing the methylation levels across all samples for the 376 DMPs. B. Hierarchical clustering and heatmap showing 
the methylation levels across all samples for the 26 candidate biomarkers. Each column represents one pool while rows 
correspond to CpG sites. Dendrograms were computed and reordered using Euclidean distance and a complete 
clustering agglomeration. Methylation levels are expressed as beta-values ranging from 0 (blue, unmethylated) to 1 
(red, fully methylated). 

In order to identify the most relevant features, we followed a robust strategy of selection. We first applied 

the constraint-based SES feature selection algorithm [34] on the 376 DMPs to identify combinations of CpGs 

whose performances for the NN vs AN classification were statistically equivalent. A total of 3,256 

combinations of CpG pairs were obtained.  Secondly, we used two strategies for filtering: (a) the CpG pairs 

were used to build classification models (support vector machine, logit regression, and random forest) that 

were cross-validated in the cfDNA pools by the leave-one-out strategy, due to limited sample size. CpG sites 

present in models with more than 20% prediction error were discarded. And then (b) the remaining CpG 

sites were ranked according to the mean difference in the methylation levels. From the ranked list we 

selected the top 15 CpG sites with greater methylation differences and present in models with minimum 

classification error. Finally, due to the limited sensitivity of FIT for the detection of advanced adenomas, 

especially those of proximal location, we also selected 3 additional CpG sites that presented 0% prediction 
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error for the detection of advanced adenomas (1 CpG site derived from the NN vs D-AA comparison; 2 CpG 

sites derived from the NN vs P-AA comparison). 

In parallel, we carried out a comparison between an external RRBS dataset and our methylation microarray 

data. The RRBS dataset comprised serum and tissue samples from patients with CRC, AA, and healthy 

controls. We combined both datasets to select a subset of 8 CpG sites that reported more than 30% 

differences in the methylation levels by bisulfite sequencing, and whose methylation differences showed the 

same direction in our methylation microarray data (i.e. hyper/hypomethylated in AN in both datasets). 

Altogether, a total of 26 CpG positions were selected as candidate biomarkers whose methylation levels and 

their ability to discriminate colorectal advanced neoplasia are shown in Figure 3B. Three of 26 markers were 

hypomethylated, while the rest were found hypermethylated in AN compared to no neoplasia (Fig 4A). 

Description, regulatory features, and relation to CpG island of these 26 CpG candidate biomarkers are 

available in Supplementary Table 4. 

Evaluation of candidate methylation biomarkers and further selection in individual samples 

To evaluate the performance of the 26 candidate biomarkers in individual serum samples, methylation of the 

CpG positions of interest was quantified by bisulfite pyrosequencing in an independent cohort of 153 

individuals (Table 1), which was randomly split between a biomarker evaluation cohort (30%, n=48) and a 

biomarker validation cohort (70%, n=105). Methylation levels of the v2 promoter region of the SEPT9 gene 

were also quantified in all samples. A detailed description of the pyrosequenced regions and the number of 

CpG positions analyzed within each biomarker can be found in Supplementary Table 3. The construction of 

methylation models for CRC screening was conducted in two phases.  

First, the 26 candidate biomarkers were evaluated in a subset of 48 serum samples (30%). The methylation 

levels of the 26 candidate biomarkers in both pooled (MethylationEPIC-derived) and individual cfDNA 

samples (bisulfite pyrosequencing) are shown in Figures 4A and B, respectively. There was a significant 

positive correlation (Pearson’s r > 0.6, p-value < 0.001) between cfDNA methylation in pooled and individual 
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serum samples (Fig 4C, D). The performance (ROC curves, AUC, sensitivity, and specificity) of the 26 

biomarkers for the detection of AN in the 48 samples of the biomarker evaluation cohort is presented in 

Supplementary Figure 1. 

 
Figure 4. Methylation levels of the 26 candidate biomarkers. A. Methylation levels of the 26 CpG sites selected as 
candidate biomarkers in the 28 pooled cfDNA samples, with the corresponding MethylationEPIC CpG probe ID. Average 
methylation of the probes targeting the v2 promoter region of the SEPT9 gene (cg02884239, cg20275528, and 
cg12783819) is also shown. Methylation is shown as beta-values ranging from 0-unmethylated to 1-fully methylated 
(**differential methylation p-value < 0.01; *differential methylation p-value < 0.05). B. Methylation levels of the 26 
candidate CpG sites and SEPT9 promoter in the biomarker evaluation cohort (n=48) of individual serum cfDNA samples. 
Methylation percentage was obtained through bisulfite pyrosequencing (*Wilcoxon rank-sum test p-value < 0.05). C. 
Strip-plot showing the concordance of methylation levels between pooled and individual samples. Each dot represents 
the methylation level of one sample. D. Scatterplot shows the positive significant correlation between methylation in 
pooled and individual cfDNA samples for the 26 candidate CpG sites. 
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To further reduce the number of amplicons for validation, penalized logistic regressions LASSO and Elastic 

net were fitted to the complete list of 26 candidate biomarkers. Classification performance parameters were 

derived by leave-one-out cross-validation. Although only CG3, CG8, CG15, CG16, CG20, CG24, and CG25 

reported statistically significant methylation differences (Wilcoxon rank-sum rest p-value < 0.05) between 

NN and AN (Fig. 4B), variable selection was applied to the whole set of 26 candidate biomarkers since it has 

been reported that prediction power is not always increased with variables significantly correlated with the 

outcome [42]. We produced sparse models containing two (CG3-GALNT9 and CG15-UPF3A; AUC: 0.905, 95% 

CI 0.801-1) and four (CG3-GALNT9, CG15-UPF3A, CG5-WARS, and CG24-LDB2; AUC: 0.827, 95% CI 0.651-1) 

methylation biomarkers, derived by LASSO and Elastic net regularization, respectively. Also, the application 

of Elastic net to the 26 biomarkers, adding the clinical variables age and sex, generated a model containing 

20 biomarkers and sex (AUC: 0.820, 95% CI 0.675-0.966). The four biomarkers selected by the sparse models 

are included in the 20-biomarker signature. Hence, this 20 biomarker set was selected to proceed with the 

validation phase. A detailed description of the biomarkers selected for validation is shown in Table 2, 

including the genomic region and the number of CpG sites analyzed by pyrosequencing. 
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MethylationEPIC 

probe ID 
Gene symbol 

Pyrosequenced region 
(GRCh37/hg19) 

CpG sites 
analyzed 

Relation to 
CpG island 

Regulatory 
feature 

CG2 cg05445162 GCKR chr2:27730152-27730225 1 Opensea Body 

CG3 cg11113216 GALNT9 chr12:132847616-132847751 3 Island Body 

CG4 cg06522913 IDH2 chr15:90630673-90630817 1 Opensea Body 

CG5 cg14838992 WARS chr14:100814702-100814791 3 Opensea Body 

CG6 cg06148974  chr4:1864164-1864242 3 Island  

CG8 cg03111938  chr6:169289158-169289293 5 Island-shelf  

CG9 cg07253636 NOSIP chr19:50077734-50077874 2 Opensea 5'UTR 

CG11 cg25942688 CENPA chr2:27016702-27016821 1 Opensea 3'UTR 

CG12 cg01987330  chr3:142797286-142797375 1 Opensea  

CG14 cg10641001 RDX chr11:110104045-110104122 2 Opensea Body 

CG15 cg01550272 UPF3A chr13:115050863-115050975 1 Island-shelf Body 

CG16 cg03640756 
PCDHG gene 

cluster 
chr5:140864546-140864667 11 Island Body 

CG17 cg26024530  chr10:130281707-130281864 3 Opensea  

CG19 cg15442105 ZNF498 chr7:99227410-99227486 4 Opensea Body 

CG20 cg04544475 RNF43 chr17:56435427-56435508 3 Opensea Body 

CG21† cg16639692 
lncRNA 

LOC648987 
chr5:43037639-43037813 1 Island-shore  

CG23† cg04600077 
lncRNA 

ENSG00000249966 
chr5:1852792-1852864 1 Island-shore  

CG24‡ cg14503564 LDB2 chr4:16723341-16723457 6 Opensea Body 

CG25§ cg18044585 EIF2C2 chr8:141619395-141619528 6 Opensea Body 

CG26‡ cg23653187 PNPLA3 chr22:44319222-44319299 2 Island-shore TSS1500 

Table 2. 20 biomarkers selected for the validation phase.  Regulatory features and relation to CpG island of 
biomarkers annotated according to the Methylation EPIC Manifest: CpG island: region of at least 200 bp with 
a CG content > 50% and an observed-to-expected CpG ratio ≥ 0.6; Island-shore: sequences 2 kb flanking the 
CpG island; Island-shelf: sequences 2 kb flanking shore regions; Opensea: sequences located outside these 
regions; Body: gene body (intragenic region); TSS1500: 1500 bp upstream the transcription start site. 
†Candidate biomarkers derived from the comparison with the external RRBS dataset; ‡candidate biomarkers 
derived from the NN vs P-AA classification; §candidate biomarker derived from the NN vs D-AA classification. 
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Validation of the selected biomarkers and final model construction 

The final 20 selected methylation biomarkers were then quantified in the remaining 105 serum samples 

(70%) (Fig. 5A) to validate their use as non-invasive biomarkers in individual samples. The performance (ROC 

curves, AUC, sensitivity, and specificity) of the 20 selected biomarkers for the detection of AN in the 105 

samples (validation cohort) is presented in Supplementary Figure 2. Multivariate logistic regressions were 

fitted to the selected biomarker subsets obtained from the three best performing models from the previous 

step, to derive three new models containing 2 (CG3-GALNT9 and CG15-UPF3A), 4 (CG3-GALNT9, CG15-

UPF3A, CG5-WARS, and CG24-LDB2), and 20 biomarkers. Performances of the diagnostic prediction models 

in the biomarker validation cohort are summarized in Table 3, while ROC curves are provided in Figure 5B. 

ROC curves and performance parameters were obtained by leave-one-out cross-validation. 

The model composed of GALNT9 and UPF3A showed the best diagnostic performance for CRC screening, 

yielding an AUC of 0.896 (95% CI 0.835-0.958), discriminating advanced neoplasia from no neoplasia controls 

with 78.8% sensitivity and 100% specificity. This model identified 33 out of 42 AA cases (78.6%) and 19 out of 

24 CRC patients (79.2%), with notable detection of early-stage CRC (87.5% and 100% for stages I and II, 

respectively). This 2-biomarker panel detected 87% of distal AA and 68.4% proximal AA. On the other hand, 

the resulting AUC for the model containing GALNT9, UPF3A, WARS, and LDB2 was 0.864 (95% CI 0.798-

0.931), with a sensitivity of 62.1% and a specificity of 97.4%, detecting 28 out of 42 AA (66.7%; 78.3% distal 

and 52.6% proximal), and 13 out of 24 CRC cases (54.2%; 37.5 stage I and 75% stage II). These two models 

demonstrated no significant differences in the detection of distal AA compared to proximal ones (Fisher’s 

exact test p-value > 0.05). Finally, the model containing 20 biomarkers and sex, reported the highest 

sensitivity (92.4%) and the highest detection rate for AA and CRC (92.9% and 91.7%, respectively), but with 

considerably less specificity (17.9%) when compared to the previous models. The logistic classification rules 

of the model containing GALNT9, UPF3A, WARS, and LDB2 and the GANL9/UPF3A model are detailed in the 

supplementary information (see Additional File 2). GALNT9 (CG3) was hypermethylated in AN, whilst UPF3A 

(CG15), WARS (CG5), and LDB2 (CG24) showed hypomethylation in AN. Differences in the methylation levels 
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between NN and AN of these biomarkers were statistically significant (Wilcoxon rank-sum test p-value < 

0.05; Fig. 5A). 

Since plasma samples are most commonly used as a source of cfDNA, methylation of GALNT9, UPF3A, WARS, 

and LDB2 was also evaluated in 8 pairs of matched serum and plasma samples. No statistical differences 

were found between serum and plasma methylation levels (Wilcoxon signed-rank test p-value > 0.01) (Fig. 

5E). 

Analysis and performance of Septin9 methylation 

The methylation EPIC array contains three probes targeting the region of the v2 promoter of the SEPT9 gene 

commonly evaluated for CRC screening [43,44] (cg02884239, cg20275528, cg12783819). None of them 

reported significance for the detection of AN in the epigenome-wide differential methylation analysis 

performed on the 28 cfDNA pooled samples, and showed an average of 0.14% methylation difference 

between NN and AN (Fig. 4A). We reported hypomethylation of SEPT9 in AN in both the biomarker 

evaluation cohort (n=48) (Fig. 4B) and the biomarker validation cohort (n=105) (Fig. 5A). The diagnostic 

performance of the SEPT9 promoter methylation was also evaluated in the biomarker validation cohort, with 

an AUC of 0.504 (95% CI 0.389-0.618) for AN detection and sensitivity and specificity values of 15.2% and 

100%, respectively (Table 3, Figure 5D). Only 7.1% of AA and 29.2% of CRC were detected. 

Evaluation of the classification models in non-colorectal tumors 

To assess the ability of the models to specifically detect colorectal advanced adenomas and cancer, 

methylation of GALNT9, UPF3A, WARS, and LDB2 was quantified in serum samples from patients with lung, 

breast, kidney, prostate, and ovarian cancer (n=16) (Fig. 5C, Supplementary Table 1). When applied to 

different cancer types, the GALNT9/UPF3A model misclassified as advanced colorectal neoplasia 3 out of 16 

cancer cases (18.75%: prostate, kidney, and breast cancer). On the other hand, the model composed of 

GALNT9, UPF3A, WARS, and LDB2 incorrectly identified 1 out of 16 cancer cases (6.25%: ovarian cancer) as 

advanced neoplasia.  
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 Advanced Neoplasia classification  AA detection %  CRC detection % 

 
AUC 

(95% CI) 
Specificity % 

(95% CI) 
Sensitivity % 

(95% CI) 
NPV % 

(95% CI) 
PPV % 

(95% CI) 
 D-AA P-AA All  

Stage 
I 

Stage 
II 

Stage 
III 

Stage 
IV 

All 

GALNT9, UPF3A 
0.896 

(0.835–0.958) 
100 

(91–100) 
78.8 

(67–88) 
73.6 

(60–85) 
100 

(93–100) 
 87 68.4 78.6  87.5 100 100 33.3 79.2 

GALNT9, UPF3A, 
WARS, LDB2 

0.864 
(0.798–0.931) 

97.4 
(87–100) 

62.1 
(49–74) 

60.3 
(47–72) 

97.6 
(87–100) 

 78.3 52.6 66.7  37.5 75 100 33.3 54.2 

20 methylation 
biomarkers, sex 

0.553 
(0.407–0.639) 

17.9 
(8–34) 

92.4 
(83–97) 

58.3 
(28–85) 

65.6 
(55-75) 

 91.3 94.7 92.9  87.5 100 100 83.3 91.7 

SEPT9 
0.504 

(0.389–0.618) 
100 

(91–100) 
15.1 

(8–26) 
41.1 

(31–52) 
100 

(69–100) 
 4.3 10.5 7.1  0 37.5 50 50 29.2 

Table 3. Performance of the models and SEPT9 for advanced neoplasia detection in the biomarker validation cohort. The biomarker validation cohort includes 105 
serum samples. AA and CRC detection rates are also shown. No significant differences were found between the detection of distal versus proximal AA 
(Fisher's exact test p-value>0.05). ROC curves and performance parameters were derived by the leave-one-out cross-validation approach. AUC: area under 
the curve; AA: advanced adenoma; CRC: colorectal cancer; NPV: negative predictive value; PPV: positive predictive value; GALNT9: CG3; UPF3A: CG15; 
WARS: CG5; LDB2: CG24. 
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Figure 5. Diagnostic performance of the models and methylation levels in the biomarker validation cohort (n=105). A.  
Methylation levels of the final 20 selected biomarkers in the validation cohort (*Wilcoxon rank-sum test p-value < 0.05). 
B. ROC curve analysis and AUC for the three models evaluated for CRC screening, derived by leave-one-out cross-
validation (GALNT9: CG3; UPF3A: CG15; WARS: CG5; LDB2: CG24). The red dots indicate the sensitivity and specificity 
values for the best cut-offs based on the Youden Index method. C. Serum methylation levels of CG3-GALNT9, CG15-
UPF3A, CG5-WARS, and CG24-LDB2 in the biomarker validation cohort (n=105), and in lung, breast, kidney, prostate, 
and ovarian cancer cases (n=16). D. Methylation levels and classification performance (ROC curve) of the SEPT9 
promoter. The red dot indicates the best sensitivity and specificity values (Youden Index). E. Comparison of methylation 
levels between matched serum and plasma samples. AUC: area under the curve; NN: no neoplasia; AA: advanced 
adenomas; CRC: colorectal cancer. 
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DISCUSSION 

Early detection has proven to be the most effective strategy to reduce both the incidence and mortality of 

CRC [6,7]. The FIT is the most widely implemented and recommended non-invasive test for CRC screening 

despite having a modest sensitivity for the detection of premalignant AA (22-56%, 90-94% specificity) [9–12]. 

Also, most current screening programs based on FIT followed by a confirmatory colonoscopy suffer from low 

participation rates (43.8% worldwide) [4,8]. Currently, there is no non-invasive biomarker for the early 

detection of CRC and AA that meets all the characteristics of an ideal screening test: easy to perform, safe, 

highly specific and sensitive, cost-effective, and well accepted by patients. To this end, the development of 

liquid biopsy technology has shown to be a promising approach for CRC screening, diagnosis, follow-up, and 

treatment guidance [15], with the potential to be integrated into the clinic.  

In this study, we first conducted an epigenome-wide analysis with the MethylationEPIC array using a cfDNA 

pooling approach to discover potential blood-based biomarkers for the joint detection of AA and CRC. The 

selection process of the candidate biomarkers derived from the epigenome-wide analysis was conducted by 

penalized logistic regression (LASSO and Elastic net regularizations). After prioritization of candidate 

biomarkers and evaluating their methylation levels in individual samples from an independent cohort, we 

developed and cross-validated three prediction models for the detection of AN (AA and CRC). The first one, 

the 20 methylation biomarkers with sex, yielded a sensitivity of 92.4% for AN, at 18% specificity. Despite its 

high sensitivity and highest detection rate for AA (92.9%) and CRC (91.7%), such low specificity is not cost-

effective for screening programs. Secondly, the model composed of GALNT9, UPF3A, WARS, and LDB2 

reported 62.1% sensitivity and 97.4% specificity, whilst the GALNT9/UPF3A model discriminated AN with 

78.8% sensitivity and 100% specificity, showing the best prediction performance for CRC screening. The 

sensitivities reported for our biomarkers are comparable to that of FIT for CRC detection (73-88%) and 

higher than its sensitivity for AA (22-56%) [12]. The combination GALNT9/UPF3A also fulfills the main 

objective of CRC screening, that is the detection of preclinical CRC and premalignant AA, as reported suitable 

detection rate for AA (78.6%) and early CRC stages I and II (87.5% and 100%, respectively). Also, no 
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statistically significant differences were reported between the detection of distal (87%) and proximal (68.4%) 

AA, in contrast with the FIT that performs better for distal lesions than proximal ones [45]. The decreased 

detection of stage IV tumors (33.3%) would not affect the effectiveness of CRC screening, since individuals 

with late-stage cancers are commonly symptomatic and therefore will not be enrolled in screening programs 

targeting the average-risk population.  

Among the four methylation biomarkers, only UPF3A has been previously related to CRC. Located in a CpG 

island shelf, we reported the hypomethylation of UPF3A in AN; and high expression levels of this gene were 

associated with TNM stage, liver metastasis, and recurrence in CRC [46]. GALNT9 is also located in a CpG 

island and showed hypermethylation in AN, which was also reported in brain metastasis from primary breast 

cancer [47]. On the other hand, WARS and LDB2 also show hypomethylation in AN but are located within 

opensea regions. The methylation of regions outside GpG islands does not always directly relate to gene 

silencing. High expression levels of WARS were found in high microsatellite-instable gastrointestinal 

adenocarcinomas, associated with poor prognosis [48], whilst a decreased expression of LDB2 was 

associated with a more favorable outcome in lung adenocarcinoma patients [49].  

Nowadays, the only non-invasive methylation biomarker approved by the FDA for the detection of CRC in 

blood is based on the methylation of the SEPT9 promoter [50]. Nevertheless, the results on the diagnostic 

performance of this plasma biomarker are variable and inconsistent, with sensitivities ranging from 48.2-

95.6% for CRC and 11.2-35% for AA, with 79.1-99.1% specificity. In an asymptomatic average-risk cohort, 

SEPT9 showed lower screening performance than FIT (sensitivity: 68% vs. 79%; specificity: 80% vs. 94%, 

respectively), reviewed in [51–54]. In our study, we evaluated the performance of SEPT9 in both our 

discovery and validation cohorts. The 3 CpG sites targeting SEPT9 interrogated in the MethylationEPIC 

BeadChip were not differentially methylated between NN and AN cfDNA pooled samples, and in the final 

validation cohort, the sensitivity for AN and AA resulted in 15.1% and 7%, respectively, with 100% specificity 

(pyrosequencing 5 CpG positions). Unlike the commercial test, based on qPCR positive reactions in plasma 



27 
 

cfDNA [55], we quantified the methylation of the SEPT9 promoter by pyrosequencing in serum samples and 

thus the results may not be fully comparable. 

Several blood-based methylation biomarkers have recently emerged for the early detection of CRC. Plasma 

BCAT1 and IKZF1 methylation reported sensitivities of 66% and 5% for CRC and AA, respectively, at 95% 

specificity [56]. Methylation markers C9orf50, KCNQ5, and CLIP4 reported 85% sensitivity and 99% specificity 

for CRC detection [57]. Methylated SFRP2 and SDC2 detected CRC and AA with sensitivities of 76.2% and 

58.3%, and 87.9% specificity [58]. A single plasma methylation biomarker, cg10673833, demonstrated 89.7% 

sensitivity and 86.8% specificity for CRC, but the sensitivity dropped up to 33.3% for precancerous lesions 

[59]. 

In contrast with the aforementioned available studies, based on results reported in cell lines, tissue, or stool, 

the design of our study targets the final sample format for both the discovery and validation phases, 

enhancing the possibility to discover and translate robust non-invasive biomarkers. From our proposed 

models, the combination GALNT9/UPF3A showed a convenient 78.8% sensitivity for the joint detection of AA 

and CRC (detecting 78.6% AA and 79.2% CRC: 87.5% stage I and 100% stage II), and an advantageous 

specificity of 100%, superior to other reported potential biomarkers. A cost-effective biomarker for CRC 

screening should present a low false-positive rate to minimize the number of unnecessary, invasive, and 

expensive colonoscopies. Thus, the highest specificity is sought for CRC screening. 

In the ongoing validation of CRC screening biomarkers, it is important to consider data on protocol 

acceptability. A blood-based test has the potential to improve compliance and participation in CRC 

screening, as reported by a randomized controlled trial where 99.5% of subjects who were offered a SEPT9 

as the first option for CRC screening completed the test within six weeks, compared to 88.1% of participants 

in the FIT arm [60]. It was also reported that 83% of individuals enrolled for screening who refused 

colonoscopy, preferred a blood-based test [14]. To optimize the participation in CRC screening, perhaps both 

a fecal and a blood-based test should be offered to target different preferences. A blood test could be 

proposed as a screening option to invitees refusing FIT and other guidelines recommended tests. This is 
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indeed the indication for the SEPT9 test in average-risk individuals older than 50 [54,61]. Another option for 

implementing a blood test in screening programs is triaging FIT-positive individuals for improved selection to 

colonoscopy [62]. Figure 6 shows a schematic representation of the possible implementation of a blood test 

in CRC screening, both as an alternative to FIT aiming to increase participation rates, and as a triage 

approach to optimize selection to colonoscopy. 

 

Figure 6. Schematic representation of the potential implementation of a blood-based test in CRC screening. To target 
different sample preferences and improve participation rates, a blood test could be offered to individuals refusing the 
FIT (left arm). In combination with the FIT, the blood test may improve selection to follow-up colonoscopy after a 
positive FIT (right arm). A FIT test would be offered every two years to individuals rejecting both the FIT and the blood 
test, and to individuals with a previous negative result in either the FIT or blood-based test. 

To the best of our knowledge, this is the first study conducting a serum-based discovery and validation of 

cfDNA methylation biomarkers for CRC screening. The reported results underline the feasibility of cfDNA 

pooled samples as an affordable approach for biomarker discovery. Sample pooling strategies also allow 

increasing the DNA input when small amounts are available [21,22,63,64]. Our multicentre cohort includes 

not only CRC, AA, and healthy controls, but also benign pathologies typically found during screening 

programs that influence the specificity, such as non-advanced adenomas, hemorrhoids, and diverticula. It is 

worth mentioning that our healthy individuals are not self-declared but colonoscopically confirmed and that 

the criteria of inclusion and age range of the patients followed the USPSTF guidelines for CRC screening [39]. 
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Also, we have checked that there is no difference in the methylation levels of our biomarkers between 

serum and plasma cfDNA, and the low volume of serum used (up to 2 mL) is feasible in clinical practice. The 

ability of our methylation biomarkers to specifically detect CRC was also assessed, incorrectly identifying 

only 18.75% of other-cancer samples as colorectal advanced neoplasia by the GALNT9/UPF3A model, and 

6.25% by the GALNT9, UPF3A, WARS, and LDB2 model. 

Nevertheless, our study has some limitations. Firstly, CRC cases were mostly diagnosed having symptoms, 

and secondly, the proportions of CRC cases, tumor stages, and the rest of pathologies are not fully 

representative of a screening population. A large prospective validation in an asymptomatic average-risk 

screening population will be necessary before the implementation of any of the proposed methylation 

models. 

CONCLUSIONS  

We have discovered and reported GALNT9, UPF3A, WARS, and LDB2 as new non-invasive biomarkers for the 

early detection of colorectal cancer and advanced adenomas, regardless of the lesion location. We propose 

that the combination of methylated GALNT9/UPF3A is the most promising to serve as a highly specific blood-

based test for screening and detection of CRC at an early and curable stage, even at the premalignant lesion 

phase. Our results need further validation in a real screening setting. 
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ABBREVIATIONS 

AA: advanced adenoma; AN: advanced neoplasia; AUC: area under the curve; BEN: benign pathologies 

(hemorrhoids and diverticula); cfDNA: circulating cell-free DNA; CRC: colorectal cancer; D-AA: individuals 

with advanced adenomas of both distal and proximal locations; DMP: Differentially methylated position; 

FDR: false discovery rate; FIT: fecal immunochemical test; NCF: no colorectal findings; NN: no neoplasia; 

NPV: negative predictive value; PPV: positive predictive value; ROC: Receiver-operating characteristic. 
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