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 29 

Translational Relevance 30 

Continuous cancer monitoring is clinically necessary for cancer patients to detect minimal residual 31 

disease (MRD), recurrence, and progression, allowing for early intervention and therapy 32 

adjustment. Cell-free DNA (cfDNA) in blood has become an appealing option due to its non-33 

invasiveness. Until now, cfDNA-based cancer monitoring methods have been focused on deep 34 

sequencing at a few known mutations, which are however insufficient when tumors evolve or new 35 

tumors emerge. We present the method, cfTrack, which for the first time uses whole-exome 36 

sequencing (WES) of cfDNA to track the full range of cancer treatment outcomes, including MRD, 37 

recurrence, evolution, and second primary cancer. We demonstrate that, even with very low tumor 38 

fractions, cfTrack achieves sensitive and specific monitoring of tumor MRD/recurrence/evolution 39 

based on both simulation data and a cohort of cancer patients. These findings demonstrate the 40 

clinical utility of cfTrack. 41 

 42 

 43 

Abstract 44 

Purpose: Cell-free DNA (cfDNA) offers a non-invasive approach to monitor cancer. Here we 45 

develop a method using whole-exome sequencing (WES) of cfDNA for simultaneously monitoring 46 

the full spectrum of cancer treatment outcomes, including MRD, recurrence, evolution, and 47 

second primary cancer.  48 
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Experimental Design: Three simulation datasets were generated from 26 cancer patients to 49 

benchmark the detection performance of MRD/recurrence and second primary cancers. For 50 

further validation, cfDNA samples (n=76) from cancer patients (n=35) with six different cancer 51 

types were used for validating the performance of cancer monitoring during various treatments. 52 

Results: We present a cfDNA-based cancer monitoring method, named cfTrack. Taking 53 

advantage of the broad genome coverage of WES data, cfTrack can sensitively detect MRD and 54 

cancer recurrence by integrating signals across the known clonal tumor mutations of a patient. In 55 

addition, cfTrack detects tumor evolution and second primary cancers by de novo identifying 56 

emerging tumor mutations. A series of machine learning and statistical denoising techniques are 57 

applied to enhance the detection power. On the simulation data, cfTrack achieved an average 58 

AUC of 99% on the validation dataset and 100% on the independent dataset in detecting 59 

recurrence in samples with tumor fraction ≥0.05%. In addition, cfTrack yielded an average AUC 60 

of 88% in detecting second primary cancers in samples with tumor fraction ≥0.2%. On real data, 61 

cfTrack accurately monitors tumor evolution during treatment, which cannot be accomplished by 62 

previous methods. 63 

Conclusion: Our results demonstrated that cfTrack can sensitively and specifically monitor the full 64 

spectrum of cancer treatment outcomes using exome-wide mutation analysis of cfDNA. 65 

 66 

 67 

 68 

  69 
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 70 

Introduction 71 

 72 

Despite the rapid development of cancer treatments, a large fraction of patients experiences 73 

recurrence, resistance, or progression of cancer during or after treatment [1]. Even after the 74 

surgical removal of tumors, a patient can still have minimal residual disease (MRD), which is 75 

associated with an increased likelihood of recurrence [2]. Thus, cancer patients need continuous 76 

monitoring in order to detect MRD, recurrence, and progression, thereby facilitating the early 77 

intervention and the therapy adjustment [2][3]. Although cancer monitoring is clinically important, 78 

the sequential sampling of tumor tissue from the patient poses a significant challenge. In this 79 

context, liquid biopsy is an attractive option, especially the usage of cell-free DNA (cfDNA) in 80 

blood. Blood samples can be obtained noninvasively for continuous monitoring, and the tumor-81 

derived DNA fragments in cfDNA can provide comprehensive genetic profiling even of 82 

heterogeneous tumors [4]. 83 

 84 

However, a major challenge associated with cfDNA-based cancer monitoring is the low tumor 85 

content. In cancer patients receiving treatment or with MRD, the fraction of tumor DNA in a cfDNA 86 

sample can be as low as 0.1% [5]. Previous studies on cancer monitoring in plasma have used 87 

deep sequencing on a small mutation panel to discover the weak tumor signal [2][5][6][7][8]. 88 

However, these methods have several crucial limitations: (1) the high cost of deep sequencing 89 

restricts the panels to a small number of known mutations (either common cancer mutations or 90 

mutations selected from the pre-treatment tumor sample of a specific patient); (2) personalized 91 

panels usually require a labor-intensive experimental design; (3)  panel-based monitoring cannot 92 

detect emerging tumors with a different mutation profile, e.g., a second primary cancer, yet 93 

approximately 30% patients develop a second primary cancer [9], driven by de novo tumor 94 
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mutations; and (4) panels usually set detection thresholds by studying a cohort of non-cancer 95 

individuals, which exposes the test to systemic bias from inter-individual variations and inter-96 

experimental differences. Recently, two studies [10][11] presented cancer monitoring methods 97 

using whole-genome sequencing, but they do not yet address limitations 3 and 4 mentioned 98 

above, and focus on mutations seen in pre-treatment tumor samples. In addition, the high cost of 99 

whole-genome sequencing limits the clinical applications of those two methods.  100 

 101 

In this study, we describe a new cancer monitoring approach, named cfTrack, based on the cfDNA 102 

whole-exome sequencing (WES). cfTrack addresses all the aforementioned limitations of existing 103 

methods. Specifically, not only can it monitor the pre-existing cancer (i.e., the original, primary 104 

cancer) to detect recurrence or MRD, but it can also monitor tumor evolution by detecting cancer 105 

progression or the emergence of a second primary cancer. To monitor the pre-existing cancer, 106 

cfTrack (1) uses exome-wide somatic mutations collected in pre-treatment samples (solid tumor 107 

or blood samples) to provide a robust statistical index, then (2) models sample-specific 108 

background noise in the cfDNA sequencing data to provide an unbiased detection threshold for 109 

each patient. To monitor tumor evolution, cfTrack performs detection of exome-wide de novo 110 

tumor mutations in the post-treatment plasma samples, using our recently developed cfSNV 111 

method [12]. With exome-wide sequencing and comprehensive analysis of mutations, cfTrack 112 

can sensitively identify these previously undiagnosed patients with second primary cancers, 113 

comprehensively describe their tumor status, and enable early intervention and personalization 114 

of treatment. Using both simulation data and a cohort of cancer patients (n = 35, 18 prostate 115 

cancer, 8 lung cancer, 4 ovarian cancer, 3 glioma, 1 bladder cancer, and 1 germ cell cancer), we 116 

show that cfTrack achieves sensitive and specific monitoring of tumor MRD/recurrence and 117 

evolution from cfDNA, even with very low tumor fractions. These results demonstrate that cfTrack 118 

enables full-spectrum monitoring of cancer treatment outcomes.  119 

 120 
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Material and Methods 121 

Data collection 122 

We collected WES data from four public datasets. We collected data of 18 metastatic cancer 123 

patients from Adalsteinsson et al. [17] under dbGaP accession code phs001417.v1.p1. Each 124 

patient’s data includes a WBC sample, a tumor biopsy sample, and two plasma samples. We also 125 

collected WES data of 3 cancer patients (1 bladder cancer, 1 prostate cancer, and 1 germ cell 126 

cancer) from Tsui et al. [27] under dbGaP accession code phs002290 and WES data of 3 glioma 127 

patients under SRA accession code SRP268702. Each patient has a WBC sample, a solid tumor 128 

sample, and a plasma sample. We collected WES data of 17 prostate cancer patients from 129 

Ramesh et al. [26] under SRA accession code SRP260849. All patients have one WBC sample; 130 

8 of the 17 patients have a solid tumor sample (metastatic site); 5 (7, 2, 2, and 1) patients have 1 131 

(2, 3, 4, and 5 respectively) plasma sample collected at different time points. We also collected 132 

samples from 8 NSCLC patients and 4 ovarian cancer patients and generated our own WES data 133 

as described below. For all 8 NSCLC patients, a tumor biopsy sample, a WBC sample, and three 134 

plasma samples were collected. For all 4 ovarian cancer patients, a WBC sample and two serum 135 

samples were collected. In addition, for the ovarian cancer patient OV4, who underwent surgical 136 

resection at the first blood collection, we collected the patient’s tumor tissue sample. For all 137 

sources, only one WBC sample (or its WES data) was collected for each cancer patient. 138 

 139 

Human subjects 140 

We collected blood samples, tumor samples, and WBC samples from 8 NSCLC patients from 141 

KEYNOTE-001 [30] and KEYNOTE-010 [31], who all provided informed consent for research use. 142 

The blood and tissue collection protocols were described in the full protocol of KEYNOTE-001 143 

and KEYNOTE-010. The project was approved by the Institutional Review Board (IRB) of 144 

University of California, Los Angeles (IRB# 12-001891, IRB# 11-003066, and IRB# 13-00394) 145 

and was conducted in accordance with the Belmont Report. We also collected samples from 4 146 
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ovarian cancer patients. Serum was harvested from whole blood by centrifugation (400xg, 15’) 147 

and immediately flash frozen. PBMCs were harvested from whole blood collected in a blue top 148 

phlebotomy tube with sodium citrate, centrifuged (400xg, 15’), and aliquoted from the buffy coat 149 

before being immediately flash frozen. Portions of solid tumor from the operating room were 150 

brought back to the lab and flash frozen. Clinical information from consenting patients was 151 

obtained from medical records. Longitudinally collected clinical specimens from ovarian cancer 152 

patients were obtained using IRB-approved protocols (IRB# 10-000727) and were studied in 153 

accordance with the Belmont Report. All patients provided written informed consent.  154 

 155 

Genomic DNA WES library construction 156 

For the 8 NSCLC patients, the WBC samples underwent multiplexed paired-end WES to a target 157 

depth of 100-150x on HiSeq 2000/3000 (Illumina, San Diego, CA) performed by the UCLA 158 

Technology Center for Genomics & Bioinformatics. Macrodissection was not performed. DNA 159 

isolation was performed with DNeasy Blood & Tissue Kit (Qiagen, Germany); exon capture and 160 

library preparation for the 8 NSCLC patients (WBC samples) used the KAPA HyperPrep Kit and 161 

Nimblegen SeqCap EZ Human Exome Library v3.0 (Roche, Switzerland) before the final step of 162 

2x150bp paired-end sequencing by Genewiz (South Plainfield, NJ). For the 4 ovarian cancer 163 

patients, the WBC gDNA and the tumor tissue gDNA isolation were performed with DNeasy Blood 164 

& Tissue Kit (Qiagen) and sonicated by Covaris system (Woburn, MA).  Ampure XP beads 165 

(Beckman-Coulter, Atlanta, GA) size selection was further performed to enrich the fragments 166 

between 100 and 250bp. In brief, 0.9 volume of beads were first added to the fragmented gDNA 167 

samples.  After incubation, the supernatant was transferred to a new tube and an additional 1.1 168 

volume of beads were added.  After 80% ethanol wash, the size-selected gDNA was eluted from 169 

the beads. The gDNA WES library was constructed with the SureSelect XT HS kit from Agilent 170 

Technologies (Santa Clara, CA) according to the manufacturer’s protocol. No molecular barcodes 171 

were used in the sequencing libraries. In brief, 100ng of gDNA was used as input material.  After 172 
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end repair/dA-tailing of cfDNA, the adaptor was ligated. The ligation product was purified with 173 

Ampure XP beads and the adaptor-ligated library was amplified with index primer in 8-cycle PCR. 174 

The amplified library was purified again with Ampure XP beads, and the amount of amplified DNA 175 

was measured using the Qubit 1xdsDNA HS assay kit (ThermoFisher, Waltham, MA). 1000 ng of 176 

DNA sample was hybridized to the capture library and pulled down by streptavidin-coated beads 177 

(ThermoFisher). After washing the beads, the DNA library captured on the beads was re-amplified 178 

with 9-cycles of PCR. The final libraries were purified by Ampure XP beads. The library 179 

concentration was measured by Qubit. The library quality check was further performed with 180 

Agilent Bioanalyzer before the final step of 2x150bp paired-end sequencing by Genewiz (South 181 

Plainfield, NJ). 182 

 183 

Plasma cfDNA WES library construction  184 

For each of the 8 NSCLC patients, venipuncture was performed by trained phlebotomists such 185 

as nurses or medical assistants. Blood tubes were centrifuged at 1,800g for 20 min at room 186 

temperature and plasma supernatant was isolated within 2 hours of collection. Samples were 187 

stored at -80ºC until use. Then, cfDNA was extracted from their plasma samples using the 188 

QIAamp circulating nucleic acid kit from QIAGEN (Germantown, MD). The cfDNA WES library 189 

was constructed with the SureSelect XT HS kit from Agilent Technologies (Santa Clara, CA) 190 

according to the manufacturer’s protocol. No molecular barcodes were used in the sequencing 191 

libraries. In brief, 10ng of cfDNA was used as input material.  After end repair/dA-tailing of cfDNA, 192 

the adaptor was ligated. The ligation product was purified with Ampure XP beads (Beckman-193 

Coulter, Atlanta, GA) and the adaptor-ligated library was amplified with index primer in 10-cycle 194 

PCR. The amplified library was purified again with Ampure XP beads, and the amount of amplified 195 

DNA was measured using the Qubit 1xdsDNA HS assay kit (ThermoFisher, Waltham, MA). 700-196 

1000 ng of DNA sample was hybridized to the capture library and pulled down by streptavidin-197 

coated beads. After washing the beads, the DNA library captured on the beads was re-amplified 198 
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with 10-cycles of PCR. The final libraries were purified by Ampure XP beads. The library 199 

concentration was measured by Qubit, and the quality was further examined with Agilent 200 

Bioanalyzer before the final step of 2x150bp paired-end sequencing by Genewiz (South Plainfield, 201 

NJ), at an average depth of 200x.  202 

 203 

Serum cfDNA WES library construction 204 

For the serum samples from the four ovarian cancer patients, cfDNA was extracted by QIAamp 205 

circulating nucleic acid kit (QIAGEN). Ampure XP beads size selection was further performed to 206 

eliminate gDNA contamination.  In brief, 0.5 volume of beads were first added to the cfDNA 207 

samples. After incubation, the supernatant was transferred to a new tube and an additional 2.0 208 

volume of beads were added.  After 80% ethanol wash, cfDNA was eluted from the beads. FA 209 

assays (Agilent Technologies) were performed to rule out the contamination of gDNA in the size 210 

selected samples. The cfDNA WES library was constructed with the SureSelect XT HS kit from 211 

Agilent Technologies (Santa Clara, CA) according to the manufacturer’s protocol. No molecular 212 

barcodes were used in the sequencing libraries. In brief, 5-20ng of gDNA was used as input 213 

material.  After end repair/dA-tailing of cfDNA, the adaptor was ligated. The ligation product was 214 

purified with Ampure XP beads and the adaptor-ligated library was amplified with index primer in 215 

11 cycles (for 10-20ng cfDNA input) or 12 cycles (for cfDNA less than 10ng). The amplified library 216 

was purified again with Ampure XP beads, and the amount of amplified DNA was measured using 217 

the Qubit 1xdsDNA HS assay kit (ThermoFisher, Waltham, MA). 1000 ng of DNA sample was 218 

hybridized to the capture library and pulled down by streptavidin-coated beads (ThermoFisher). 219 

After washing the beads, the DNA library captured on the beads was re-amplified with 9-cycles 220 

of PCR. The final libraries were purified by Ampure XP beads. The library concentration was 221 

measured by Qubit. The library quality check was further performed with Agilent Bioanalyzer 222 

before the final step of 2x150bp paired-end sequencing by Genewiz (South Plainfield, NJ). 223 

 224 
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Data preprocessing 225 

Both genomic DNA sequencing data and cfDNA sequencing data were preprocessed using the 226 

same procedure. Raw sequencing data (FASTQ files) were aligned to the hg19 reference genome 227 

by bwa mem [32] and sorted by samtools [33]. Then, duplicated reads from PCR amplification 228 

were identified and removed by picard tools MarkDuplicates [34]. After this step, read group 229 

information was added to the bam file using picard tools AddOrReplaceReadGroups, and reads 230 

were realigned around indels using GATK RealignerTargetCreator and IndelRealigner [35][36]. 231 

After realignment, base quality scores were recalibrated using GATK BaseRecalibrator and 232 

PrintReads. All tools in the data preprocessing pipeline were used with their default settings. After 233 

data preprocessing, the resulting bam files were used as inputs for mutation detection and MRD 234 

detection. 235 

 236 

Predicting MRD/recurrence in the post-treatment samples using somatic mutations 237 

detected from the pre-treatment samples 238 

We predict the presence of MRD/recurrence by tracking the cfDNA fragments containing tumor-239 

derived somatic mutations (i.e., tumor-derived cfDNA fragments). Due to the low tumor fraction in 240 

the plasma samples from patients with MRD, we integrate all clonal mutations in the exome to 241 

enhance the tumor signal (see Identification of clonal mutations in pre-treatment samples, 242 

Figure 1b (1)). To limit the accumulation of sequencing errors during integration, we employ a 243 

machine learning model (see Machine learning model for suppressing sequencing errors, 244 

Figure 1b (2)) that can accurately distinguish reads with sequencing errors from true mutations. 245 

Then, the level of tumor-derived cfDNA fragments is compared with a background noise 246 

distribution generated from the same plasma sample by a permutation test (see Identification of 247 

mutations and CHIP positions and Building background noise distribution using random 248 

genomic locations, Figure 1b (3)). If the tumor-derived cfDNA fragments are significantly more 249 

abundant than the background noise in the sample (p-value <= 0.05), the patient is predicted as 250 
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having MRD/recurrence. If no MRD/recurrence is detected, the post-treatment sample is 251 

subsequently examined for the presence of second primary cancers (see Detection of a second 252 

primary cancer, Figure 1b (4)). 253 

 254 

Calculation of the Integrated Variant Allele Frequency (IVAF) 255 

To quantify tumor DNA across multiple loci, we calculate the Integrated Variant Allele Frequency 256 

(IVAF) as the number of sequencing read pairs classified by the model as containing true 257 

mutations divided by the total number of read pairs. Both the numerator and the denominator are 258 

summed over all loci identified as clonal mutations in the pre-treatment sample. The IVAF 259 

indicates the fraction of high-confidence tumor DNA in all cfDNA fragments, so it is treated as the 260 

estimated tumor fraction in this study.  261 

 262 

Identification of clonal mutations in pre-treatment samples 263 

The presence of tumor-derived somatic mutations in cfDNA is usually treated as a reliable marker 264 

to confirm the presence of cancer. However, not all tumor-derived somatic mutations are equally 265 

effective, because subclonal mutations have a lower observed allele frequency than clonal 266 

mutations [5]. To overcome the challenge of low tumor content in the plasma samples of patients 267 

with MRD, we integrate tumor-derived somatic mutations over a wide range of the genome (e.g., 268 

the whole exome data obtained by WES). The integration accumulates not only tumor-derived 269 

signals but also sequencing errors. Therefore, we used clonal somatic mutations, called from the 270 

pre-treatment plasma sample or the pre-treatment tumor sample, as tumor markers. To make this 271 

selection, first tumor-derived somatic mutations are detected using cfSNV [12] from the pre-272 

treatment plasma sample; if only the pre-treatment tumor sample is available, tumor-derived 273 

mutations are the common mutations detected by Strelka2 [37] somatic and MuTect [38] from the 274 

pre-treatment tumor sample. The detected mutations are removed if there is at least one variant 275 

supporting read in the matched WBC sample. A mutation is considered clonal, and hence retained 276 
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in the final marker list, if its VAF is > 25% of the average of the five highest VAFs in the sample 277 

[39]. We require a minimum of 30 markers from the pre-treatment plasma sample to obtain a 278 

robust prediction. If there are fewer than 30 clonal mutations, subclonal mutations with the highest 279 

VAFs will be included.  280 

 281 

Identification of mutations and Clonal Hematopoiesis of Indeterminate Potential (CHIP) 282 

positions 283 

To accurately estimate the background noise in a sequencing experiment, it is essential to remove 284 

the interference from non-reference alleles at the germline mutations, somatic mutations, and 285 

CHIP positions. To estimate the background, we identify germline mutations in the pre-treatment 286 

plasma sample and the matched WBC sample from the same patient using GATK 287 

HaplotypeCaller and Strelka2 Germline with the default settings. GATK HaplotypeCaller is applied 288 

to the plasma sample and the WBC sample individually; Strelka2 Germline is applied to the 289 

plasma-WBC sample pair. Somatic mutations are detected in the plasma sample and the matched 290 

WBC sample using cfSNV under default settings. The CHIP positions are identified from pileup 291 

files generated using samtools mpileup. If a non-mutated position has >= 3 variant supporting 292 

reads or a VAF > 1% in the matched WBC sample, it is regarded as a CHIP position. The selection 293 

of these parameters has little impact on the performance (Supplementary Figure 4a-b). All the 294 

identified germline mutations, somatic mutations and CHIP positions are excluded in the step of 295 

building the background noise distribution. 296 

 297 

Building a background noise distribution using random genomic locations 298 

The simple presence of variant supporting reads at tumor-derived somatic mutations is not 299 

enough to determine the presence of MRD/recurrence, because they could be caused by 300 

sequencing errors. Therefore, to quantify the sequencing error frequency, we build a background 301 

noise distribution from the same plasma sample that we use to monitor MRD/recurrence. Unlike 302 
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using a panel of normal samples from other sources, this approach avoids potential biases from 303 

inter-individual and inter-experimental differences. A background noise distribution is generated 304 

for the clonal tumor mutations that were identified from the pre-treatment sample for 305 

MRD/recurrence monitoring. For a set of 𝑛 clonal tumor mutations, 𝑛 positions are randomly 306 

selected from the targeted genomic region (e.g., the whole exome), excluding known mutations 307 

and CHIP positions. Ideally, all read pairs with non-reference alleles at these 𝑛 positions are from 308 

sequencing errors, so the observed frequency of these reads represents the background noise 309 

level. The sequencing read pairs containing non-reference alleles at these 𝑛  positions are 310 

extracted and input into the sequencing noise suppression model. The observed frequency of a 311 

non-reference allele (i.e., its integrated variant allele frequency) is calculated as the number of 312 

sequencing read pairs classified by the model as containing true mutations, divided by the total 313 

number of read pairs aligned to the 𝑛 positions. We repeat the random sampling of 𝑛 positions 314 

and calculate the observed frequency of non-reference alleles 𝐾 times. Finally, the background 315 

noise distribution is built from the 𝐾 observed frequencies of non-reference alleles at random 𝑛 316 

positions. By comparing the tumor fraction 𝜃 at the clonal mutations with the background noise 317 

distribution, an empirical p-value can be calculated as the rank of 𝜃 among the 𝐾 background 318 

IVAFs (in a decreasing order). If the empirical p-value is <= 0.05, the patient is regarded as having 319 

MRD/recurrence. Based on our simulation, only minor differences in the detection threshold occur 320 

when K is set to 100, 500, or 1000. Therefore, in our simulation, we set K to 100. 321 

 322 

Machine learning model for suppressing sequencing errors 323 

Although weak tumor signals in plasma samples can be amplified by integrating the variant 324 

supporting reads across a large genomic region, sequencing errors can also accumulate and 325 

possibly confound the tumor signal. Moreover, because of the low fraction of tumor DNA, the 326 

variant supporting reads at a single mutation are not sufficient to provide a robust and accurate 327 
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estimation of site-level statistics (e.g., strand bias and average base quality) for error removal. 328 

Therefore, we developed a machine learning filter to eliminate reads with sequencing errors 329 

(Supplementary Figure 5). Specifically, for a group of genomic positions (tumor mutations or 330 

random positions), we classify the variant supporting reads with a random forest model to 331 

distinguish sequencing errors from true variants. Since all data in this study were generated from 332 

paired-end sequencing, in the following section, we detail the model for paired-end reads, but the 333 

principle can also be applied to single-end reads. With paired-end sequencing data, there are two 334 

types of read pairs with regards to a specific mutation site: one (non-overlapping read pair) covers 335 

the mutation site by one of its read mates, the other (overlapping read pair) covers the mutation 336 

site by both of its read mates (Supplementary Figure 5a). The overlapping read pair can provide 337 

two readouts of the mutation site on the DNA fragment in the sequencing library, but the non-338 

overlapping read pair can only provide one readout. This means that the overlapping read pair 339 

naturally contains more information about the mutation site than the non-overlapping read pair, 340 

and the two readouts can serve as validation for each other. Therefore, we trained two 341 

independent random forest models to fully utilize the information in the non-overlapping read pair 342 

and the overlapping read pair. Please note that the random forest models in cfTrack classify 343 

sequencing errors and true variants in every read pair, i.e. read-level error suppression. It is 344 

different from the empirical variant score model in Strelka and the variant quality score model in 345 

GATK, which rely on site-level statistics (such as averaged base quality in all reads) to classify 346 

sequencing errors and true variants. 347 

 348 

To train the random forest model, we used WES data from 18 patients: 12 with metastatic breast 349 

cancer (MBC) and 6 with metastatic prostate cancer (CRPC) [17](Supplementary Figure 5b). 350 

Each patient had four samples sequenced: two plasma samples (collected at two different time 351 

points), a WBC sample, and a tumor biopsy sample. We use the supporting cfDNA read pairs at 352 

known mutation (error) sites as the training data. The known mutation sites include both germline 353 
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and somatic mutation sites, where germline mutations are required to be detected in all four 354 

samples using Strelka2 germline, and somatic mutations are required to be detected from both 355 

the cfDNA-WBC pairs (cfDNA data vs. WBC data) and the tumor-WBC pair (tumor data vs. WBC 356 

data) using Strelka2 somatic and MuTect. Error sites are defined as sufficiently covered sites (> 357 

150x) with at most two high-quality non-reference read (base quality ≥ 20 and mapping quality ≥ 358 

40) in only one of the four datasets. All high-quality labeled read pairs (base quality ≥ 30 and 359 

mapping quality ≥ 40) were extracted from raw cfDNA data using picard tools FilterSamReads. 360 

Multiple read pairs may be extracted covering the same mutation site, but these read pairs are 361 

similar and might cause redundancy in the training and testing data. Therefore, we solved the 362 

redundancy problem by retaining only one read pair per mutation/error site (Supplementary Table 363 

4). Different features were extracted from the overlapping read pairs and the non-overlapping 364 

read pairs (Supplementary Table 1). All categorical features were expanded using the one-hot 365 

encoding method. The hyper-parameters of the random forest model were as follows: (1) the 366 

number of decision trees was 100, (2) the maximum tree depth was 50, (3) imbalanced classes 367 

were addressed by setting the class weights to “balanced”, and (4) other parameters were left at 368 

their default values. Two separate random forest classifiers (one for overlapping read pairs and 369 

one for non-overlapping read pairs) were trained on the extracted read pairs. 370 

 371 

We validated the performance of the random forest model by cross-validation. For each patient, 372 

the labeled read pairs from the 17 other patients were used to train the model, while the patient’s 373 

own data were used to test the model (results shown in Supplementary Figure 6). The training 374 

data of the random forest model in all the simulation (MRD/recurrence and second primary 375 

cancers) also exclude the patient used for generating the simulation data to avoid data leakage. 376 

Therefore, the evaluation of cfTrack is independent of the training data. As an independent 377 

validation set, we used a group of non-small-cell lung cancer patients (8 patients each with 3 378 

samples) with sequential plasma cfDNA samples. The read pairs in these cfDNA samples were 379 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 11, 2021. ; https://doi.org/10.1101/2021.11.07.21265999doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.07.21265999


16 
 

labeled in the same manner as described above. Then, these labeled read pairs were used as 380 

independent testing data for the random forest model trained by the data generated from the 12 381 

MBC and 6 CRPC patients. On all cross-validation datasets, the random forest model can 382 

accurately distinguish sequencing errors from true variants (average AUC = 0.95, 95% confidence 383 

interval (CI) = 0.9496-0.9503).  384 

 385 

Simulation of recurrence and MRD detection by tracking clonal somatic mutations in pre-386 

treatment samples 387 

To evaluate the performance of our method, we generated simulation data to mimic patients with 388 

MRD/recurrence and patients with complete remission. The patients with MRD/recurrence have 389 

tumor content in the post-treatment plasma sample and will show the detection sensitivity; the 390 

patients with complete remission have no tumor content in the post-treatment plasma sample and 391 

will show the detection specificity. The simulation data were generated from two datasets 392 

independently: (1) validation dataset, 27 MBC and 14 CRPC patients and (2) independent dataset, 393 

8 NSCLC patients.  394 

 395 

In the validation dataset, only 12 MBC and 6 CRPC patients have two plasma cfDNA samples, 396 

so only these patients were used to generate the post-treatment cfDNA samples from the 397 

MRD/recurrence patients. Note that these data were also used to generate the training data for 398 

the read-level error suppression model. Therefore, to avoid data leakage in the performance 399 

evaluation, the MRD/recurrence detection on the validation dataset was performed in a “leave-400 

one-patient-out cross-validation” manner. In other words, for a simulated sample (generated from 401 

WES data from a specific patient) in the validation dataset, the random forest models used in the 402 

error suppression step were trained on the other 17 patients. In the independent dataset, the 8 403 

NSCLC patients have three plasma cfDNA samples. Only the first two time points of the plasma 404 

cfDNA samples were used in the simulation. These data were untouched and independent of the 405 
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training of the read-level error suppression model, so the error suppression model used on the 406 

independent dataset was trained by all training data extracted from the 12 MBC and 6 CRPC 407 

patients. 408 

 409 

To demonstrate the sensitivity of detection for pre-existing cancer, we generated in silico dilution 410 

series to simulate patients with MRD/recurrence by mixing the plasma sample collected at the 411 

second time point and the matched WBC sample at varying concentrations of cfDNA reads 412 

(0.01%, 0.05%, 0.1%, 0.3%, 0.5%, 0.8%, 1%, 3%, 5%, and 8%) using samtools view and 413 

samtools merge. Five independent mixtures were generated at every concentration, at theoretical 414 

depths of 200x, 100x or 50x on the WES targeted regions. Since read sampling is random, it is 415 

possible that there is no variant supporting read at a given marker, even across all markers. Thus, 416 

we removed samples with no variant supporting reads at all personalized markers (checked by 417 

samtools mpileup). In this simulation, the original matched WBC samples and the original plasma 418 

samples at the first time point were used as the WBC samples and the pre-treatment plasma 419 

samples, respectively (Figure 2). The in silico dilution series represents post-treatment plasma 420 

samples from patients with MRD/recurrence. For the validation dataset, we generated the data 421 

for each of the 12 MBC and 6 CRPC patients. The theoretical tumor fraction in each sample is 422 

calculated as the product of the original tumor fraction in the cfDNA sample and the dilution. The 423 

theoretical tumor fraction ranges from 0.001% to 6.114%, with a median of 0.270%. For the 424 

independent dataset, we generated the data for each of the 8 NSCLC patients. The theoretical 425 

tumor fraction ranges from 0.001% to 1.867%, with a median of 0.103%. The different ranges of 426 

the theoretical tumor fractions in the two datasets are caused by differences in the tumor content 427 

levels in the original plasma samples. Note that the theoretical tumor fraction usually 428 

overestimates the true tumor fraction because of random sampling and the imperfect on-target 429 

rate.  430 

 431 
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To evaluate the specificity of the MRD detection pipeline, we generated the patients with complete 432 

remission by subsampling from the original WBC samples. Therefore, these subsamples are 433 

expected to have no tumor DNA. For a WBC sample from a cancer patient, five subsamples were 434 

generated for each of 200x, 100x, and 50x theoretical depth of the targeted regions. These 435 

subsamples represent post-treatment plasma samples from patients without MRD. The original 436 

plasma samples at the first time point were used as the pre-treatment plasma samples. Note that 437 

only one WBC sample was available for each patient. If the only original WBC sample was directly 438 

used as the pre-treatment WBC sample, all data in the post-treatment plasma samples (i.e. 439 

subsamples) would have been observed in the pre-treatment WBC sample (i.e. the full original 440 

sample), which is impossible in reality. Therefore, we used another subsample of the original 441 

WBC samples as the pre-treatment data at a sampling rate of 95% (Figure 2). In this simulation, 442 

we preserved some randomness between the WBC samples and the post-treatment plasma 443 

samples, which reflects real cases. For the validation dataset, we generated the remission 444 

samples for each of the 27 MBC and 14 CRPC patients. For the independent dataset, we 445 

generated the remission samples for each of the 8 NSCLC patients.  446 

 447 

To avoid potential bias from independently sampling replicates from the same patients, we 448 

randomly selected 1 replicate at every dilution (including 0% for remission samples) for every 449 

patient to calculate the performance (AUC, sensitivity, and specificity). After the selection, the 450 

performance metrics (AUC, sensitivity, and specificity) were evaluated on the MRD/recurrence 451 

samples grouped by the tumor fraction with a 0.01% step size and the remission samples 452 

(samples with WBC reads only). To provide a robust estimate, we randomly selected samples 453 

and calculated the performance 50 times. For the validation dataset, in each random selection, 454 

there are 41 simulated remission samples at each depth. At 200x, there are 143 simulated 455 

MRD/recurrence samples; at 100x, there are 142 simulated MRD/recurrence samples; at 50x, 456 

there are 128 simulated MRD/recurrence samples. For the independent dataset, in each random 457 
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selection, there are 8 simulated remission samples at each depth. At 200x, there are 68 simulated 458 

MRD/recurrence samples; at 100x, there are 65 simulated MRD/recurrence samples; at 50x, 459 

there are 56 simulated MRD/recurrence samples. 460 

 461 

Detection of a second primary cancer 462 

A second primary cancer is detected based on a logistic regression model, whose features are 463 

the tumor fraction and the number of detected mutations from cfSNV in the post-treatment plasma 464 

samples. A sample is predicted with second primary cancers if its prediction score is larger than 465 

95% percentile of prediction scores from the remission samples in the training data; otherwise, it 466 

is predicted as remission.  467 

 468 

Simulation of second primary cancer detection 469 

Similar to the simulation of recurrence and MRD detection, to evaluate the sensitivity of the 470 

method for second primary cancer detection, we generated an in silico dilution series by mixing 471 

the plasma samples at the second time point and the matched WBC samples from the 12 MBC 472 

and 6 CRPC patients at varying concentrations of cfDNA reads (from 1% to 10%: 1%, 3%, 5%, 473 

8%, and 10%) using samtools view and samtools merge. Since no training and testing of new 474 

models is performed in the detection of second primary cancers, this is an independent testing 475 

dataset with respect to the detection method. Each spike-in sample contained a total number of 476 

randomly sampled reads theoretically equivalent to 200x depth of the targeted regions. Five 477 

independent mixtures were generated at every concentration. The tumor fraction in these spike-478 

in samples was quantified by the variant supporting reads at the clonal somatic mutations 479 

identified in the original plasma sample. In this simulation, the original matched WBC samples 480 

were used as the WBC samples. To demonstrate the specificity of the method, we reused the 481 

complete remission samples at 200x generated in the simulation of recurrence and MRD 482 

detection. To avoid potential bias from independently sampling replicates from the same patients, 483 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 11, 2021. ; https://doi.org/10.1101/2021.11.07.21265999doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.07.21265999


20 
 

we randomly selected 1 replicate at every dilution for every patient to calculate the performance 484 

(AUC, sensitivity, and specificity). To provide a robust estimate, we randomly selected samples 485 

and calculated the performance 10 times. In each random selection, there were 90 simulated 486 

samples from patients with second primary disease and 41 simulated samples from patients with 487 

complete remission. To evaluate the performance, after removing the replicates, the simulation 488 

data were randomly split into the training set (50%, n = 66) and the testing set (50%, n = 65) ten 489 

times. A logistic regression model is trained on the training set and used to predict the presence 490 

of a second primary cancer in the testing set. The performance metrics (AUC, sensitivity, and 491 

specificity) are evaluated in the testing set on the second primary cancer samples grouped by 492 

tumor fraction with a 0.1% step size, but always using the complete set of remission samples.  493 

 494 

 495 

Results 496 

 497 

Comprehensive and personalized cancer monitoring using cfDNA. 498 

 499 

We present a new cancer monitoring method (Figure 1a and Figure 1b), cfTrack, that analyzes 500 

both pre-existing tumor mutations and newly emerging mutations in post-treatment samples. We 501 

developed four major techniques to suppress background noise, generate sample-specific 502 

background noise distributions, and achieve comprehensive and sensitive detection of tumor-503 

derived cfDNA. Specifically, we collect a plasma or solid tumor sample and a matched white blood 504 

cell (WBC) sample from a patient before the treatment to select markers (i.e., mutations) that are 505 

specific to the pre-existing tumor. In the post-treatment plasma samples, cfTrack both tracks pre-506 

existing tumor markers and detects new somatic mutations. The techniques in cfTrack are 507 

summarized below. 508 
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(1) Integrate all clonal tumor mutations from the pre-treatment samples. Tumor mutations 509 

evolve, so any given somatic mutation observed in pre-treatment samples may disappear in post-510 

treatment samples. We perform WES of the pre-treatment samples (solid tumor or plasma 511 

samples) and select clonal somatic mutations that appear in all pre-existing cancer cells and have 512 

high variant allele frequencies (VAFs) in the cfDNA [4]. Compared to a pre-defined, limited panel 513 

of known tumor mutations, the clonal mutations of this specific patient, observed in WES, are 514 

more likely to appear in post-treatment samples and are more informative for monitoring the pre-515 

existing tumor [5]. However, when the tumor fraction in cfDNA is very low, WES sequencing at 516 

medium depth (100x or 200x) may contain few variant supporting reads at a specific locus. 517 

Therefore, to provide a robust mutation-based statistic index in cfDNA, cfTrack aggregates variant 518 

supporting reads across all clonal somatic mutations (for details, see Methods and Supplementary 519 

Figure 1a-b). Specifically, we quantify the tumor fraction using the integrated variant allele 520 

frequency (IVAF), which is the sum of variant supporting reads divided by the sum of all reads at 521 

the clonal somatic mutations. Note that a recent publication developed a similar integrative 522 

approach using the reads from whole-genome sequencing of cfDNA [11]. Here we show that WES 523 

of cfDNA can also be used for ultra-sensitive cancer detection, and given its cost-effectiveness 524 

compared to WGS it is more feasible for clinical use.  525 

(2) Suppress sequencing errors at the read level with a random forest model. When we 526 

integrate tumor reads across a large number of mutation sites to amplify the tumor signal, 527 

sequencing errors also accumulate. Therefore, we have developed a method to suppress 528 

individual sequencing errors and enhance the signal-to-noise ratio of cancer detection by 529 

differentiating the reads containing sequencing errors from those containing true variants. 530 

Specifically, this filter is based on a random forest model (for details, see Methods). Previous work 531 

has shown that it is possible for machine learning to distinguish true cancer mutations from 532 

sequencing artifacts at the read level, and such filters have been used to predict mutations and 533 

detect cancer and MRD [11][13]. Unlike these previous works, our method is specifically designed 534 
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for cfDNA WES data: it incorporates cfDNA fragmentation patterns and read sequence contexts 535 

(e.g. nucleotide substitution C>A). Both features are informative to distinguish tumor-derived true 536 

mutations and sequencing errors: tumor-derived cfDNA fragments are shorter than non-tumor-537 

derived cfDNA fragments [14][15]; sequencing error rates are associated with nucleotide 538 

substitution types [16]. By combining a wide variety of features (Supplementary Table 1), our 539 

model automatically discovers feature co-occurrence relationships that are associated with 540 

sequencing errors. The random forest model classifies all supporting reads at clonal somatic 541 

mutation loci as containing either a true variant or a sequencing error. Only those reads classified 542 

as “true variants” are counted as variant supporting reads.  543 

(3) Predict recurrence or MRD using sample-specific background noise distribution. To 544 

predict whether a patient has recurrence or MRD, we need to compare the estimated tumor 545 

fraction with a background noise distribution which represents the error allele fraction in samples 546 

from individuals without a tumor. Previous studies usually compared the post-treatment sample 547 

of a patient with a cohort of samples from healthy individuals. Because the inter-individual and 548 

inter-experimental differences are difficult to model, however, this kind of comparison can 549 

introduce prediction bias, and the resulting detection thresholds are difficult to generalize to other 550 

experimental protocols. To avoid this limitation, we build the background noise distribution by 551 

calculating the IVAF from random genomic positions in the same sample (Figure 1b; for details, 552 

see Methods). Therefore, this background noise distribution represents the actual error rates 553 

observed in this specific sequencing experiment. Recurrence or MRD can then be detected using 554 

the empirical p-value of the tumor fraction calculated from the pre-existing clonal mutations with 555 

respect to the sample-specific background noise distribution (for details, see Methods).  556 

(4) Detect tumor evolution by de novo identifying newly emerging tumor mutations. 557 

Previously described methods for cancer monitoring focus on a predefined mutation panel, which 558 

makes it difficult to detect tumor evolution or second primary cancers. Taking advantage of the 559 

WES data with broad genome coverage, cfTrack performs de novo mutation identification to 560 
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accomplish both. For this we utilize cfSNV [12], a method we recently developed for the sensitive 561 

and accurate calling of somatic mutations in plasma samples. cfSNV specifically accommodates 562 

key cfDNA-specific properties, including the low tumor fraction, short and non-randomly 563 

fragmented DNA, and heterogeneous tumor content. It addresses the low tumor fraction and 564 

tumor heterogeneity in cfDNA by iterative and hierarchical mutation profiling, and ensures a low 565 

false-positive rate by multilayer error suppression. Based on the mutation calling results from 566 

cfDNA, we can directly detect tumor evolution or the presence of second primary cancers in terms 567 

of de novo mutations and the corresponding tumor fraction aggregated across mutation sites (for 568 

details, see Methods). 569 

 570 

 571 
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 572 

Figure 1. Cancer monitoring in plasma samples by tracking pre-existing tumor mutations and newly emerging 573 

tumor mutations. (a) Illustration of the sample collection for cfDNA-based cancer monitoring. Prior to surgery or 574 

therapy, a plasma or tumor sample and a white blood cell (WBC) sample are collected to generate the pre-existing 575 

tumor profile. Serial blood samples are collected to detect MRD/recurrence and monitor tumor evolution after 576 

treatment. (b) Illustration of the method workflow. In the pre-treatment samples, clonal tumor mutations are identified 577 
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for tumor tracking in the post-treatment samples. Given a post-treatment plasma sample, the tumor fraction is 578 

calculated from the pre-existing clonal tumor mutations and compared to a sample-specific background distribution. 579 

The empirical p-value of the tumor fraction is used to predict MRD/recurrence. Furthermore, de novo somatic 580 

mutations are detected using cfSNV between the post-treatment plasma and WBC samples. A second primary cancer 581 

is predicted by a logistic regression model that accounts for both the amount of de novo mutations and the 582 

corresponding tumor fraction. 583 

 584 

 585 

Analytical performance of detecting cancer recurrence and MRD. 586 

 587 

To evaluate the performance of cfTrack on cancer MRD or recurrence, we use the in silico method 588 

of preparing spike-in simulation data. If a cancer patient has cancer recurrence or MRD, the post-589 

treatment plasma of the patient will contain DNA corresponding to the pre-existing tumor. To 590 

simulate the post-treatment plasma samples from the patients with cancer recurrence or MRD, 591 

we computationally mix a plasma sample from a cancer patient with a WBC sample from the 592 

same patient. The data, with known dilution ratios, can provide a sensitivity/specificity assessment 593 

on cfTrack.  594 

 595 

We generated two sets of in silico spike-in simulation data (see Methods): (1) validation dataset, 596 

using the WES data from 12 patients with metastatic breast cancer (MBC) and 6 patients with 597 

metastatic prostate cancer (castrate-resistant prostate cancer, CRPC) [17] and (2) independent 598 

dataset, using the WES data from 8 patients with non-small cell lung cancer (NSCLC). For both 599 

datasets, each patient has sequencing data from two plasma samples (collected at two different 600 

time points T1 and T2, with 14~138 days in between for MBC and CRPC patients, 42 days in 601 

between for NSCLC patients), and the matched WBC sample. These patients underwent 602 

treatment between T1 and T2, so we consider the first plasma samples (at T1) the “pre-treatment” 603 
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samples, and the second plasma samples (at T2) the “post-treatment” samples.  Tens to hundreds 604 

of clonal somatic mutations (for MBC and CRPC patients, ranging from 49 to 674 with median 94; 605 

for NSCLC patients, ranging from 30 to 1239 with median 63) are found in the pre-treatment 606 

samples when compared to their matched WBC samples. We then generate an in silico dilution 607 

series for each patient by mixing their post-treatment plasma sample with the matched WBC 608 

sample at varying fractions (the theoretical tumor fraction ranges from 0.001% to 6.114% with 609 

median 0.270% for the validation dataset, from 0.001% to 1.867% with median 0.103% for the 610 

independent dataset; for details, see Methods and Figure 2). In addition, we simulate patients 611 

who achieved complete remission by subsampling the original WBC samples (the tumor fraction 612 

is 0%, for details see Methods and Figure 2). The simulation data are generated at three different 613 

depths, 50x, 100x and 200x. 614 

 615 

 616 

 617 

Figure 2. Settings to generate in silico spike-in simulation data. The simulation data are generated using WES data 618 

taken from (1) 12 MBC and 6 CRPC patients and (2) 8 NSCLC patients. Each patient has an early plasma sample 619 

(Blood T1), a WBC sample (WBC), and a late plasma sample (Blood T2). The three WES datasets from a patient are 620 
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used directly or mixed to generate the simulation samples. To simulate the scenario of monitoring a patient for MRD 621 

or cancer recurrence, each case contains three simulation samples: a pre-treatment plasma sample, a pre-treatment 622 

WBC sample, and a post-treatment plasma sample. The raw data from Blood T1 are used directly as the pre-treatment 623 

plasma sample for all cases. WBC and Blood T2 are mixed at specified dilutions to simulate the post-treatment plasma 624 

sample. To simulate remission cases, we generate two independent random samplings from the raw WBC data to use 625 

as the pre-treatment WBC sample and the post-treatment plasma sample. To simulate the emergence of second primary 626 

cancers, each case contains two simulation samples: a pre-treatment WBC sample and a post-treatment plasma sample. 627 

The generation of simulation samples for second primary cancer monitoring is the same as for MRD/recurrence 628 

monitoring, except that the pre-treatment plasma sample (Blood T1) is not used.  629 

 630 

When applying cfTrack to the simulated datasets, we observe slightly increased detection 631 

performance with increasing sequencing depth (Figure 3a-d and Supplementary Figure 2a-d). 632 

This trend is expected because the higher the sequencing depth, the more tumor DNA fragments 633 

can be captured.  Specifically, on the validation dataset, we achieve an average AUC of 99% 634 

(standard deviation (SD) = 1%) when the tumor fraction is ³ 0.05% at 200x depth (Figure 3a and 635 

Supplementary Figure 2a), with 100% average sensitivity (SD = 0%) and 96% average specificity 636 

(SD = 1%, Figure 3b and Supplementary Figure 2b). On the independent dataset, we achieve an 637 

average AUC of 100% (SD = 0%) when the tumor fraction is ³ 0.05% at 200x depth (Figure 3c 638 

and Supplementary Figure 2c), with 89% average sensitivity (SD = 13%) and 100% average 639 

specificity (SD = 0%, Figure 3d and Supplementary Figure 2d). Considering the difference in the 640 

sample size and the higher specificity in the independent dataset, the performance on the two 641 

simulation datasets is comparable. This indicates that our method can achieve sensitive 642 

monitoring using only 200x WES data, offering a cost-effective solution for MRD detection. The 643 

detection limit can be further enhanced by increasing the sequencing depth.  644 

 645 
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 646 

Figure 3. Performance of cancer recurrence and MRD detection using the simulation data. The area under the 647 

ROC curve (AUC) of the MRD/recurrence detection on (a) the validation dataset and (c) the independent dataset with 648 

different tumor fractions and sequencing depths. The sensitivity and specificity with different tumor fractions and 649 

sequencing depth on (b) the validation dataset and (d) the independent dataset. Supplementary Figure 2 (a-d) is the 650 

zoom-in of (a-d) at low tumor fraction ranging from 0% to 0.2%. (e) AUCs of MRD/recurrence detection with and 651 

without error suppression (ES) on the validation dataset at 200x depth with different tumor fractions. (f) The sensitivity 652 

and specificity of MRD/recurrence detection with and without error suppression on the validation dataset at 200x 653 

depth with different tumor fractions.  In (a), (c) and (e), the dots indicate the average AUC, and the vertical bars 654 

indicate average ± SD of the AUC (see Methods). In (b), (d) and (f), the dots show the average sensitivity using a 655 

cutoff p-value = 0.05 for the background noise distribution; the vertical bars indicate average ± SD of the sensitivity; 656 

the specificity is shown in the legend in the format of (average specificity, (average - SD, average - SD)). The solid 657 

lines show the smoothed performance fitted with logit functions.  658 

 659 

 660 
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Our method can achieve the high detection power thanks to three key features: the exome-wide 661 

integration of tumor signals, the sample-specific decision threshold, and the read-level error 662 

suppression. Read-level error suppression greatly improves the detection power, especially in 663 

samples with a low tumor fraction. For example, based on our in silico samples with a 0.05% 664 

tumor fraction, employing read-level error suppression improved AUC by 35% on the validation 665 

dataset (see Figure 3e and 3f) and improved AUC by 40% on the independent dataset (see 666 

Supplementary Figure 2e and 2f).  667 

 668 

Analytical performance of detecting second primary cancers. 669 

 670 

Sensitive monitoring of tumor evolution and newly emerging tumors requires the de novo 671 

detection of mutations from previously unobserved tumors. Pre-treatment plasma samples and 672 

tumor biopsy samples cannot provide sufficient tumor markers for this purpose. In contrast with 673 

previous cancer monitoring methods, we can detect de novo tumor-derived SNVs in the post-674 

treatment plasma samples, which allows us to identify mutations that come from new tumors. In 675 

this section, we specifically evaluate cfTrack for the detection of second primary cancers, which 676 

depends solely on the detection of emerging tumors.  677 

 678 

Detecting a second primary cancer is equivalent to detecting a new tumor without prior knowledge. 679 

To simulate this scenario, we generate an in silico dilution series from the 12 MBC and 6 CRPC 680 

patients by mixing their post-treatment plasma samples with the matched WBC samples [17]. The 681 

mixed samples are prepared at varying fractions (the theoretical tumor fraction ranges from 0.111% 682 

to 7.680%, with a median of 2.984%; for details, see Methods and Figure 2). For each dilution 683 

level, simulation data are generated with a depth of 200x. The samples simulating complete 684 

remission are the same as those used for MRD/recurrence detection (in the previous section). 685 

Since the detection of a second primary cancer involves no training or testing of new models, this 686 
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simulation dataset is an independent dataset with respect to the detection method. In this 687 

simulation, we do not use the pre-treatment plasma samples, representing the scenario where no 688 

pre-existing tumor profile has been observed.  689 

 690 

For each pair of simulated plasma and simulated WBC samples, we use cfSNV to identify somatic 691 

mutations. Then cfSNV estimates a tumor fraction from these mutations. We predict a second 692 

primary cancer by a logistic regression model using both the tumor fraction and the number of 693 

detected mutations as features. We randomly split the samples into a training set (50%) and a 694 

testing set (50%). A patient is predicted to have a second primary cancer if they have a large 695 

prediction score (³ 95th percentile of prediction scores from the remission samples in the training 696 

set). The AUC is calculated based on the prediction results in the testing sets for all complete 697 

remission samples and for the subset of simulation samples with a specific tumor fraction (see 698 

Methods). We achieve an average AUC of 88% (SD = 10%) when tumor fraction ³ 0.2% at 200x 699 

depth (Figure 4a), with an average sensitivity of 76% (SD = 23%) and an average specificity of 700 

93% (SD = 5%, Figure 4b). The sensitivity of the methodology is lower for detecting second 701 

primary cancers than for detecting recurrence and MRD, because no pre-existing tumor 702 

information is available and all novel somatic mutations need to be confirmed. The detection of a 703 

novel somatic mutation requires more variant supporting reads than just observing a weak signal 704 

at a known locus. Nevertheless, cfTrack still achieves high performance in detecting a new tumor. 705 

Therefore, cfTrack can be used for monitoring tumor evolution and detecting second primary 706 

cancers and cancer progression. 707 

 708 
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 709 

Figure 4. Performance of second primary cancer detection with the simulation data. (a) AUC of the in silico 710 

spike-in samples with different tumor fractions at 200x sequencing depth. The dots indicate the average AUC, and the 711 

vertical bars indicate average ± SD of the AUC (see Methods). (b) The sensitivity and specificity in the in silico spike-712 

in samples with different tumor fractions at 200x sequencing depth. The dots show the average sensitivity using a 713 

cutoff of the 95th percentile of prediction scores from the remission samples in the training data; the vertical bars 714 

indicate average ± SD of the sensitivity; the specificity is shown in the text in the format of (average specificity, 715 

(average - SD, average + SD)). The solid lines show the smoothed performance fitted with a logit function.   716 

 717 

Monitoring tumors in cancer patients on treatments through cfDNA. 718 

 719 

Developments in immunotherapy and targeted therapy have improved the outcomes of cancer 720 

patients in recent years [18][19][20]. For example, immunotherapy, which activates a patient’s 721 

own immune system to fight cancer, has remarkably improved clinical outcomes in a subset of 722 

NSCLC patients [21]. Despite these results, the majority of patients eventually develop resistance 723 

and fail to respond to treatment [22][23][24]. Therefore, it is essential to closely monitor the 724 

response of patients and quickly recognize when the need for alternative treatment arises. 725 

However, since the development of resistance may be associated with tumor evolution [25], this 726 

type of monitoring cannot only rely on markers derived from the pre-existing tumor, but requires 727 
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constant re-evaluation of the tumor profile during treatment. Our WES-based method, which 728 

detects mutations from both pre-treatment and treated samples, can comprehensively track a 729 

patient’s response.  730 

 731 

To test our method in this clinical scenario, we applied our cancer monitoring method to 732 

plasma/serum samples (n = 76, 8 serum samples for 4 ovarian cancer patients and 68 plasma 733 

samples for other patients) from a cohort of cancer patients (n = 35) who received various 734 

treatments. This cohort contains 18 prostate cancer patients [26][27], 8 lung cancer patients, 4 735 

ovarian cancer patients, 3 glioma patients, 1 bladder cancer patient [27], and 1 germ cell cancer 736 

patient [27]. All plasma/serum samples were collected when the patients didn’t have complete 737 

remission or had recurrence, so tumor content was expected in all samples. After applying our 738 

method, tumor-derived DNA was detected in all cfDNA samples except three plasma samples 739 

from glioma patients (Supplementary Figure 3). Because the detection of tumor-derived cfDNA is 740 

only possible in a very small fraction of glioma patients due to the blood-brain barrier [28], our 741 

results were reasonable and consistent with the literature.  742 

 743 

Among the 35 patients, 8 NSCLC patients, 4 ovarian cancer patients and 12 prostate cancer 744 

patients have at least two plasma/serum samples collected at different time points, between which 745 

the patients received treatments. To monitor the tumor changes in these patients, two tumor 746 

fractions are calculated separately for the pre-existing tumor mutations (pre-existing tumor 747 

fraction) and for the de novo tumor mutations (de novo tumor fraction) from cfTrack. The two 748 

tumor fractions allow us to track possible tumor mutations during treatment.  749 

 750 

The eight NSCLC patients received anti-PD-1 immunotherapy and their plasma samples were 751 

collected from each patient at 0 weeks (baseline), 6 weeks and 12 weeks, measured from the 752 

start of treatment. Among these patients, four are “durable responders” whose progression-free 753 
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survival (PFS) is longer than 18 months; the other four patients are “early progressors” whose 754 

PFS is shorter than 6 months (see Supplementary Table 2). In general, we observe a decreasing 755 

or low tumor fraction in the durable responders and an elevated tumor fraction in the early 756 

progressors (Figure 5a). An unusual example in the sample is early progressor LC-2, whose pre-757 

existing tumor fraction remained at a low level during immunotherapy treatment, while de novo 758 

tumor fraction increased. This implies a potential clonality change during treatment. In other words, 759 

the responding clone might have shrunk while the other clones grew. Existing cancer monitoring 760 

methods, which do not consider newly emerging mutations, could not have recognized this tumor 761 

growth and would have misled further treatments.  762 

 763 

The four ovarian cancer patients received chemotherapy (OV1, OV2, and OV3) or chemotherapy 764 

and surgery (OV4) between the collection of two serum samples (Supplementary Table 3). At the 765 

time of the second collection, patients OV1, OV2, and OV3 underwent surgery. Surgical and 766 

pathologic findings demonstrated a moderate treatment effect from chemotherapy. We observed 767 

a decrease in both tumor fractions using cfTrack (Figure 5b), which indicated a decline in tumor 768 

burden. Patient OV4 had a recurrence after chemotherapy and surgery at the time of the second 769 

serum collection. Consistently, we observed an increase in both tumor fractions (Figure 5b). 770 

Therefore, our results are consistent with the clinical outcomes of these patients. 771 

 772 

We also tracked the tumor changes in the 12 prostate cancer patients who received various 773 

treatment types during the time between the two plasma collections. During treatment, 9 patients 774 

(P8, P9, P10, P14, P15, P16, P18, P19, and P20) had clonal expansion and 3 patients (P6, P17, 775 

and P21) had persistent clones [26]. The clonality change can be reflected by the discordance of 776 

the two estimated tumor fractions. In general, we observed discordance between the two tumor 777 

fractions in the majority of the patients with clonal expansion (Figure 5c). There are no or only 778 
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minor differences between the two tumor fractions in the patients with relatively stable clones 779 

(Figure 5c). These observations are consistent with those from the NSCLC patients.  780 

 781 

From the analysis of this heterogeneous cohort of cancer patients with different cancer types and 782 

various treatments, we showed that our method can not only closely track the change in tumor 783 

fraction, but also detect changes in mutation clonality. The latter is essential for the detection of 784 

resistance clones in order to promptly guide subsequent treatments, but it cannot be achieved by 785 

existing cancer monitoring methods. 786 

 787 
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 788 

Figure 5. Longitudinal cfDNA monitoring in cancer patients who received treatments. The lines show the tumor 789 

fraction in cfDNA during treatment. (a) Tumor fraction in plasma samples of 8 NSCLC patients who received anti-790 

PD-1 immunotherapy. (b) Tumor fraction in serum samples of 4 ovarian cancer patients. (c) Tumor fraction in plasma 791 

samples of 12 prostate cancer patients. 792 

 793 

 794 
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Discussion 795 

Cancer monitoring is essential to assess the effectiveness of treatment and improve the life quality 796 

of cancer patients. Unlike traditional tumor biopsies, cfDNA can provide noninvasive and 797 

continuous monitoring of cancer patients, but the very low tumor content of cfDNA remains a 798 

major challenge. Most current cfDNA-based methods rely on deeply sequencing a small gene 799 

panel to detect the weak tumor signal, but this approach cannot comprehensively cover the 800 

patient population or detect evolving tumors. Therefore, we have developed a new cfDNA-based 801 

cancer monitoring method that can effectively and sensitively track changes in tumors, detect 802 

cancer MRD/recurrence, and identify the presence of a second primary cancer. We present a 803 

new computation method for cancer monitoring using cfDNA WES data to overcome the 804 

limitations of previous methods. Taking advantage of the wide genome coverage of WES data, 805 

cfTrack (1) enhances the tumor signal by integrating a large number of clonal tumor mutations 806 

identified in pre-treatment samples; (2) suppresses sequencing errors at the read level with an 807 

accurate random forest model; (3) builds sample-specific background noise distributions to predict 808 

MRD/recurrence, avoiding biases due to inter-individual and inter-experimental variations; and (4) 809 

detects tumor evolution and second primary cancers by de novo identifying emerging tumor 810 

mutations. 811 

 812 

Combining these techniques, cfTrack achieves sensitive and specific detection of recurrence, 813 

MRD and second primary cancers. In detecting recurrence in samples with a 0.05% tumor fraction, 814 

cfTrack achieved an AUC of 99% (100% sensitivity and 96% specificity) on the validation dataset 815 

and an AUC of 100% (89% sensitivity and 100% specificity) on the independent dataset.  In 816 

detecting second primary cancers in samples with a 0.2% tumor fraction, cfTrack yielded an AUC 817 

of 88% (76% sensitivity and 93% specificity). Since the performance of the method increases with 818 

the sequencing depth, these results can be further improved in practice. As an application, we 819 

show that cfTrack achieved accurate and comprehensive monitoring of the changes in tumors for 820 
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patients with different cancer types and undergoing various treatments, which cannot be 821 

accomplished by methods focusing only on a small panel of mutations from pre-treatment tumor 822 

samples. 823 

 824 

This study has its limitations. Firstly, cfTrack has only been validated and evaluated using in silico 825 

spike-in simulation data and on a limited number of cancer patients. To address this limitation, we 826 

generated simulation data that mimic real scenarios, including tumor evolution during treatment. 827 

For example, simulated plasma samples with tumor content are generated by subsampling the 828 

original plasma sample from the second time point, which already contains a different tumor 829 

profile compared to the sample at baseline. Nevertheless, we acknowledge that real cases of 830 

MRD, recurrence and second primary cancers could be more complicated. Applying cfTrack to 831 

larger datasets would enable a more comprehensive evaluation and possible optimization of 832 

parameters. Secondly, tumor fraction is calculated as an average across all reads for a predefined 833 

list of tumor markers. Tumor evolution and tumor heterogeneity could bias the selection of 834 

markers, resulting in the absence of important variant supporting reads in the post-treatment 835 

cfDNA samples and causing the model to infer a lower tumor fraction. Thirdly, given the medium 836 

depth of WES data and the low tumor fraction in the cfDNA samples, cfTrack focuses on tracking 837 

the overall tumor changes rather than specific clones/subclones. For the same reason, cfTrack 838 

can detect de novo mutations to monitor newly emerging tumors, but it doesn’t guarantee the 839 

detection of specific variants directly related to treatment targets.  840 

 841 

In this study, for some patients, we use plasma samples to detect the pre-existing tumor mutations, 842 

with no need for solid tumor biopsy samples. This is possible as long as the tumor content in 843 

plasma samples is sufficient for mutation detection. For patients who receive surgical tumor 844 

removal or for patients whose tumor biopsy samples are available, our method can also use a 845 
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solid tumor sample to identify the pre-existing tumor mutations. However, it is worth noting that a 846 

plasma sample may still offer a more comprehensive mutation profile than a biopsy sample [29].  847 

 848 

Currently, cfTrack utilizes tumor somatic mutations to detect cancer. In a future version, more 849 

cancer-specific features in cfDNA can be incorporated. Recent studies have discovered that copy 850 

number variations, fragment length, and jagged ends of cfDNA are all associated with tumor-851 

derived cfDNA. In our random forest model, we incorporated the fragment length of the DNA 852 

fragments to discriminate true variants from sequencing errors. By integrating other features, we 853 

may further empower cancer monitoring to provide actionable information and treatment guidance 854 

for patients. 855 

 856 

 857 

 858 

Declaration 859 

 860 

Availability of data and materials. cfTrack is implemented in Python and is freely available for 861 

academic and research usage through our lab website. The sequence data of the eight NSCLC 862 

patients and the four ovarian cancer patients are deposited at the European Genome-phenome 863 

Archive (EGA) before publication. 864 
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