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Abstract 

Responsive to treatment individually, chronic migraine remains strikingly resistant 

collectively, incurring the second-highest population burden of disability worldwide. 

A heterogeneity of responsiveness, requiring prolonged—currently heuristic—

individual evaluation of available treatments, may reflect a diversity of causal 

mechanisms, or the failure to identify the most important, single causal 

factor. Distinguishing between these possibilities, now possible through the 

application of complex modelling to large-scale data, is critical to determining the 

optimal approach to identifying new interventions in migraine and making the best 

use of existing ones.  

Examining a richly phenotyped cohort of 1446 consecutive unselected patients with 

chronic migraine, here we use causal multitask Gaussian process models to 

estimate individual treatment effects across ten classes of preventatives. Such 

modelling enables us to quantify the accessibility of heterogeneous responsiveness to 

high-dimensional modelling, to infer the likely scale of the underlying causal 

diversity. We calculate the treatment effects in the overall population, and the 

conditional treatment effects among those modelled to respond and compare the true 

response rates between these two groups. Identifying a difference in response rates 

between the groups supports a diversity of causal mechanisms. Moreover, we propose 

a data-driven machine prescription policy, estimating the time-to-response when 

sequentially trialing preventatives by individualized treatment effects and compare it 

to expert guideline sequences. All model performances are quantified out-of-sample. 

We identify significantly higher true response rates among individuals modelled to 

respond, compared to the overall population (mean difference of 0.034; 95% CI 0.003 

to 0.065; p=0.033), supporting significant heterogeneity of responsiveness and diverse 

causal mechanisms. The machine prescription policy yields an estimated 

35% reduction in time-to-response (3.750 months; 95% CI 3.507 to 3.993; p<0.0001) 

compared with expert guidelines, with no substantive increase in expense per patient. 

We conclude that the highly distributed mode of causation in chronic migraine 

necessitates high-dimensional modelling for optimal management. Machine 

prescription should be considered an essential clinical decision-support tool in the 

future management of chronic migraine. 
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Introduction 

Migraine presents a therapeutic paradox. It is the second most disabling disease 

worldwide—first in the 15 to 50 age interval—with enormous social and economic 

impact.1-4 Yet it is considered a treatable disease, responsive to a wide array of readily 

administered, mechanistically diverse interventions.5,6 How do we find ourselves 

losing a war whose individual battles we are seemingly so well-equipped to win?  

Two polar possibilities arise, distinguished by migraine’s currently unknown mode of 

causation. If its cause is unitary—there is a necessary and sufficient mechanism 

common to all patients—the response to current treatments may be variable because 

their effect is collateral to the critical disease process. Here finding a new, universally 

effective agent is theoretically possible, and its effect may be proven in an adequately 

powered randomized trial.  

Conversely, if its cause is distributed—there is no single mechanism but a wide, 

heterogeneous field of interacting causal factors—treatment variability may be 

explained by varying correspondence between the chosen therapeutic agent and the 

patient’s specific causal field.7 Here our task necessarily complicates to identifying 

not one but a family of mechanisms—and therefore modifying agents—and cannot be 

plausibly solved by any practicable set of conventional trials, for the unknown 

fraction of a sample responsive to any given treatment cannot be quantified without 

an overview of the treatment heterogeneity of the population as a whole. 

Reality may fall anywhere between these two extremes. But in relying on randomised 

controlled trials, the currently dominant approach to therapeutic innovation in 

migraine excludes the second possibility entirely. It is, moreover, radically at odds 

with the widespread clinical impression of treatment heterogeneity, and the 

established practice of speculative, heuristic treatment, optimised by individual 

feedback over many months.6 

If a presumption is to be made, it is in favour of distributed, not unitary causation. But 

in the absence of widely applicable methods of studying complex distributed 

causation, the distinction has been untestable. The recent advent of highly expressive, 

computationally-assisted mathematical models now allows us to investigate it 

empirically, and to address two questions of major translational significance. 
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First, examining an unselected, consecutive, fully-inclusive, richly phenotyped cohort 

of 1446 patients with chronic migraine, here we quantify the individualized treatment 

effects of major categories of prophylactic treatment, exploiting causal multitask 

Gaussian processes models of proven power to extract heterogeneous causal effects 

from high-dimensional observational data.8 In the setting of unitary causation, where 

individual variability to current agents arises incidentally, there should be no marked 

difference between treatment effects evaluated across the population—average 

treatment effects—and treatment effects evaluated across the subpopulation identified 

to be susceptible—conditional average treatment effects. Conversely, finding such a 

difference would support the presence of distributed causation, reflecting consistent 

individual patterns of diverse mechanistic susceptibility.  

Second, if we find individual responsiveness to be determinable, the order in which 

candidate agents are sequentially evaluated in a patient could be objectively 

optimised. Here we compare the theoretical benefit—quantified in time-to-response—

of such machine prescription against established heuristic treatment policies, 

contextualised by estimates of treatment cost. If substantial benefit is observed, 

machine prescription ought to be preferred over the current expert-driven approach to 

treatment selection. 

To assure generalisability, we quantify all effects on out-of-sample test data, unseen 

by the models in training. Moreover, our focus is on the general extent of achievable 

treatment individuation and its impact, not the precise observed rank of individual 

treatments, for our questions seek to establish the correct causal framework in chronic 

migraine, and the best use of existing evidence in guiding treatment while we await 

further insight into the aetiology of this complex disorder.       

Materials and methods 

Patients, interventions, and outcomes 

An unselected, consecutive, retrospective cohort comprising all patients seen by one 

neurologist with headache expertise (MM) at the secondary and tertiary Headache 

Centre at the National Hospital for Neurology and Neurosurgery, Queen Square, UK, 

from May 2007 to September 2019 was examined. The inclusion criteria were a 

diagnosis of chronic migraine and the availability of a sufficiently complete structured 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 9, 2021. ; https://doi.org/10.1101/2021.11.07.21265816doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.07.21265816
http://creativecommons.org/licenses/by/4.0/


 6 

clinical phenotypic record. Participants were not required to strictly fulfil the 

diagnostic criteria for chronic migraine,9 but all exhibited the distinctive features of 

migraine as a firm diagnosis. Patients with chronic migraine only considered a 

differential diagnosis or in cases where the diagnosis was unclear were excluded. All 

patients evaluated at the Headache Centre routinely undergo a structured clinical 

assessment, including comprehensive detailed phenotyping and documentation of 

prior medical history. A proportion undergoes further investigations, including 

imaging as clinically indicated. Modelling incorporating brain imaging is the subject 

of a subsequent report. The study population characteristics are provided in Table 1. 

The interventions modelled in this study were classed by mode of action and included 

all preventive therapies for which there were at least 100 adequately documented 

patient trials. The modelled therapeutic classes were onabotulinumtoxinA, flunarizine, 

candesartan, serotonin noradrenaline reuptake inhibitors, topiramate, tricyclic 

antidepressants, acupuncture, valproate, betablockers and serotonergic agents 

(pizotifen and methysergide). Treatment response for a therapeutic class was defined 

as positive where more than 50% reduction in headache days was observed, and 

negative otherwise, by any agent within the class, over an evaluation period of at least 

three months. Headache days were recorded by patients prospectively on a paper 

headache diary and evaluated by the neurologist. Treatment responses to 

onabotulinumtoxinA were labelled as effective only if the PREEMPT paradigm was 

followed, and a treatment effect remained after the second set of injections, to account 

for the known high placebo response.  

A total of 1831 patients were eligible for inclusion. Of those, 131 were excluded 

owing to diagnostic uncertainty, and a further 269 owing to missingness, leaving 1446 

for analysis (Supplementary Figure 1).  

Data acquisition and data management 
Data was collected through automated extraction of the Microsoft Word template-

based structured clinical record employed by the Headache Centre. Standard natural 

language processing techniques such as string matching with regular expressions and 

grammatical decomposition were used. Accuracy against manual extraction from a 

held-out subset of 60 patients was 90.73%. Note that this processing was performed 

for service optimization purposes wholly within the clinical digital environment; all 
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subsequent analysis was performed on data from which all identifiers had been 

removed. 

Categorical and continuous variables were converted to a continuous interval scale. 

All other features were binarized as present or absent. Supplementary Table 1 outlines 

details on all included features and outcomes. Samples with more than 10% missing 

data were removed from the dataset. The mean and standard deviation was used for 

precision and variance estimates in cases of normal distribution; the median and 

interquartile range was used otherwise. Normality assumptions were based on visual 

inspection of histograms and the Shapiro-Wilk test for normality. Effect estimates 

were reported with 95% confidence intervals. The significance level was set to 

α=0.004 after Bonferroni correction for 14 comparisons (0.05/14=0.004) in the 

prescriptive modelling, and the conventional 0.05 in the individualized treatment 

effect modelling. 

Modelling and statistical analysis 

Individualized treatment effect modelling 

We randomly split the dataset into three stratified subsets: training, validation, and 

test, the last providing a held-out, out-of-sample definitive benchmark of 

performance. The partitions were kept separate and created with the following ratios: 

4:1 training to test and within the training set, 4:1 training to validation 

(Supplementary Figure 1). Missing data were imputed with a probabilistic principal 

component analysis imputer based on the training dataset, and the data was scaled.  

To model individualized treatment effects, we implemented a causal multitask 

Gaussian process model.8 The model has been validated to be capable of inferring 

individualized treatment effects from observational data, accounting for a non-random 

distribution of the treatment factor. The model learns from the high-dimensional array 

of features (in our case, headache phenotype and comorbidities) to infer treatment 

effects. Treatment effects may be interpreted as the theoretical difference in response 

(here defined as ≥50% reduction in headache frequency) when exposed to a treatment 

versus not exposed to a treatment. In the implementation of the model, two different 

interventions are compared, and by learning from the training data, the model can 

predict treatment effects in unseen data at the individual level—i.e., individualized 

treatment effects. The model was trained and optimized using the training and 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 9, 2021. ; https://doi.org/10.1101/2021.11.07.21265816doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.07.21265816
http://creativecommons.org/licenses/by/4.0/


 8 

validation subsets. The discounted cumulative gain was used as a scoring metric to 

evaluate choice of kernel hyperparameters (Supplementary Table 2). The best 

performing model in the validation set was finally evaluated on the out-of-sample test 

set.  

We made pairwise comparisons between all prophylactic intervention classes giving 

individualized treatment effects for each intervention compared with each of the 

others. Each patient’s individualized treatment effect for an intervention class was 

calculated as the mean of all pairwise effects including that class. Thus, we arrive at a 

modelled individualized treatment effect for all intervention classes for each patient. 

We calculate the average treatment effects—i.e., the estimated population treatment 

effect inferred from the Gaussian process model—as the median and interquartile 

range of individualized treatment effects for each intervention class. We also report 

the median and interquartile range of the mean of individualized treatment effects 

across all pairwise comparisons to provide descriptive in-sample and out-of-sample 

average treatment effect estimates for each intervention class (Supplementary Figure 

2). 

Next, we defined a conditional subgroup consisting of the patients whose modelled 

individualized treatment effect was above the median (owing to skewed data). By 

calculating the average treatment effect similarly as above for the conditional 

subgroup, we derive the conditional average treatment effect—i.e., each intervention 

class’ average treatment effect among those predicted by the model to respond. We 

then compare the conditional true treatment effect (the true response rate captured 

from headache diaries in the conditional subgroup) with the overall true treatment 

effect using a one-sample t-test of the differences across all intervention classes and 

report the mean difference with a 95% confidence interval. Finally, we estimate the 

validity of the machine prescription by calculating the 10-fold cross-validated 

accuracy of a logistic regression model using the predicted individualized treatment 

effects as the independent variable and the true response as the dependent variable. 

Impact and prescriptive modelling 

To model the impact of machine prescription, we implemented the following strategy: 

The individualized treatment effects were used to rank the preventative therapies from 

highest to lowest probability of response for each individual patient. From this, we 
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ascertained the proportion of patients having tried in reality their top three predicted 

treatments.  

Further, given a patient and a sequence of agents ordered according to their response 

probabilities—i.e., individualized treatment effects—from highest to lowest, p1,	p2,	p3	
…	p10, we calculated the probability of arriving at a treatment success after a given 

number of failed treatments, delivered in the optimal predicted sequence, as follows: 

ℙ{𝑋 = 𝑘} = 𝑝!,									𝑘 = 0	

ℙ{𝑋 = 𝑘} = (1 − 𝑝!)(𝑝"),								𝑘 = 1	

	ℙ{𝑋 = 𝑘} = (1 − 𝑝!)… (1 − 𝑝#)(𝑝#$!),									𝑘 ≥ 2 

where X denotes the number of independent failures before a success (at trial k+1). 

Given treatment success at trial k+1 we are able to calculate the expected number of 

months in pain (i.e. months with failed treatments) before completion of a successful 

treatment trial as 

(𝑘 + 1) × 𝑡 × 	ℙ{𝑋 = 𝑘} 

for each patient at k=0,	k=1,	k=2	…	k=9. Here t equals the necessary time to 

evaluate a treatment trial which was defined as three months for all treatments except 

onabotulinumtoxinA which was six months. This gives a population distribution of 

number of months to completion of a successful treatment trial, allowing us to 

estimate time-to-response given different sequences of intervention trialling.  

We then aimed to evaluate the optimal predicted sequence of intervention trialling to 

other possible sequences. We compared the population distribution given by the 

Gaussian process machine prescription to the population distribution given by ranking 

by different guideline and expert recommendations,10,11 following a random sequence, 

and ordering treatments by increasing costs. We constructed a series of sequences to 

reflect different available guidelines and expert opinions. Guideline recommendation 

1 sequence was constructed by picking three random of the evidence-based oral 

preventives suggested in at least one guideline (tricyclic antidepressants, serotonin 

noradrenaline reuptake inhibitors, betablockers, candesartan, topiramate, valproate, 

and flunarizine) followed by onabotulinumtoxinA.10 Guideline recommendation 2 

sequence was based on picking two random among betablockers, candesartan, 

tricyclic antidepressants, and serotonin noradrenaline reuptake inhibitors, followed by 

one random of topiramate, valproate, and flunarizine, followed by 
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onabotulinumtoxinA.11 The National Institute for Health and Care Excellence (NICE) 

guideline sequence was based on the recommendation of trying each of betablockers, 

topiramate, and tricyclic antidepressants (order not specified), followed by 

onabotulinumtoxinA. The expert panel sequence was based on an aggregate of 23 UK 

headache specialists asked to order the treatments based on a general understanding of 

efficacy and adverse events (Supplementary Table 3). The random sequence was 

created from the mean at each timepoint k0,	k1,	k2	…	k9 of a Monte Carlo simulation 

with 1000 realizations, i.e. 1000 random sequences. For the machine prescription we 

also restricted onabotulinumtoxinA to be the fourth trialled treatment to mitigate bias 

from the difference in evaluation period between onabotulinumtoxinA and other 

treatments. A two-tailed t-test was used to compare the population distributions of 

time-to-response, reporting the mean difference with 95% CI. 

Using the British National Formulary price tariffs, we derived estimates of individual 

treatment-related expenses in pound sterling. We then compared the optimal machine 

prescription sequence of intervention trialling to sequences ordered by treatment 

costs. Moreover, we reported the difference in expenses defined as the sum of the n 

top predicted trials subtracted from the sum of the n actual trials, where n is the 

number of trials. We reported estimates for the lowest and highest available price 

tariffs (Supplementary Table 4). 

We also conducted a sensitivity analysis on sub-strata of severely affected patients vs. 

less severely affected patients comparing machine prescription to the guideline 

recommendation 1 sequence. We reiterated the individualized treatment effect and 

impact analysis on two sub-strata of the population. The first strata consisted of 

patients with at least 25 headache days/month and a headache intensity of 9 or higher. 

The second strata consisted of patients with less than 25 headache days/month and 

headache intensity below 9. 

Ethics 
The study was performed under NRES approval by the London-West London & 

GTAC Research Ethics Committee for the consentless analysis of irrevocably 

anonymized data. 
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Data availability 
The raw data required to replicate this study is not availble for public release under 

the conditions of ethical approval. The code used in this study is available upon 

reasonable request to the authors. 

Results 

Individualized treatment effects 
The out-of-sample modelled average treatment effects ranged from 0.44 (interquartile 

range 0.33 to 0.56) to 0.06 (interquartile range 0.04 to 0.09). The out-of-sample 

modelled conditional average treatment effects ranged from 0.56 (interquartile range 

0.48 to 0.65) to 0.09 (interquartile range 0.08 to 0.11). OnabotulinumtoxinA had the 

largest out-of-sample treatment effects, followed by flunarizine, candesartan, 

serotonin noradrenaline reuptake inhibitors, topiramate, tricyclic antidepressants, 

acupuncture, valproate, betablockers, and serotonergic agents.  

Out-of-sample comparison of the true treatment effect across the population to the 

conditional true treatment effect within the subpopulation of predicted responders for 

each treatment class showed a mean difference of 0.034 (95% CI 0.003 to 0.065; 

p=0.033) in favour of the latter (Figure 1). This discrepancy was greatest for 

flunarizine, serotonergic drugs, and valproate. The accuracy of validating the 

modelled individualized treatment effects compared to true treatment effects was 

consistently high (0.731±0.103). Table 2 outlines modelled average treatment effects, 

modelled conditional average treatment effects, and true treatment effects for all 

intervention classes. 

Machine prescription and its impact 
Out of the 253 patients included in the test set, 85 (33.6%) had tried their model 

predicted best treatment, 140 (55.3%) patients had tried at least one of their top two 

treatments, and 170 (67.2%) had tried at least one of the top three treatments. 

Sequentially evaluating treatments by machine prescription resulted in arriving at a 

successful treatment in significantly fewer months than administering treatments in 

order by generic guideline recommendations (-3.750 months; 95% CI -3.993 to -

3.507; p<0.0001), or indeed any other justifiable order, including experienced 
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clinician rankings (Figure 2 and Supplementary Table 5). The best treatment policy 

did not differ from randomly evaluating therapies. Finally, the average additional 

three-monthly cost for machine prescription was -£2 for low drug tariff estimates and 

£1 for high drug tariff estimates.  

In the sensitivity analyses, reduction in time-to-response was –3.782 months (95% CI 

-4.574 to -2.990; p<0.0001) in the high-severity strata; and –3.343 months (95% CI -

4.860 to -1.825, p<0.0001) in the low-severity strata (Table 3).  

Discussion 

Surveying a chronic migraine population amongst the largest and most finely 

phenotyped in the literature, here we show treatment heterogeneity to be robustly 

predictable from high-dimensional causal modelling of routinely collected clinical 

data. This finding supports a complex, distributed underlying mode of causation in 

chronic migraine, and suggests that neither the pursuit of a unitary causal mechanism, 

nor the evaluation of treatment effects within conventional randomised controlled 

trials is likely to be productive. Rather, deeper characterisation of patient 

heterogeneity is likely to be needed, through modelling richer additional features, 

such as imaging, physiological and genetic data12-18 at larger data scales, illuminating 

the wide causal field of factors that clearly underpins this complex disorder.  

We show further that current treatment policy guidelines yield broadly the same time-

to-response as chance. This is consistent with the widespread belief amongst 

clinicians that the individual selection of optimal treatment based on a small subset of 

individual patient factors is very difficult,6 a belief reinforced by expert panel 

rankings of treatments (Supplementary Table 3). By contrast, machine prescription 

offers a significantly shorter time-to-response, with a substantial mean effect size 

exceeding three months—equating to a 35% reduction. Crucially, better treatment is 

here achieved without a marked increase in cost, or plausibly greater risk of side 

effects,19,20 and without substantial variability across different severity strata. Close 

consideration must clearly be given to adopting the approach at scale, for the balance 

of risks and benefits is here heavily weighted in our favour. 

It may seem premature to draw so general a set of conclusions from a single centre, 

tertiary referral population, even if this is one of the largest reported in the literature. 
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But it is crucial to appreciate that all inferences are here drawn from out-of-sample 

test data, indicating generalisability beyond the training data. Moreover, if a marked 

discrepancy between individual and population responsiveness is robustly identified 

within a comparatively small population with lower levels of heterogeneity than are 

observed in wider care, a larger scale analysis can only magnify it. This is because 

the tractability of patterns of heterogeneity can only be enhanced with data of greater 

scale and inclusivity. Indeed, our analysis invites replication with primary care data 

which we here show can be readily performed automatically with structured clinical 

records. The objective of this study is less to derive a set of specific models than to 

illustrate the optimal way of approaching machine prescription in migraine, given its 

manifest complexity. 

Though a small proportion of patients did not fulfil strict diagnostic criteria, they were 

judged by an expert headache specialist to have chronic migraine, and our population 

demographics overall are in line with other large chronic migraine cohorts.21,22 Such 

patients should, and generally would, be treated as chronic migraine in real-world 

practice, and excluding them would limit rather than enhance generalisability to the 

wider population. Without objectively determinable aetiological criteria, all 

classification is in any event heuristic. That the conclusions here apply to a slightly 

broader population does not make them invalid: it extends their reach. 

Finally, though allocation bias inevitably corrupts observational studies, in the context 

of heterogeneous treatment effects clearly exemplified here, it is only one 

contributory factor to the fidelity of the inference, and becomes increasingly 

secondary to the quality of the outcome model as the scale of available data rises.23 In 

any event, a multi-agent randomized controlled trial is obviously infeasible here, and 

evaluated with conventional statistics would be critically confounded by the 

individual-level, high-dimensional patterns of treatment responsiveness we have 

already demonstrated. 

Conclusion 
Our analysis of a large and richly characterized dataset of chronic migraine 

phenotypes demonstrates—not only the value—but arguably the necessity of high-

dimensional modelling in the management of migraine. We develop and evaluate a 

causal model of commonly used anti-migraine preventives that demonstrate both the 
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distributed mode of causation, and the feasibility of machine prescription at the 

individual level. We conclude that the application of high-dimensional modelling to 

prescribing is a critical step towards reducing the massive global burden of migraine 

through realizing the personalized, precision medicine this remarkably complex 

condition demands. 
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Abbreviated Summary 

Stubberud et al. report that high dimensional modelling of the vastly heterogenous 

symptomatology of chronic migraine may predict optimal preventative treatment at 

the individual level. Using state-of-the-art machine learning they demonstrate that 

time-to-response is reduced by 35% compared to population-based policies. 
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Table 1. Study population demographics.  
Legend: SD=standard deviation; IQR=inter-quartile range; ICHD-3=international 
classification of headache disorders 3rd edition 
 

 

All patients (n=1446) 

Fulfilling ICHD-3 
criteria for chronic 
migraine (n=1096) 

Gender female, n (%) 1042/1445 (72.1) 834/1096 (76.1) 

Age, mean (SD) 41.4 (14.6) 40.8 (14.7) 

Headache frequency in days/month, mean (SD) 25.4 (7.6) 26.9 (5.3) 

Exacerbation intensity, mean (SD) 8.2 (1.3) 8.2 (1.2) 

Laterality:     

Only unilateral, n (%) 393/1434 (27.4) 272/1090 (25.0) 

Only bilateral, n (%) 565/1434 (39.4) 405/1090 (37.2) 

Unilateral and bilateral, n (%) 476/1434 (33.2) 413/1090 (37.9) 

Throbbing headache, n (%) 796/1394 (51.1) 653/1068 (61.1) 

Motion sensitivity, n (%) 1215/1446 (84.0) 1016/1096 (92.7) 

Nausea and/or vomiting, n (%) 1079/1446 (74.6) 945/1096 (86.2) 

Photophobia, n (%) 1090/1446 (75.4) 944/1096 (86.1) 

Phonophobia, n (%) 1133/1446 (78.4) 955/1096 (87.1) 

Aura, n (%) 494/1446 (34.2) 452/1096 (41.2) 

Cranial autonomic symptoms, n (%) 819/1446 (56.6) 680/1096 (62.0) 

1-2, n (%) 516/1446 (35.7) 422/1096 (38.5) 

3-4, n (%) 219/1446 (15.1) 186/1096 (17.0) 

>5, n (%) 84/1446 (5.8) 72/1096 (6.6) 

Family history of migraine, n (%) 817/1366 (59.8) 671/1054 (63.7) 

Total follow-up time, person-days 690197 - 497060 - 

Follow-up time in days, median (IQR) 135 (0-652) 119 (0-561) 

Migraine prophylactics tried, median (IQR) 4 (2-6) 4 (2-7) 

Effective migraine prophylactics, median (IQR) 1 (0-1) 1 (0-2) 
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Table 2. Treatment effects. The table shows for each class of migraine prophylactics 
the out-of-sample modelled average treatment effect; the out-of-sample modelled 
conditional average treatment effect; the out-of-sample overall and conditional true 
treatment effect (true response rates); and the accuracy of a logistic regression fitting 
the modelled individualized treatment effects to true response. Although the 
magnitude of the absolute increase in true treatment responders in the conditional 
subgroups may seem small, viewing these figures in light of the already small 
treatment effects highlights the significance of the difference. Moreover, the high 
accuracy of the regression models validates the generalizability of the findings. 

 
  

Intervention 
class (n) 

Modelled 
average 
treatment 
effect 
(interquartile 
range) 

Modelled 
conditional 
average 
treatment 
effect 
(interquartile 
range) 

Overall true 
treatment 
effect 
(overall 
response 
rate) 

Conditional 
true 
treatment 
effect 
(response 
rate in 
conditional 
subgroup) 

Accuracy of 
10-fold cross-
validated 
logistic 
regression of 
predictions 
compared to 
true outcomes 
(standard 
deviation) 

Botulinum 
toxin (111) 

0.44 (0.33-
0.56) 

0.56 (0.48-
0.65) 

0.47 0.51 0.53 (0.03) 

Flunarizine 
(42) 

0.31 (0.23-
0.42) 

0.42 (0.35-
0.49) 

0.64 0.76 0.64 (0.11) 

Candesartan 
(25) 

0.27 (0.15-
0.41) 

0.42 (0.36-
0.47) 

0.16 0.17 0.87 (0.16) 

Tricyclic 
antidepressants 
(185) 

0.22 (0.14-
0.32) 

0.32 (0.25-
0.41) 

0.31 0.35 0.69 (0.02) 

Valproate (68) 0.17 (0.14-
0.32) 

0.29 (0.20-
0.36) 

0.26 0.32 0.74 (0.05) 

Topriamate 
(121) 

0.16 (0.10-
0.27) 

0.27 (0.20-
0.33) 

0.29 0.28 0.71 (0.04) 

Serotonin 
noradrenalie 
ruptake 
inhibitors (66) 

0.16 (0.13-
0.22) 

0.22 (0.20-
0.30) 

0.29 0.33 0.71 (0.05) 

Acupuncture 
(74) 

0.13 (0.10-
0.19) 

0.19 (0.16-
0.28) 

0.28 0.24 0.72 (0.03) 

Betablockers 
(146) 

0.11 (0.06-
0.18) 

0.18 (0.14-
0.34) 

0.14 0.16 0.86 (0.02) 

Serotonergic 
(55) 

0.06 (0.04-
0.09) 

0.09 (0.08-
0.11) 

0.16 0.22 0.84 (0.06) 
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Table 3. Sensitivity analysis. 
 

Analysis Severely affected patients Less severely affected 
patients 

Definition 25 or more headache 
days/month AND headache 
exacerbation severity of ≥9 (on 
a VAS scale 0-10). 

Fewer than 25 headache 
days/month AND headache 
exacerbation severity of <9 (on 
a VAS scale 0-10). 

Time-to-response with 
restricted machine prescription, 
mean (standard deviation) 

6.09 (2.06) 3.52 (2.36) 

Time-to-response with 
Guideline recommended 
sequence 1, mean (standard 
deviation) 

9.90 (2.49) 7.14 (4.14) 

Restricted ML model vs. 
guideline recommended 
ordering 1 

–3.782 months (95% 
confidence interval -4.574 to -
2.990; p<0.0001) 

–3.343 months (95% 
confidence interval -4.860 to -
1.825, p<0.0001) 

Additional cost with machine 
prescription, low drug tariff 

-£57 -£94 

Additional cost with machine 
prescription, high drug tariff 

£18 £2 
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Figure 1. Individualized treatment effects.  
Violinplot representing modelled individualized treatment effects for overall out-of-
sample data (red), and the conditional subgroup predicted to respond (orange). The 
two rightmost violins represent the overall discrepancy between modelled treatment 
effects and modelled conditional treatment effects. Recall that this observed 
discrepancy in treatment effects, reclaimed in the true treatment effects, supports 
highly heterogenous treatment responsiveness and distributed mode of causation. 
SNRI=serotonin reuptake inhibitors; TCA=tricyclic antidepressants 
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Figure 2. Time-to-response.  
Time-to-response given different strategies to decide sequence of evaluating 
treatments. 
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