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ABSTRACT 

Myocardial interstitial fibrosis is a common thread in multiple cardiovascular diseases including 
heart failure, atrial fibrillation, conduction disease and sudden cardiac death. To investigate the 
biologic pathways that underlie interstitial fibrosis in the human heart, we developed a machine 
learning model to measure myocardial T1 time, a marker of myocardial interstitial fibrosis, in 
42,654 UK Biobank participants. Greater T1 time was associated with impaired glucose 
metabolism, systemic inflammation, renal disease, aortic stenosis, cardiomyopathy, heart failure, 
atrial fibrillation and conduction disease. In genome-wide association analysis, we identified 12 
independent loci associated with native myocardial T1 time with evidence of high genetic 
correlation between the interventricular septum and left ventricle free wall (r2g = 0.82). The 
identified loci implicated genes involved in glucose homeostasis (SLC2A12), iron homeostasis (HFE, 
TMPRSS6), tissue repair (ADAMTSL1, VEGFC), oxidative stress (SOD2), cardiac hypertrophy 
(MYH7B) and calcium signaling (CAMK2D). Transcriptome-wide association studies highlighted 
the role of expression of ADAMTSL1 and SLC2A12 in human cardiac tissue in modulating 
myocardial tissue characteristics and interstitial fibrosis. Harnessing machine learning to perform 
large-scale phenotyping of interstitial fibrosis in the human heart, our results yield novel insights 
into biologically relevant pathways for myocardial fibrosis and prioritize investigation of pathways 
for the development of anti-fibrotic therapies. 
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INTRODUCTION 
 
The cardiac extracellular matrix (ECM) is a dynamic compartment that plays key structural and 
regulatory roles in establishing myocardial tissue architecture and function. Pathologic perturbations to 
homeostatic turnover of ECM components leads to the progressive development of interstitial fibrosis,1 
which is the histological hallmark of several cardiac diseases including cardiomyopathy,2 heart failure,3,4 
valvular heart disease,5 conduction disease,6 atrial fibrillation,7 and sudden cardiac death.8 Interstitial 
fibrosis is commonplace in the aging heart,9,10 yet a myriad of hemodynamic, metabolic and inflammatory 
stressors contribute to the accelerated development of interstitial fibrosis and associated cardiovascular 
diseases.11 There is a critical need to understand the biological basis and mechanisms of cardiac fibrosis in 
humans, since identification of the mechanisms of fibrosis may enable opportunities to prevent the 
process and could have a wide-ranging impact on multiple cardiovascular diseases. However, progress 
has been hindered by challenges in reliable non-invasive measurement of interstitial fibrosis at scale in 
the human heart, and by lack of adequately powered validation studies of findings from animal or 
tissue/cell models in humans. The advent of machine learning tools capable of generation of imaging-
based phenotypes at scale and large biorepositories with deep phenotyping and genomic data, offers a 
unique opportunity to overcome these challenges. 
 

Native myocardial T1 time measured using cardiac magnetic resonance imaging (cMRI) is a 
histopathologically validated metric for quantifying interstitial fibrosis in the human heart.12,13 The UK 
Biobank is a large-scale prospective cohort with rich cardiac magnetic resonance imaging14, genomic, and 
clinical outcomes data.15 We sought to use machine learning to quantify fibrosis in over 40,000 study 
participants who underwent cMRI T1 mapping, assess associations between fibrosis and clinical 
outcomes, and identify pathways responsible for cardiac fibrosis in humans using genetic association 
analyses. 

RESULTS 

Machine Learning-Derived T1 Time is Highly Correlated with Manually-Derived T1 Time and 
Enables T1 Time Measurement at Scale 

We acquired mid-ventricular, short-axis cMRI T1 maps for 42,654 participants in the UK Biobank 
(Figure 1) . The mean age of the participants was 64.1 ± 7.7 years and 48% were men (Table 1). We first 
selected 600 random T1 maps (500 for training and 100 for validation) to develop our machine learning 
model (Supplemental Figure 1). To train a machine learning model to segment the target cardiac 
structures of interest (interventricular septum (IVS) and left ventricle free wall (LV FW)), two 
cardiologists manually traced and labelled the selected structures of interest in the 500 training images 
(Supplemental Figure 2 and see Online Methods). The manual tracing procedure, called semantic 
segmentation, displayed high inter-reader concordance between the cardiologist-labelled segmentations, 
as measured in 50 overlapping cMRI acquisitions (Sørensen-Dice coefficients: IVS 0.84, 95% CI 0.76 - 
0.92; LV FW 0.79, 95% CI 0.63 - 0.95). Additionally, T1 derived times were highly correlated between 
the two readers (Pearson correlation coefficient r: IVS 0.95, 95% CI 0.92 - 0.97; LV FW 0.84, 95% CI 
0.73 - 0.91) (Supplemental Figure 3).   

We then trained a machine learning model to identify the IVS and the LV FW using the 
cardiologist-segmented data as truth labels. The machine learning model had high accuracy when tested 
in the validation set (Sørensen-Dice coefficients: IVS 0.82, 95% CI 0.70 - 0.94; LV FW 0.81, 95% CI 
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0.67 - 0.95). Model predictions were then post-processed using morphological erosion of the segments of 
interest to automatically generate representative mid-myocardial regions of interest within the IVS and 
LV FW. Native T1 time for each segment was computed using the median pixel intensity, converted to 
T1 time, in the respective region of interest (Figure 1). In the validation set, automatically generated T1 
times were highly correlated with T1 times derived from manually-traced regions of interest (Pearson 
correlation coefficient r: IVS 0.97, 95% CI 0.95 - 0.98; LV FW 0.92, 95% CI 0.89 - 0.95) (Supplemental 
Figure 4). 

Next, the machine learning model was used to segment the IVS and LV FW in the remaining 
42,054 cMRIs not used for model training or validation followed by automated selection of regions of 
interest and measurement of native T1 time. To maximize the quality of the generated native myocardial 
T1 times, we manually reviewed all 42,654 T1 maps to exclude low-quality acquisitions and major 
artifacts within our segments of interest (see Online Methods). Following quality control, we were able 
to measure native myocardial T1 time for the IVS and LV FW in 41,505 and 39,311 individuals, 
respectively (Supplemental Figure 1). We found that the LV FW segment had a 3-fold higher incidence 
of artifact as compared to the interventricular septum (N LV FW Major Artifact = 3,343 vs. N IVS Major Artifact = 
1,149). The artifact-prone nature of the LV FW segment is well recognized in the field of cardiac T1 
mapping and has led some experts to advocate for preferential use of interventricular septum T1 time to 
differentiate health and disease states of the myocardium.16,17 As such, while we present results for both 
the IVS and LV FW, the IVS native myocardial T1 time constituted our primary analysis. 

Mean IVS and LV FW T1 time of the study sample was 918.1 ± 41.5 ms and 902.1 ± 45.0 ms, 
respectively. These values are consistent with previously reported T1 times in a smaller study from the 
UK Biobank18 including 11,882 cMRIs and other population-based studies with cardiac T1 mapping 
using 1.5 T MRI scanners.10 Furthermore, our results are consistent with known gender-specific patterns 
of higher native myocardial T1 time in women compared to men (Supplemental Figure 5).10,19 There 
was moderate correlation between IVS and LV FW T1 time (Pearson Correlation Coefficient r: IVS 0.64, 
95% CI 0.63 - 0.65; Supplemental Figure 6) in the study sample. 

Native Myocardial T1 Time is Associated with Prevalent Cardiovascular, Metabolic and Systemic 
Inflammatory Diseases 

We then investigated if native myocardial T1 times are associated with cardiovascular, metabolic and 
systemic inflammatory diseases by comparing the native T1 times of the IVS and LV FW from 
participants with prevalent disease at the time of cardiac MRI to healthy participants. Healthy participants 
were selected to be free of prevalent dilated cardiomyopathy, hypertrophic cardiomyopathy, heart failure, 
atrial fibrillation, atrioventricular node/distal conduction disease, hypertension, diabetes mellitus, aortic 
stenosis, chronic kidney disease, hemochromatosis and rheumatoid arthritis. In multivariable analyses, we 
found that multiple cardiovascular, metabolic and systemic inflammatory diseases were associated with 
increased native myocardial T1 time of the IVS and LV FW segments (Figure 2 and Supplemental 
Figure 7). Directionality of the associations for both segments was generally consistent, albeit with 
varying effect sizes and significance levels for each segment. 

Among cardiovascular diseases, higher native myocardial T1 time in both segments of interest 
was associated with hypertrophic cardiomyopathy (PIVS = 5.8 x 10-6 and PLV FW = 1.0 x 10-2), dilated 
cardiomyopathy (PIVS = 1.6 x 10-9 and PLV FW = 4.1 x 10-4), heart failure (PIVS = 9.8 x 10-14 and PLV FW = 2.1 
x 10-5), atrial fibrillation (PIVS = 1.6 x 10-12 and PLV FW = 3.9 x10-5), atrioventricular node/distal conduction 
disease (PIVS = 2.9 x 10-12 and PLV FW = 3.1 x 10-3) and, aortic stenosis (PIVS = 5.5 x 10-4 and PLV FW = 4.0 x 
10-2). For coronary artery disease (PIVS = 8.0 x 10-3 and PLV FW = 0.25), myocardial infarction (PIVS = 6.8 x 
10-3 and PLV FW = 0.26), and history of cardiac arrest (PIVS = 3.4 x 10-2 and PLV FW = 0.05), only higher 
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native T1 times of the IVS was associated with disease. Native T1 time was not associated with 
hypertension (PIVS = 0.16 and PLV FW = 0.79) which is consistent with prior studies that showed limited 
ability of T1 mapping to differentiate between individuals with hypertension and controls except among 
individuals with inadequately controlled hypertension and concomitant left ventricular hypertrophy 
(Figure 2 and Supplemental Figure 7).20  

Metabolic disorders, including type-2 diabetes mellitus (PIVS = 6.3 x 10-27  and PLV FW = 5.3 x 10-

16), type-1 diabetes mellitus (PIVS = 1.5 x 10-8 and PLV FW = 3.5 x 10-3), hyperlipidemia (PIVS = 5.5 x 10-5 
and PLV FW = 4.8 x 10-2) and chronic kidney disease (PIVS = 1.7 x 10-5 and PLV FW = 4.0 x 10-2) were 
associated with significantly higher native T1 times in both segments (Figure 2 and Supplemental 
Figure 7). 

Of the systemic inflammatory diseases examined, rheumatoid arthritis was associated with 
significantly increased native T1 time of both segments (PIVS = 1.6 x 10-4 and PLV FW = 1.8 x 10-2). 
Notably, in the subset of participants in whom C-reactive protein was measured at enrollment (nIVS = 

38,731 , nLV FW = 36,663), we found significantly higher native T1 time in both segments among those in 
the top 20th percentile of the C-reactive protein distribution (PIVS = 1.0 x 10-7 and PLV FW = 3.7 x10-3). 
Systemic lupus erythematosus was associated with increased myocardial native T1 time of the LV FW 
but not IVS (PIVS = 0.50 and PLV FW = 1.3 x 10-2) (Figure 2 and Supplemental Figure 7).  

In a sensitivity analysis, overall findings persisted with further adjustment for LV ejection 
fraction and LV mass, suggesting that myocardial tissue characterization with T1 mapping is a marker of 
myocardial changes associated with disease independent of these measures of LV function and structure 
(Supplemental Figure 8).  

Native Myocardial T1 Time is Associated with Incident Cardiovascular Disease  

We then examined associations between native myocardial T1 time and incident cardiovascular diseases. 
Given the relatively short follow-up time following cMRI (median follow-up 2.54 years, interquartile 
range 1.63 - 3.88) and overall low event rate in the UK biobank, we focused on incident heart failure, 
atrial fibrillation and atrioventricular node/distal conduction disease given a relatively higher number of 
events. We compared individuals in the top 20th percentile of native T1 time distribution for the IVS and 
LV FW to the bottom 80th percentile. We found that participants in the top 20th percentile of IVS T1 
time had a significantly higher risk of incident heart failure (HR 1.33, 95% CI 1.14 - 1.54), atrial 
fibrillation (HRIVS 1.19, 95% CI 1.07 - 1.32) and atrioventricular node/distal conduction disease (HR 
1.25, 95% CI 1.09 - 1.42) compared to those in the lower 80th percentile (Figure 3 and Supplemental 
Figure 9). Participants in the top 20th percentile of LV FW T1 time had a higher risk of incident heart 
failure (HR 1.33, 95% CI 1.13 - 1.57) and atrial fibrillation (HR 1.17, 95% CI 1.05 - 1.31) but not 
atrioventricular node/distal conduction disease (HR 1.06, 95% CI 0.92 - 1.22) compared to those in the 
lower 80th percentile (Supplemental Figure 9).  

Native Myocardial T1 Time is Heritable with Distinct Genetic Architecture Compared to Other 
cMRI-derived Measures of Left Ventricular and Atrial Structure and Function  

Next, we sought to determine the genetic basis of interstitial fibrosis by performing genetic analyses of 
the IVS and LV FW T1 times. The SNP-heritability of these T1 time-based phenotypes were 0.13 ( 
h2gIVS) and 0.11(h2gLV FW). In contrast, SNP-heritability of other cMRI phenotypes such as LV mass, LV 
end diastolic volume, and LV end systolic volume in the UK biobank have been reported to be 0.26, 0.40, 
and 0.31, respectively.21 The genetic correlation between IVS and LV FW was high at 0.82 implying 
shared genetic determinants of diffuse myocardial fibrosis throughout the left ventricle. We then 
examined the genetic correlation between native myocardial T1 time and cMRI measures of left 
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ventricular and left atrial structure and function. Interestingly, we observed limited genetic correlation for 
both IVS and LV FW T1 time with other cMRI measures suggesting that distinct biologic pathways 
contribute to development of myocardial interstitial fibrosis (Supplemental Figure 10).  
 

Common Variant Association Analysis of Native Myocardial T1 Time Highlight Loci Biologically 
Relevant to Fibrosis 

After establishing the heritability of the native T1 times, we performed genome-wide association studies 
(GWAS) for these traits and discovered 11 genome-wide significant loci for the IVS (Figure 4a and 
Supplemental Table 1) and 5 for the LV FW (Figure 4b and Supplemental Table 2). There was no 
evidence of inflation in our GWAS results (IVS: λGC =1.053, LD score regression intercept = 1.0002; LV 
FW: λGC =1.044, LD score regression intercept =1.0067) (Supplemental Figure 11). Regional 
association plots for genome-wide significant SNPs are shown in Supplemental Figures 12 and 13. 

In the IVS GWAS, a regulatory region variant in the solute carrier SLC2A12 was the most 
significant lead SNP (rs2627230, P = 8.08x10-14) and associated with increased levels of native T1 time. 
SLC2A12 encodes solute facilitated glucose transporter member 12 (GLUT12), a basal and insulin-
independent glucose transporter in the heart22 with previously reported associations with heart failure,23 
diabetes,24 and kidney disease.25 Lead SNPs in SOD2 (rs6912979, P = 1.06x10-10) and VEGFC (rs365843, 
P = 3.19x10-9), two genes with established roles in cardiac hypertrophy and fibrosis in animal models,26,27 
were associated with decreased interventricular septum T1 times. Another lead SNP associated with 
interventricular septum T1 time is an intronic variant in ADAMTSL1 (rs1576900, P = 3.63x10-11), a gene 
encoding an ADAMTS-like protein which is thought to modulate the function of ADAMTS 
metalloproteinases with integral roles in extracellular matrix turnover.28,29 Additionally, MYH7B, a gene 
associated with familial hypertrophic cardiomyopathy,30 was among the genome-wide significant loci 
(rs6120777, P = 9.2x10-11); this association persisted even after exclusion of hypertrophic 
cardiomyopathy cases in a sensitivity analysis (Supplemental Table 3). Interestingly, we also identified 
rs115740542 (P = 2.71x10-10) a variant near the HFE gene in perfect linkage disequilibrium with 
rs1800562 which leads to the missense change p.Cys282Tyr and is the most common cause of hereditary 
hemochromatosis, an iron overload disorder associated with cardiomyopathy.31 Additionally, rs855791 (P 
= 5.65x10-10) a variant in TMPRSS6, another locus involved in iron homeostasis32 was associated with 
IVS T1 time. We identified a variant in CAMK2D (rs55754224, P = 1.44x10-9) that has been previously  
associated with atrial fibrillation.33 The remaining genome-wide significant variants were located near 
genes associated with cardiac arrhythmias,34–36 cardiac remodeling37 and myocyte cytoskeletal proteins38 
including PPP2R3A, PIM1 and KANK1, respectively.  

Four out of the 5 loci identified in the LV FW GWAS overlapped with loci in the IVS GWAS, 
consistent with their high genetic correlation. The top locus in the IVS GWAS, rs2627230, was borderline 
genome-wide significant in the LV FW GWAS (P = 8.13x10-8) with concordant direction of association 
with T1 time for both segments. The non-overlapping locus associated only with left ventricle free wall 
T1 time was rs369541018, an intronic variant in KANSL1 with no known association with cardiovascular 
disease. This locus includes MAPT and has been previously described as a complex locus within one of 
the largest LD blocks (~1.8 Mb) in the human genome with reported association with Alzheimer’s 
disease,39 which likely explains the high density of SNPs associated with this locus in our analysis. Re-
analysis of this locus using genotype data revealed similar findings suggesting that the dense signal is not 
related to a local imputation error (Supplemental Figure 14). A quantile-quantile (QQ) plot excluding 
the KANSL1 locus (Supplemental Figure 15) showed no early focal deviation in expected and observed 
p-values as was noted in the original QQ plot (Supplemental Figure 11b). 
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In conditional analysis adjusting for lead SNPs within each identified locus in the IVS and LV 
FW GWAS, no additional independent genome-wide significant SNPs were identified. We then 
performed  sensitivity genome-wide association analysis of the IVS and LV FW after excluding 
participants with prevalent heart failure, dilated cardiomyopathy, hypertrophic cardiomyopathy or 
myocardial infarction. In the IVS GWAS sensitivity analysis, we found 10 genome-wide significant loci 
all of which overlapped with the original main IVS GWAS loci. The KANK1 locus (rs58774558, P = 
7.16x10-8) became borderline significant in the IVS GWAS sensitivity analysis (Supplemental Figure 
16a, 17a and Supplemental Table 3). In the LV FW GWAS sensitivity analysis, we replicated all 5 loci 
in the main LV FW GWAS and identified one additional genome-wide significant locus near the ACP1 

(rs554982961, P=3.63x10-8) gene and a borderline significant locus near NRP1 (rs61843241, P = 
9.06 x 10-8) (Supplemental Figure 16b, 17b, 18 and Supplemental Table 4). Both ACP140 and 
NRP141,42 have been shown to play a role in cardiac hypertrophy and fibrosis. Furthermore, we performed 
an additional sensitivity analysis for the IVS GWAS excluding study participants with prevalent 
hereditary hemochromatosis (n=62) and found that the 2 loci associated with iron homeostasis, 
H2BC4/HFE and TMPRSS6, remained genome-wide significant (Supplemental Figure 19, 20 and 
Supplemental Table 5).  

Transcriptome Wide Association Analysis Highlights role of ADAMTSL1 and SLC2A12 Expression 
in Myocardial Interstitial Fibrosis 

Of the 14 unique lead SNPs identified in the IVS and LV FW genome wide association analyses, 9 (or 
their proxies, r2 > 0.6) were significant expression quantitative trait loci (eQTL) in the left ventricle and 
right atrial appendage. Implicated genes included SLC2A12, SOD2 and ADAMTSL1 in the left ventricle 
and ADAMTSL1, CAMK2D, VEGFC and PPP2R3A in the right atrial appendage (Supplemental Table 
6). We then performed a transcriptome-wide association study (TWAS) using gene expression data from 
human left ventricle and right atrial appendage tissue and the IVS and LV FW GWAS summary 
statistics.43,44 TWAS results for the IVS and LV FW were concordant (TWAS results with P<0.05 are 
summarized in Supplemental Tables 7 and 8). Increased expression of ADAMTSL1 in left ventricular 
tissue (PIVS = 5.27x10-9; PLV FW = 4.64x10-8) was associated with significant increase in myocardial 
interstitial fibrosis as measured by native myocardial T1 time. On the other hand, increased expression of 
SLC2A12 in the left ventricle (PIVS = 1.89x10-10; PLV FW = 6.59x10-7) was associated with significant 
decrease in myocardial interstitial fibrosis (Figure 4c and 4d). In the right atrium, increased expression 
of ADAMTSL1 was associated with significant increase in myocardial interstitial fibrosis (PIVS = 1.29x10-

7; PLV FW = 3.77x10-8) (Supplemental Table 8). 

DISCUSSION 

We developed an automated machine-learning model to measure myocardial interstitial fibrosis in over 
42,000 participants in the UK Biobank. We identified associations between myocardial fibrosis and 
impaired glucose metabolism, systemic inflammation, renal disease, aortic stenosis, cardiomyopathy, 
atrial fibrillation, and conduction disease. Furthermore, greater myocardial fibrosis was an independent 
predictor of incident atrial fibrillation, heart failure and conduction disease. In the first large-scale 
genome-wide association study of native myocardial T1 time in the human heart, we identified 12 
independent loci implicating genes involved in biological pathways relevant to fibrosis including glucose 
homeostasis (SLC2A12), iron homeostasis (HFE, TMPRSS6), tissue repair (ADAMTSL1, VEGFC), 
oxidative stress (SOD2), cardiac hypertrophy (MYH7B) and, calcium signaling (CAMK2D). Overall, the 
heritability of myocardial interstitial fibrosis as measured by native myocardial T1 time was relatively 
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low, emphasizing the important contribution of non-genetic environmental factors to cardiac fibrosis. Our 
findings prioritize a number of pathways relevant to myocardial fibrosis for further investigation.  

Our findings have several major implications. First, our results highlight the salient role of 
glucose homeostasis and diabetes in propagation of myocardial fibrosis. Our strongest GWAS locus 
SLC2A12 encodes a highly expressed insulin-independent glucose transporter, GLUT12, in the heart,22 
and diabetes mellitus types 1 and 2 were among the diseases most strongly associated with increased 
myocardial T1 time in this study. GLUT12 knock-out in zebrafish leads to development of heart failure 
and a diabetic phenotype,24 consistent with our TWAS results suggesting that decreased expression of 
SLC2A12 in cardiac tissue was associated with increased interstitial fibrosis. The role of hyperglycemia in 
the pathogenesis of diabetic cardiomyopathy via accumulation of advanced glycation end-products (AGE) 
that cross-link extracellular matrix proteins and transduce profibrotic signals through activation of 
receptor for AGE-mediated pathways is well-established.45 Additionally, the salutary effects of anti-
diabetic therapies that block sodium-glucose cotransporter-2 on outcomes of heart failure with both 
reduced46 and preserved47 ejection fraction, irrespective of concomitant diabetes, have been recently 
recognized. Our findings further highlight the role of glucose homeostasis in myocardial fibrosis in the 
human heart and pinpoint potential additional pathways that warrant further interrogation. 

Second, pathways involved in tissue repair including extracellular matrix turnover and 
lymphangiogenesis were associated with myocardial fibrosis. Increased human cardiac expression of  
ADAMTSL1, an ADAMTS-like protein which lacks catalytic activity and is thought to modulate the 
function of ADAMTS metalloproteinases with integral roles in extracellular matrix turnover,28,29 was 
associated with higher myocardial interstitial fibrosis in this study. The exact effect of ADAMTSL-1 on 
ADAMTS metalloproteinases remains unknown; however, homology between mammalian ADAMTSL-1 
and invertebrate papilin, a known inhibitor of ADAMTS-2, has been reported.48,49 Studies in mice with 
cardiac-specific overexpression of Adamts2 have shown an abrogated pressure overload-induced 
hypertrophic response.50 Thus, potential inhibition of ADAMTS-2 activity may explain the increased 
myocardial fibrosis associated with increased expression of ADAMTSL-1 in the human myocardium. 
VEGFC- and VEGFD-mediated lymphangiogenesis has been associated with cardiac repair and knock-
out zebrafish models go on to develop severe cardiac hypertrophy and myocardial interstitial fibrosis. 
Additionally, use of systemic VEGF inhibitor therapy, such as bevazicumab, has been associated with a 
2-4% risk of incident heart failure.51 In this study, the lead SNP rs365843, tagging VEGFC was associated 
with increased expression of VEGFC in human right atrial appendage tissue and with lower myocardial 
native T1 times reflecting lower myocardial interstitial fibrosis. Thus, our current findings extend those 
from animal models and suggest a role for reparative pathways involving ADAMTS and VEGFC in 
reducing myocardial fibrosis in the human heart.  

Third, our results shed light on the role of myocardial oxidative stress and inflammation in 
development of myocardial interstitial fibrosis. rs9457699, a lead SNP in the IVS native myocardial T1 
time GWAS, is an eQTL for SOD2 in the human left ventricle and was associated with increased 
expression of SOD2 and lower native myocardial T1 time. This is congruent with findings from Sod2 
knockout mice which exhibit increased levels of oxygen reactive species with associated myocardial 
fibrosis and development of dilated cardiomyopathy.26 Furthermore, we found an association between 
rheumatoid arthritis as well as baseline C-reactive protein (a well-established clinical inflammatory 
marker) with increased native myocardial T1 time emphasizing the role of inflammation in the 
propagation of myocardial interstitial fibrosis.  

Fourth, a number of additional established pathways involved in myocardial fibrosis were 
implicated in our results. We provide further evidence for the role of CAMK2D in pathologic cardiac 
remodeling and fibrosis52,53 via association of CAMK2D with increased myocardial T1 time. Additionally 
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PIM1,54 NRP-1,41,42 and ACP140 have been shown to play a role in myocardial fibrosis and were 
implicated in our study results.  

Notably, we identified two genes, HFE and TMPRSS6, associated with iron homeostasis in our 
analysis of the genetic determinants of myocardial T1 time. These loci remained significantly associated 
with myocardial T1 time after excluding individuals with prevalent hereditary hemochromatosis. Cardiac 
T1 mapping is a known sensitive marker of iron deposition in the heart that complements T2* especially 
in early stages of iron overload which could be missed by T2*.55 Iron deposition in the heart alters 
myocardial tissue magnetic properties and is associated with lower T1 time and with development of iron 
overload cardiomyopathy.  

Despite the inherent noise associated with native myocardial T1 time that may have limited 
findings from prior studies, we found that examining myocardial native T1 time at scale yielded 
biologically plausible insights into validated pathways involved in myocardial fibrosis. The laborious 
manual segmentation required for T1 time measurement has limited its availability mostly to small 
research-based cohorts.10 We demonstrate the feasibility of automated quantification of myocardial T1 
time at scale which promises to accelerate our understanding of this relatively under-studied phenotype. 
Additionally, we provide evidence that myocardial T1 mapping identifies myocardial changes associated 
with a number of systemic and cardiovascular diseases beyond standard measures of LV size and function 
and is of prognostic value in predicting risk of incident cardiovascular disease. These findings bolster the 
diagnostic and prognostic value of T1 mapping and advocate for more widespread use and study of 
myocardial T1 mapping. 

Our study has several limitations. First, the cardiac MRI protocol in the UK Biobank did not 
include the use of contrast agents which prohibited calculation of extracellular volume fraction. In some 
studies, extracellular volume fraction has been shown to be a more sensitive marker of myocardial 
interstitial fibrosis and have stronger association with disease as compared to native T1 time.56 Second, 
the T1 maps are obtained at a single mid-ventricular short-axis slice and, while T1 mapping aims to 
measure diffuse non-focal fibrosis, we cannot be certain that a single slice is representative of myocardial 
fibrosis throughout the left ventricle. Third, while increased native myocardial T1 time usually reflects 
increases in extracellular volume due to fibrous tissue deposition, it can also be elevated in the presence 
of tissue edema. Fourth, the UK Biobank study population is predominantly of European ancestry and 
findings from our genetic analysis may not necessarily apply to other ancestries. Fifth, longer follow-up 
and continued imaging of UK Biobank participants will allow for more powered analyses examining the 
prognostic role of myocardial interstitial fibrosis in predicting incident cardiovascular disease than was 
possible in the current study. 

In conclusion, machine learning enables quantification of myocardial interstitial fibrosis at scale. 
Our study yields insights into novel biological pathways underlying cardiac fibrosis and prioritizes a 
number of pathways relevant to myocardial fibrosis for further investigation.  
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ONLINE METHODS 

In the sections below, we provide a detailed description of the methods used in this manuscript. Briefly, 
we trained a machine learning model to segment cardiac T1 maps from the UK Biobank and measure T1 
time at the IVS and LV FW. We examined the associations between native myocardial T1 time and 
cardiometabolic risk factors and cardiovascular disease. We then performed a genome and transcriptome-
wide association analysis of native myocardial T1 time at the IVS and LV FW. 

Study Design and Population 

The UK Biobank is a prospective cohort of 502,629 individuals from the UK enrolled between 2006-2010 
with deep phenotyping, imaging and multiple genomic data types. The cohort design has been previously 
described.15,57 Briefly, around 9.2 million individuals 40-69 years old living in England, Scotland, and 
Wales were invited to participate in the study and 5.4% agreed to participate. Extensive questionnaire 
data, physical measures, and biological samples were collected at baseline, with ongoing data collection 
in large subsets of the cohort, including repeated assessments and multimodal imaging. Starting in 2014, 
42,654 participants have returned for the first multi-modal imaging visit including cardiac magnetic 
resonance imaging with T1 mapping allowing for the assessment of myocardial interstitial fibrosis.14 All 
study participants are followed longitudinally for health-related outcomes through linkage to national 
health-related datasets. 

Use of UK Biobank data was performed under application number 17488 and was approved by 
the local Massachusetts General Hospital institutional review board. 

Cardiovascular Magnetic Resonance Imaging T1 Mapping Protocol and Image Quality Control 

A standardized non-contrast enhanced cardiac magnetic resonance imaging protocol using a clinical wide 
bore 1.5 Tesla scanner (MAGNETOM Aera, Syngo Platform VD13A, Siemens Healthcare, Erlangen, 
Germany) is performed on all cardiac MRI substudy participants. The scanner is equipped with 48 
receiver channels, a 45 mT/m and 200 T/m/s gradient system, an 18 channel anterior body surface coil 
used in combination with 12 elements of an integrated 32 element spine coil and electrocardiogram gating 
for cardiac synchronization. The imaging protocol includes: 3 long-axis cines, 1 short-axis cine, phase 
contrast sequence at the left ventricular outflow tract, 3 segment short-axis tagging and midventricular 
short-axis T1 mapping. Native T1 mapping within a single breath hold was performed using the 
Shortened Modified Look-Locker Inversion recovery (ShMOLLI, WIP780B) technique. The following 
imaging parameters for T1 mapping were implemented: field of view 360 x 236 mm, voxel size 0.9 x 0.9 
x 8.0, flip angle 35 degrees and TR/TE 2.6/1.07 ms.14 T1 maps were generated online and stored in the 
UK Biobank imaging database. 

To date, the UK Biobank MRI core lab has only released raw T1 maps to UK Biobank 
researchers. As such, we developed our own automated pipeline to measure native myocardial T1 time 
from raw T1 maps (Figure 1). First, we set up an automatic procedure to identify raw T1 map series 
among the several files provided by the UK Biobank under the category “Experimental shMOLLI 
sequence images” (UK Biobank Field ID  20214). Preliminary explorations indicated that the T1 map 
series names contained the “t1map” keyword and explicitly mentioned the MRI “sax (short-axis)” view. 
Therefore, we discarded all series with names not containing either of the two keywords. Then, we set up 
a standardized quality control process using a custom online tool to streamline the review of the 42,654 
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selected T1 maps by four experienced MRI reviewers (V.N, M.D.R.K, P.D.A., and J.W.C., 
Supplemental Figure 21). Two myocardial segments of interest were defined for this analysis, the IVS 
and the LV FW, to allow for examination of regional variation in myocardial interstitial fibrosis and 
region-specific association with disease. Additionally, this enabled the characterization of the genetic 
determinants of septal vs. free wall myocardial interstitial fibrosis. 

All images were reviewed and assessed for overall image quality as well as artifacts involving 
segments of interest (IVS and LV FW). A cardiologist (V.N.) reviewed all images that were flagged by 
any of the four reviewers and made a final ascertainment on image quality and extent of artifact involving 
segments of interest. Off-axis images and those with severe distortion of overall image pixel intensity 
were excluded (Supplemental Figure 22). Artifact within a segment of interest was deemed major if it 
affected at least one-third of the segment of interest (Supplemental Figure 22). Segments of interest with 
major artifacts were excluded from the reported T1 times for that segment of interest. Of 42,654 
individuals who underwent cardiac T1 mapping, 1,149 and 3,343 had major artifacts involving the 
interventricular septum or left ventricle free wall, respectively, and were excluded from the analysis 
involving the affected segment (Supplemental Figure 1). We found that the LV FW segment had a 3-
fold higher incidence of artifact as compared to the interventricular septum. The artifact-prone nature of 
the LV FW segment is well recognized in the field of cardiac T1 mapping and has led some experts to 
advocate for preferential use of septal T1 time to differentiate health and disease states of the 
myocardium.16,17  As such, while we present results for both the IVS and LV FW, the IVS native 
myocardial T1 time constituted our primary analysis. 

Semantic Segmentation, Region of Interest Selection and Native Myocardial T1 Time Measurement 

Six hundred (500 training, 100 validation) T1 maps were randomly selected and used to develop our 
machine learning model. Two cardiologists, V.N. and J.W.C., labeled all cardiac structures within the 
short-axis T1 maps (350 V.N.; 250 J.W.C.). Fifty T1 maps were labeled by both readers to allow for 
assessment of inter-reader reliability. Cardiac structures that were labeled included: interventricular 
septum, LV free wall, papillary muscles, LV blood pool, right ventricle free wall and right ventricle blood 
pool. Additionally, a region of interest encompassing the mid-myocardium across the segment of interest 
and excluding the endocardial and epicardial borders was delimited separately within the IVS and LV FW 
(Supplemental Figure 2). Pixel intensity values were transformed to T1 times using the accompanying 
T1 map legend. IVS and LV FW native myocardial T1 time was measured as the median T1 time for all 
pixels within the corresponding region of interest.  

Machine Learning Model Development 

For segmenting cardiac structures in cardiac MRI T1 maps, we employed the DenseNet-121 architecture58 
as the base encoder model in a U-Net model59 that was pre-trained on ImageNet.60 DenseNets are 
constructed with two principal building blocks: (1) dense blocks comprising of batch normalization, the 
non-linear ReLU activation function, and 3x3 convolutions of increasing number of channels that are 
propagated from previous layers to enable efficient gradient flow; and (2) transition blocks that compress 
the number of channels by half using channel-wise convolutions (1x1), and perform a spatial reduction by 
a factor of 2 by using an average pooling layer of stride 2 and pool size 2. The U-Net architecture 
contains long-range skip connections that allow for pixel-accurate segmentation by sharing feature 
information along a contracting-expansive path. This is achieved by concatenating features at each 
downsampling in the encoder with the corresponding features at each upsampling step. These ‘skip 
connections’ preserve contextual and spatial information. 
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The inputs for this model were the cardiac MRI T1 maps with size 288 x 384 x 3. The models 
were trained with the Adam optimizer61 with a learning rate set to a cosine decay policy decaying from 
0.0001 to 0 over 100 epochs, weight decay of 0.0001, categorical cross-entropy as the loss function, and a 
batch size of 16. No additional hyperparameter search or ablation studies were performed. 

For all training data, the following augmentations (random permutations of the training images) 
were applied: random shifts in the XY-plane by up to ±16 pixels and rotations by up to ±5 degrees around 
its center axis. 

Phenotypic Characterization of the Study Sample and Association with Native T1 Time 

Prevalent cardiometabolic, cardiovascular and systemic inflammatory diseases at time of first visit for 
cardiac MRI as well as incident cardiovascular events were ascertained using International Classification 

of Diseases, 9th and 10th editions, codes and Office of Population Censuses and Surveys (OPCS) 
Classification of Interventions and Procedures version 4 codes (Supplemental Table 9). Derived 
myocardial T1 times were rank-based inverse normal transformed. Multiple linear regression was used to 
assess the association of prevalent cardiometabolic, systemic inflammatory and cardiovascular disease at 
time of MRI with native myocardial T1 time adjusting for age at MRI visit, sex, height, weight, beta 
blocker therapy, and angiotensin-converting enzyme inhibitor/angiotensin receptor blocker therapy. We 
additionally performed a sensitivity analysis with incremental adjustment for LV mass and LV ejection 
fraction to examine whether the association between T1 time and examined diseases was independent of 
standard measures of left ventricular structure and function. 

A time-to-event analysis was performed to assess the association of native myocardial T1 time 
with incident cardiovascular events. Follow-up time was defined as time from MRI visit to first 
occurrence of the outcome of interest, death or last follow-up (April 30th, 2020). For each incident 
disease analysis, study participants with prevalent disease at time of MRI were excluded as they were not 
at risk for the outcome of interest. We then stratified the cohort into the upper 20th and lower 80th 
percentile of native myocardial T1 time. Using a multivariable Cox proportional hazards model adjusted 
for age at MRI, sex, height, weight, beta blocker therapy, and angiotensin-converting enzyme 
inhibitor/angiotensin receptor blocker therapy, we examined the association of native myocardial T1 time 
with incident cardiovascular events. Adjusted Kaplan-Meier curves were constructed to compare 
incidence rate of cardiovascular events between the two groups. The validity of the proportional hazards 
assumption was verified by examining the Schoenfeld residuals. All statistical tests were performed using 
R version 4.0.2 (R Foundation for Statistical Computing, Vienna, Austria)(R, Core Team 2020) and two-
sided P-values <0.05 were considered statistically significant. 

Genotype data, Imputation, Sample and Variant Quality Control 

In total, 488,377 UK Biobank participants were genotyped using either one of two overlapping arrays, the 
UK BiLEVE Axiom Array or the UK Biobank Axiom Array. Prior to imputation, a number of quality 
control filters were applied to the genotype data. Variants with >5% missing rate, minor allele frequency 
<0.0001 and that violated Hardy-Weinberg Equilibrium (P-value threshold <1x10-12) were excluded. 
Additionally, samples that were identified as outliers for genotype missingness rate (>5%) and 
heterozygosity were also excluded. These filters resulted in a genotype dataset that included 670,730 
autosomal variants in 487,442 samples. Imputation into the Haplotype Reference Consortium (HRC) and 
UK10K+ 1000G phase 3 reference panels was carried out using IMPUTE4. The imputation process 
resulted in a dataset with 93,095,623 autosomal SNPs and short indels in 487,442 individuals.15  

Of 42,654 study participants who underwent cardiac magnetic resonance imaging with T1 
mapping, 41,635 had imputed genetic data available. Sample and variant quality control filters were 
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applied prior to conducting genetic association analyses. Samples with sex chromosome aneuploidy and 
those with discordant genetically inferred and self-reported sex were excluded.  One of each pair of third 
degree relatives or closer was excluded. Variants with imputation quality score (INFO) <0.3 and those 
with minor allele frequency <0.1 were excluded. Following quality control, our dataset included 40,399 
individuals with 9,853,972 SNPs and short indels. Among the 40,399 study participants with adequate 
quality genetic data, 39,339 and 37,306 had IVS and LV FW native myocardial T1 time data that passed 
quality control available, respectively (Supplemental Figure 1).   
       

Genome-wide Common Variant Association Analysis Methods 

We performed a common variant genome wide association analysis of both interventricular septum and 
LV free wall native myocardial T1 time using a fixed effect linear regression model in PLINK 2.0.62 The 
models were adjusted for age at MRI, sex, the unique MRI scanner serial number, genotyping array, and 
first ten principal components of genetic ancestry. Rank-based inverse normal transformation was applied 
to the measured myocardial T1 times from each myocardial segment (IVS and LV FW). As such, effect 
size estimates in the GWAS are dimensionless and reflect approximately multiples of 1 standard deviation 
of the underlying quantitative trait. A two-sided P-value <5x10-8 was used to define genome-wide 
significant common variants and 5x10-8 < P-value < 1x10-6 denoted suggestive loci. Distinct genomic loci 
were defined by starting with the SNP with the lowest p-value, excluding other SNPs within 500 kb, and 
iterating until no SNPs remained. The independently significant SNPs with the lowest p-value at each 
genomic locus are termed lead SNPs. We then performed a conditional analysis adjusting for the imputed 
allele dosage of each lead SNP to examine for additional independent genome-wide significant SNPs 
within a locus. We performed two sensitivity analyses. First, we repeated the above GWAS of IVS and 
LV FW myocardial T1 time after exclusion of individuals with prevalent heart failure, dilated 
cardiomyopathy, hypertrophic cardiomyopathy or myocardial infarction at time of MRI (NIVS 

GWAS=38,339 , NLV FW GWAS=36,381).  Second, we repeated the IVS GWAS after excluding participants 
with prevalent hereditary hemochromatosis (n=62) to examine whether the identified genome-wide 
significant loci associated with iron homeostasis were driven by hereditary hemochromatosis cases. 

Linkage disequilibrium (LD) score regression analysis was performed using ldsc version 1.0.0.63 
With ldsc, the genomic control factor (lambda GC) was partitioned into components reflecting 
polygenicity and inflation, using the software’s defaults. 

Regional association plots were generated with LocusZoom64 using LD data from the 1000G 
phase 3 European reference panel. In instances where lead SNPs were not part of the 1000G phase 3 
reference panel, in-sample LD was calculated using PLINK 1.9.62 

Heritability and Genetic Correlation Analysis 
SNP-heritability of the IVS and LV FW native myocardial T1 time was assessed using BOLT-REML 
v2.3.4.65 We also computed genetic correlation between native myocardial T1 time for each segment and 
other MRI parameters including LV end diastolic and systolic volumes, LV mass, LV ejection fraction, 
left atrial end diastolic and systolic volumes and left atrial ejection fraction using ldsc version 1.0.0.66 
These cMRI-based phenotypes from the UK Biobank have been described previously.21,67,68 

Expression Quantitative Trait Locus and Transcriptome-Wide Association Analysis Methods 

We performed an expression quantitative trait locus look-up using version 8 of the Genotype-Tissue 
Expression (GTEx) database.43 In-sample LD was calculated for all variants within 1 MB of genome-wide 
significant lead SNPs using PLINK 1.9. List of proxy SNPs for each lead SNP were generated using an 
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LD r2 threshold of >0.6. We searched the GTEx v8 database for statistically significant differential gene 
expression in right atrial appendage and left ventricular tissues associated with the lead SNPs and their 
proxies. When no significant differential gene expression associated with the lead SNP was identified, 
significant findings from the closest proxy were reported. 

We then performed a transcriptome-wide association analysis to test the mediating effects of gene 
expression levels in right atrial appendage and left ventricular tissue on native myocardial T1 time. We 
used pre-computed transcript expression reference weights derived using elastic net models from S-
PrediXcan on GTEx v8 eQTL data for the right atrial appendage and left ventricle.44 S-Predixcan was 
then run with its default settings. A Bonferroni-corrected P-value threshold <7.5x10-6 (0.05/6,637 genes 
tested) was used to define significant gene expression-phenotype associations. 
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TABLES 

Table 1. Study sample characteristics at time of first visit for cardiac magnetic resonance imaging 

Baseline characteristic N (%) 

Participants 42,654 

Age at MRI (mean (SD)) 64.1 (7.7) 

Male 20,493 (48.0) 

Body mass index, kg/m2 (mean (SD)) 26.47 (4.35) 

Current cigarette smoker  1,459 (3.4) 

Hypertension  12,983 (30.4) 

Diabetes mellitus type 2  1,579 (3.7) 

Diabetes mellitus type 1  167 (0.4) 

Hyperlipidemia 445 (1.0) 

Chronic kidney disease 360 (0.8) 

Coronary artery disease  2,546 (6.0) 

Myocardial infarction  875 (2.1) 

Dilated cardiomyopathy  90 (0.2) 

Hypertrophic cardiomyopathy 31 (0.1) 

Heart failure  287 (0.7) 

Aortic stenosis 80 (0.2) 

Pulmonary hypertension 20 (0.0) 

Atrial fibrillation 1,241 (2.9) 

Ventricular arrhythmia/Cardiac arrest 156 (0.4) 

Atrioventricular/Distal conduction disease 294 (0.7) 

Rheumatoid Arthritis 603 (1.4) 
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Beta blocker 2,305 (5.4) 

ACE-inhibitor/ARB  5,912 (13.9) 

Mineralocorticoid receptor antagonist 81 (0.2) 

Statins 8,278 (19.4) 

Interventricular septum T1 time, ms (mean (SD))  918.1 (41.5) 

LV free wall T1 time, ms (mean (SD)) 902.1 (45.0) 

LV mass, g (mean (SD))  90.1 (29.7) 

LV ejection fraction, % (mean (SD))  60 (10) 

LV end systolic volume, ml (mean (SD))  58.1 (19.0) 

LV end diastolic volume, ml (mean (SD))  143.2 (32.8) 

LV stroke volume, ml (mean (SD))  85.2 (18.5) 

LA end systolic volume, ml (mean (SD))  33.6 (14.2) 

LA end diastolic volume, ml (mean (SD))  72.8 (20.3) 

LA ejection fraction, % (mean (SD))  
54.7 (8.6) 

  

 
Values are presented as the number (percentage) unless otherwise specified. A subset of study 
participants had data available for each cMRI parameter: Interventricular septum T1 time (n=41,505); left 
ventricle free wall T1 time (n=39,311); LA end systolic volume/LA end diastolic volume/LA ejection 
fraction (n=38,261); LV end systolic volume/LV end diastolic volume/LV ejection fraction (n=42,021); 
LV mass (n=41,900). ACE: angiotensin converting enzyme, ARB: angiotensin receptor blocker, SD: 
standard deviation, LA: left atrium, LV: left ventricle.   
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FIGURES 

 
Figure 1. Overview of the automated pipeline for native myocardial T1 time measurement at the 
interventricular septum and left ventricle free wall using machine learning. A representative healthy heart 
and one with increased interstitial fibrosis are shown for illustration. Cardiac T1 mapping using the 
Shortened Modified Look-Locker Inversion (shMOLLI) recovery sequence was performed at the mid-
ventricular short-axis. A machine-learning model trained on the raw MRI T1 maps generated automated 
segmentation of the interventricular segment and left ventricle free wall followed by selection of 
representative myocardial regions of interest using morphological erosion. T1 map color legends were 
then used to transform pixel intensities within the regions of interest into T1 times. For each participant 
the median T1 time by ROI was calculated and used as the representative T1 time for that segment. ROI: 
regions of interest; shMOLLI: Shortened Modified Look-Locker Inversion. 
 
Figure 2. Change in native myocardial T1 time associated with prevalent cardiovascular, metabolic and 
systemic inflammatory diseases as compared to healthy controls. Healthy controls free of prevalent 
dilated cardiomyopathy, hypertrophic cardiomyopathy, heart failure, atrial fibrillation, atrioventricular 
node/distal conduction disease, hypertension, diabetes mellitus, aortic stenosis, chronic kidney disease, 
hemochromatosis and rheumatoid arthritis constituted the reference group. Numbers of controls or cases 
with available IVS/LV FW T1 time are shown below each category. For each disease a representative T1 
map of a case is provided from the study sample. AV: atrioventricular. 
 
Figure 3. Adjusted cumulative incidence of heart failure, atrial fibrillation and atrioventricular node/distal 
conduction disease stratified by top 20th percentile vs. lower 80th percentile of interventricular septum T1 
time. IVS: interventricular septum. 
 
Figure 4. Interventricular septum (a) and left ventricle (b) native T1 time genome-wide association 
results across 22 autosomes. Nearest genes are used for annotation. The dashed grey line represents the 
threshold for genome-wide significance (P<5x10-8). Volcano plots depicting transcriptome-wide 
association results for interventricular septum (c) and LV free wall (d) native myocardial T1 time using 
human left ventricular tissue gene expression. Upward facing triangles reflect increased T1 time 
associated with increased gene expression in left ventricular tissue. Downward facing triangles reflect 
decreased T1 time associated with increased gene expression in  left ventricular tissue. 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4.  
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