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Abstract 1 

Mendelian randomization (MR) is a common tool for identifying causal risk factors 2 

underlying diseases. Here, we present a method, MRAID, for effective MR analysis. 3 

MRAID borrows ideas from fine mapping analysis to model an initial set of candidate 4 

SNPs that are in potentially high linkage disequilibrium with each other and 5 

automatically selects among them the suitable instruments for causal inference. 6 

MRAID also explicitly models both uncorrelated and correlated horizontal pleiotropic 7 

effects that are widespread for complex trait analysis. MRAID achieves both tasks 8 

through a joint likelihood framework and relies on a scalable sampling-based algorithm 9 

to compute calibrated p-values. Comprehensive and realistic simulations show MRAID 10 

can provide calibrated type I error control, reduce false positives, while being more 11 

powerful than existing approaches. We illustrate the benefits of MRAID for an MR 12 

screening analysis across 645 trait pairs in UK Biobank, identifying multiple lifestyle 13 

causal risk factors of cardiovascular disease-related traits.  14 

  15 
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Introduction 1 

Investigating causal relationship among complex traits and identifying causal risk 2 

factors are an important first step towards understanding the biology of diseases. A 3 

common statistical tool for performing such causal inference in observational studies is 4 

Mendelian randomization (MR). MR is a form of instrumental variable analysis that 5 

uses SNPs to serve as instruments for inferring the causal effect of an exposure variable 6 

on an outcome variable (1). MR requires only summary statistics from genome-wide 7 

association studies (GWASs) and is often performed in a two-sample study setting 8 

where the exposure variable and the outcome variable are measured in two separate 9 

studies (2). With the abundant availability of GWAS summary statistics, numerous MR 10 

analyses are being carried out, identifying important causal risk factors for various 11 

common diseases. These MR studies are facilitated by many recently developed MR 12 

methods that include the inverse variance weighted (IVW) method, MR-Egger (3), 13 

median-based regression (4), BWMR (5), RAPS (6), MRMix (7), CAUSE (8), to name 14 

a few. Different MR methods differ in their modeling assumptions and inference 15 

algorithms, but the majority of them encounter two important modeling and algorithmic 16 

challenges that have so far limited the effectiveness of MR analysis.  17 

First, almost all existing MR methods rely on a pre-selected set of independent 18 

SNPs to serve as instruments for MR analysis. The instruments are selected to be 19 

independent from each other to ensure the validity of the statistical inference framework 20 

used in many common MR methods such as IVW. The independent SNPs are often 21 

selected through linkage disequilibrium (LD) clumping, a procedure that first ranks 22 

SNPs based on their marginal association evidence with the exposure variable and then 23 

retains SNPs that are not in high LD with the SNPs on top of the ranking list. Using LD 24 

clumping to select SNPs may be suboptimal, however, as the selected SNPs may only 25 
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represent tagging SNPs that are in LD with the causal SNPs rather than the causal ones 1 

themselves. The tagging SNPs obtained through clumping can sometimes be quite far 2 

away from the causal ones (9-12), often explain a much smaller phenotypic variance 3 

than expected (13-15), and have limited prediction power on the outcome trait (16). 4 

Indeed, the parallel research field of GWAS fine-mapping highlights the benefits of 5 

performing SNP selection through formal modeling based approaches to refine the set 6 

of potentially causal associations (9-11, 17-19). Consequently, using a formal SNP 7 

selection procedure to identify instruments instead of directly using the tagging SNPs 8 

via clumping may help increase the power of MR analysis. In addition, perhaps more 9 

importantly, selecting independent SNPs for MR analysis may not be ideal either, as 10 

complex traits can be influenced by multiple causal SNPs residing in the same local 11 

region that are in potential LD with each other. Consequently, selecting independent 12 

SNPs may only capture a small proportion of the phenotypic variance in the exposure 13 

variable (14, 15), again leading to a loss of power in the subsequent MR analysis (1, 2, 14 

20, 21). Indeed, in the parallel research field of transcriptome-wide association studies 15 

(TWAS), it has been well documented that incorporating correlated SNPs can 16 

substantially improve gene expression prediction accuracy (22), and consequently 17 

TWAS analysis power, than using independent SNPs only (14, 23-25). Therefore, 18 

incorporating correlated SNPs and developing effective approaches to select 19 

instruments among them are important to fully captivate the potential of MR. 20 

Second, only a limited number of MR methods model horizontal pleiotropy and 21 

even fewer can effectively control for it during MR analysis (26). Horizontal pleiotropy 22 

occurs when the SNP instruments exhibit effects on the outcome through pathways 23 

other than the exposure. Horizontal pleiotropy has been widely observed in complex 24 

trait analysis (14, 26) and often comes in two distinct types. The first type of horizontal 25 
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pleiotropy arises through paths independent of the exposure, with the resulting 1 

horizontal pleotropic effects being independent of the SNP effects on the exposure. The 2 

second type of horizontal pleiotropy arises through unobserved exposure-outcome 3 

confounders and induces correlation between the horizontal pleotropic effects and the 4 

SNP effects on the exposure. For example, insulin resistance (IR) occurs when excess 5 

glucose in the blood reduces the ability of the cells to absorb and use blood sugar for 6 

energy. IR is an important cause of type II diabetes (T2D) (27), and also has profound 7 

effects on lipoproteins such as low density lipoprotein (LDL) (28). When investigating 8 

the causal effect of LDL on T2D, the selected candidate instrumental SNPs may include 9 

IR-associated SNPs. These IR-associated SNPs are likely to be associated with both 10 

LDL and T2D, leading to correlated pleiotropy in the MR analysis. The presence of 11 

either type of horizontal pleiotropy violates standard MR modeling assumptions and 12 

can lead to biased causal effect estimates and increased false discoveries. Early MR 13 

analyses control for horizontal pleiotropy by simply removing instrumental SNPs that 14 

are potentially associated with the outcome variable (26, 29-31). Removing SNPs 15 

associated with the outcome would result in a conservative set of selected instruments 16 

and lead to a loss of power in the subsequent MR analysis. Recent MR methods 17 

explicitly model horizontal pleiotropy by specifying modeling assumptions on the 18 

horizontal pleiotropic effects. For example, the Egger assumption assumes the same 19 

horizontal pleiotropic effect across SNP instruments (3, 14), while PMR-VC (14) and 20 

BWMR (5) assume the horizontal pleiotropic effects to follow a normal distribution; 21 

all these methods model the first type of horizontal pleiotropy. MRMix (7) and CAUSE 22 

(8), by contrast, employ a normal-mixture model to control for both types of horizontal 23 

pleiotropy. Unfortunately, modeling both types of horizontal pleiotropy has been 24 

technically challenging, as the resulting likelihood function of the MR model often 25 
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consists of an integration that cannot be solved analytically. Consequently, both 1 

MRMix and CAUSE rely on non-likelihood based approaches to perform MR inference. 2 

Specifically, MRMix searches on a grid of causal effect candidates to identify the one 3 

that maximizes the proportion of GWAS summary statistics residing in the expected 4 

sub-model without horizontal pleiotropy. CAUSE contrasts the out-of-sample 5 

prediction accuracy between two different models, one with the causal effect and the 6 

other without, by computing the expected log pointwise posterior density between the 7 

two, for causal inference. Non-likelihood based causal inference, however, can lead to 8 

a loss of power and/or uncalibrated test statistics that are essential for large-scale 9 

screening of causal risk factors underlying diseases. Indeed, as we will show here, 10 

MRMix is not robust to modeling misspecifications on the instrumental effect sizes and 11 

is prone to estimation bias, while CAUSE yields overly conservative p-values.  12 

Here, we present a likelihood-based two-sample MR method for causal inference 13 

that overcomes the above two challenges. Specifically, our method models an initial set 14 

of candidate SNP instruments that are in high LD with each other and automatically 15 

selects among them the suitable instruments for MR analysis. In addition, our method 16 

accounts for both types of horizontal pleiotropy in a likelihood framework and relies 17 

on a scalable sampling-based algorithm for calibrated p-values computation. We refer 18 

to our method as the two-sample Mendelian Randomization with Automated 19 

Instrument Determination (MRAID). We demonstrate the effectiveness of MRAID 20 

through comprehensive and realistic simulations. We also apply MRAID for an MR 21 

screening analysis across 645 trait pairs in the UK Biobank (32), identifying lifestyle 22 

risk factors that may causally influence cardiovascular disease-related traits.  23 

  24 
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Results  1 

Method overview and simple illustrative simulations 2 

MRAID is described in the Materials and Methods, with its technical details provided 3 

in the Supplementary Text and a method schematic shown in Fig. 1. Briefly, MRAID 4 

is a two-sample MR method that aims to infer the causal effect of an exposure variable 5 

on an outcome variable using GWAS summary statistics. MRAID models jointly all 6 

genome-wide significant SNPs that are in potential LD with each other and performs 7 

automated instrument selection among them to identify suitable instruments for MR 8 

analysis. In addition, MRAID explicitly accounts for two types of horizontal pleiotropic 9 

effects through a maximum likelihood-based inference framework and is scalable to 10 

biobank datasets (Table 1).  11 

We first performed simple simulations to develop intuition and illustrate the 12 

benefits of modeling multiple correlated SNPs (details in Materials and Methods). Here, 13 

we only compared MRAID with the MR method that uses only the top exposure-14 

associated SNP (i.e. lead variant) for MR analysis. Consistent with the fine-mapping 15 

literature (9-12), the lead variant is the casual SNP in only 53.6% of the simulation 16 

replicates. As a result, MRAID produces calibrated type I error control, while the MR 17 

method using only the lead variant produces slightly deflated p-values (Fig. S1). In 18 

addition, MARID is more powerful than the MR method using only the lead variant 19 

regardless of the number of causal SNPs and the LD structure among different SNPs, 20 

the presence or absence of the causal SNPs (Fig. S2). Similar results are observed when 21 

comparing MRAID that uses the top two SNPs obtained from a stepwise regression 22 

with MRAID that uses only the lead SNP (Fig. S3). These results highlight the benefits 23 

of modeling correlated SNPs and performing SNP selection for MR analysis.  24 

 25 
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Simulations: Type I error control 1 

We performed comprehensive and realistic simulations to evaluate the performance of 2 

MRAID and compare it with seven existing MR methods (details in Materials and 3 

Methods). We first examined type I error control of different methods in different 4 

scenarios. In the absence of both correlated and uncorrelated horizontal pleiotropic 5 

effects, most methods, including MRAID, IVW-R, Robust, RAPS, Weighted median 6 

and MRMix, all yield reasonably calibrated type I error control (Fig. 2A). Weighted 7 

mode and CAUSE, on the other hand, display overly conservative type I error control, 8 

which is consistent with the original studies (7, 8, 33). The null p-value distributions 9 

from different methods remain largely similar regardless of the number of SNPs that 10 

affect the exposure (Fig. S4A) and their total effects on the exposure (Fig. S4B). We 11 

further examined the robustness of different methods in settings where the SNP effects 12 

on the exposure do not follow a simple normal distribution but with some SNPs 13 

displaying larger effects than the others. In these settings, MRAID, IVW-R and RAPS 14 

remain calibrated, while both MRMix and Robust method show inflated type I errors, 15 

presumably due to their restricted normality assumptions on the SNP effect sizes (Fig. 16 

2B). Note that we directly used correlated SNPs for MRAID but performed clumping 17 

to select independent SNPs for the other methods. Without clumping, all other MR 18 

methods produce overly inflated type I errors (Fig. S5). 19 

We examined the effects of horizontal pleiotropy on type I error control for different 20 

methods. When horizontal pleiotropic effects are present but are uncorrelated with the 21 

instrumental effects, MRAID maintains type I error control (Fig. 2C). In contrast, both 22 

Weighted mode and CAUSE remain overly conservative, while MRMix, Robust, IVW-23 

R, Weighted median and RAPS yield inflated p-values (Fig. 2C). Similar conclusion 24 

holds regardless of the effect size for the uncorrelated horizontal pleiotropy or the 25 
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proportion of SNPs that display uncorrelated pleiotropic effects (Fig. S6). The p-value 1 

inflation problem of MRMix and Weighted median relieves when the proportion of 2 

SNPs that display uncorrelated horizontal pleiotropic effects decreases. When 3 

correlated horizontal pleiotropic effects are also present in addition to the uncorrelated 4 

horizontal pleiotropic effects, MRAID maintains effective type I error control (Fig. 2D). 5 

In contrast, both Weighted mode and CAUSE remain overly conservative, while 6 

MRMix, Robust, IVW-R, Weighted median and RAPS produce inflated p-values. 7 

Similar conclusion holds regardless of the effect size of the correlated horizontal 8 

pleiotropy (Fig. S7A vs Fig. S7C), the proportion of SNPs that display uncorrelated 9 

horizontal pleiotropic effects (Fig. S7A vs Fig. S7B), the proportion of SNPs that 10 

display correlated horizontal pleiotropic effects (Fig. S7A vs Fig. S7D), or how the 11 

correlated horizontal pleiotropic effects are created (Fig. S8).  12 

 13 

Simulations: Power comparison 14 

We examined the power of different MR methods to detect non-zero causal effect. 15 

Because the same p-value from different methods may correspond to different type I 16 

errors, we computed power based on an false discovery rate (FDR) of 0.05 instead of a 17 

nominal p-value threshold to allow for fair comparison among methods. In the absence 18 

of both uncorrelated and correlated horizontal pleiotropic effects, MRAID, IVW-R and 19 

RAPS all have high power across different scenarios. Among these three methods, 20 

MRAID is slightly more powerful than the other two when the instrumental effects are 21 

small or when the causal effect is small (Fig. 3A, 3B), presumably due to the automated 22 

instrument selection procedure employed in MRAID. MRAID is slightly less powerful 23 

than the other two when the instrumental effects are large and the causal effect is large 24 

(Fig. S9), as the simple instrumental selection approaches used in the other methods 25 
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can be effective in these lesser challenging settings. The performance of these three 1 

methods is generally followed by Robust. While Weighted mode, MRMix, and, to a 2 

lesser extent, CAUSE, have low power.  3 

We examined the influence of horizontal pleiotropy on the power of different 4 

methods. When horizontal pleiotropic effects are present but are uncorrelated with the 5 

instrumental effects, MRAID is more powerful than the other MR methods (Fig. 3C). 6 

The power gain brought by MRAID becomes more apparent with increasing horizontal 7 

pleiotropy, which is characterized by increased horizontal pleiotropic effect sizes 8 

and/or increased proportion of SNPs that display horizontal pleiotropic effects (Fig. 9 

S10). The performance of MRAID is often followed by RAPS, Robust, CAUSE, IVW-10 

R and Weighted median, while MRMix and Weighted mode generally have low power 11 

(Fig. S10). Among these methods, the performance of IVW-R is particularly sensitive 12 

to the horizontal pleiotropic effect sizes or the proportion of SNPs that display 13 

horizontal pleiotropic effects. When correlated horizontal pleiotropic effects are also 14 

present in addition to the uncorrelated horizontal pleiotropic effects, the power of 15 

MRAID remains higher than the other methods. The higher power of MRAID maintains 16 

regardless of the correlated horizontal pleiotropic effect sizes, the proportion of 17 

instrumental SNPs that display correlated horizontal pleiotropic effects (Fig. 3D, Fig. 18 

S10D-F), or how the correlated horizontal pleiotropic effects are created (Fig. S11). 19 

The power gain brought by MRAID is particularly apparent with increased proportion 20 

of instrumental SNPs that display uncorrelated horizontal pleiotropic effects (Fig. 3D 21 

vs Fig. S10F, Fig. S10E vs Fig. S10D). Importantly, the power of MRAID is close to 22 

an oracle MR approach that uses the actual set of instrumental SNPs for MR inference, 23 

especially when the casual effect size is large, supporting the effectiveness of the 24 

automatic instrument selection procedure in MRAID (Fig. S12).  25 
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Next, we examined the ability of different MR methods in distinguishing the 1 

causal effect direction through reverse causality analysis. In particular, we tested the 2 

causal effect of the outcome on the exposure in the alternative simulations where the 3 

exposure had casual effect on the outcome but not vice versa. In the presence of 4 

horizontal pleiotropy, the SNP instruments obtained for the outcome in the reverse MR 5 

analysis would contain two sets of SNPs: a set of exposure SNP instruments that are 6 

indirectly associated with the outcome through the exposure and a set of SNPs that are 7 

directly associated with the outcome thought their horizontal pleiotropic effects on the 8 

outcome. Because the two sets of SNPs displayed heterogeneous effects on the 9 

exposure, we would fail to detect a non-zero causal effect of the outcome on the 10 

exposure. Therefore, the reverse causality analysis in the presence of horizontal 11 

pleiotropy effectively served as analysis on null simulations. Indeed, we found that 12 

MRAID provides effective type I error control and calibrated p-values in the reverse 13 

causality analysis across a range of simulation scenarios (Fig. S13 and S14). In contrast, 14 

the type I error control of the other methods is highly dependent on the extent of the 15 

horizontal pleiotropy. Specifically, when a small proportion of exposure instrumental 16 

SNPs display horizontal pleiotropy on the outcome, the majority of the candidate 17 

instrumental SNPs for the outcome in the reverse causality analysis would not display 18 

horizontal pleiotropic effects on the exposure. In this case, both CAUSE and Weighted 19 

mode remain overly conservative, while IVW-R, MRMix, RAPS and Robust yield 20 

slightly inflated p-values (Fig. S13A, S13C, S14A, and S14C). By contrast, when a 21 

large proportion of instrumental SNPs for the exposure display horizontal pleiotropic 22 

effects on the outcome, the majority of the candidate instrumental SNPs for the outcome 23 

in the reverse causality analysis would display horizontal pleiotropic effects on the 24 

exposure. In this case, MRMix, Robust, IVW-R, Weighted median and RAPS all start 25 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 4, 2021. ; https://doi.org/10.1101/2021.11.03.21265848doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.03.21265848
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

to produce inflated p-values (Fig. S13B and S14B) as we have shown in the 1 

corresponding null scenarios. The p-value inflation of these methods becomes more 2 

prominent with smaller horizontal pleiotropic effect sizes, where it becomes 3 

increasingly hard to select the second set of SNPs to serve as outcome instruments (Fig. 4 

S13D and S14D). The comparison results hold when we force multiple causal SNPs to 5 

be in the same LD block (Fig. S15).  6 

MRAID also produces reasonably unbiased causal effect estimates under the null 7 

(Fig. S16A) and under various alternatives (Fig. S16B-D), and produces reasonably 8 

well estimated proportional estimates (Fig. S17). In addition, MRAID is reasonably 9 

robust when the uncorrelated horizontal pleiotropic effects from the instrumental SNPs 10 

are either larger or smaller than that from the non-instrumental SNPs (Fig. S18).  11 

 12 

Real data applications 13 

We applied MRAID and the other MR methods to analyze 38 lifestyle risk factors and 14 

11 CVD-related traits in the UK Biobank (details in Materials and Methods). 15 

Specifically, we divided the UK Biobank data into two separate, equal-sized subsets, 16 

representing an exposure GWAS and an outcome GWAS. We performed two sets of 17 

analysis. First, we focused on the eight CVD-related traits and examined the causal 18 

effect of each trait in the exposure GWAS on the same trait in the outcome GWAS, 19 

effectively examining the causal effect of the trait on itself. The true causal effect in 20 

such analysis is non-zero and equals exactly one, with the scatter plots displayed in Fig. 21 

S19. We found that all methods were able to detect a non-zero causal effect for the trait 22 

on itself across all eight CVD-related traits (Fig. 4). However, only MRAID and 23 

CAUSE were able to produce 95% confidence intervals that cover the true causal 24 

effects for all eight trait pairs, with CAUSE producing confidence intervals that are 25 
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2.39-5.69 times larger than MRAID (Fig. 4). For example, in the HDL-HDL analysis, 1 

MRAID (estimate = 0.98; 95% CI: 0.96-1.01), CAUSE (0.95; 0.82-1.09) and MRMix 2 

(0.96; 0.90-1.02) correctly inferred the causal effect, with MRAID providing the 3 

smallest confidence interval (Fig. 4H). In contrast, the confidence intervals from the 4 

other five methods did not cover the true causal effect of one. In the LDL-LDL analysis, 5 

MRAID (0.97; 0.94-1.01) and CAUSE (0.96; 0.84-1.08) correctly inferred the causal 6 

effect, with MRAID providing a smaller confidence interval (Fig. 4F). While the 7 

confidence intervals from the other six methods also did not cover the true causal effect 8 

of one. The results suggest that both MRAID and CAUSE can produce accurate causal 9 

effect estimates and calibrated confidence intervals for the trait on itself analysis, with 10 

MRAID being more powerful than CAUSE. We applied similar analysis for 11 

investigating the causal effect of each of the four blood lipid traits in the global lipid 12 

genomic consortium (GLGC) (34) on the same trait in UKBB and found similar results 13 

(Fig. S20).  14 

Next, we investigated the causal relationship between 38 lifestyle risk factors and 15 

11 CVD-related traits. The association of lifestyle risk factors on CVD-related traits 16 

has been extensively documented (35, 36). However, it remains controversial on 17 

whether the detected associations are causal as some of the association effects were 18 

estimated to have different signs in different studies (37, 38). We performed both 19 

forward causality analysis examining the causal effects of lifestyle factors on CVD-20 

related traits and reverse causality analysis examining the causal effects of CVD-related 21 

traits on lifestyle factors. The distribution of p-values for the analyzed trait pairs from 22 

different methods are shown in Fig. 5A. Consistent with the simulations, we found that 23 

the p-values from MRAID (genomic inflation factor, GIF =0.90), and to a lesser extent 24 

MRMix (GIF = 0.78), are generally well behaved and slightly conservative across 25 
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analyzed trait pairs, more so than the other methods (Fig. 5A). Also consistent with the 1 

simulations, we found that the p-values from CAUSE are overly conservative (GIF = 2 

0.12), while the p-values from RAPS (GIF = 1.96), Weighted mode (GIF = 1.70), IVW-3 

R (GIF = 2.12), Weighted median (GIF=1.80), and Robust (GIF = 2.00) all show 4 

appreciable inflation (Fig. 5A). Indeed, only MRAID produces calibrated p-values in 5 

the permutation analysis where we permuted the outcome trait (Fig. 5B).  6 

Based on a Bonferroni corrected p-value threshold ( 7.75 ൈ 10ିହ ), MRAID 7 

detected eight causal associations (Table S1), all of which have strong biological 8 

support. For example, MRAID detected a negative causal effect of smoking on BMI. 9 

The negative association between smoking and obesity has been well documented in 10 

observational studies (39, 40) and MR studies (41). Specifically, nicotine intake during 11 

smoking decreases resting metabolic rate (42, 43) and inhibits lipoprotein lipase activity 12 

and other kinase pathways to reduce lipolysis (40), all of which lead to a reduction in 13 

the net energy storage in adipose tissues and subsequent weight loss(44). Nicotine also 14 

activates acetylcholine receptors in the hypothalamus and subsequently anorexigenic 15 

neurons (45, 46), which leads to suppressed appetite and food intake. As another 16 

example, MRAID detected an effect of age started smoking in the former smokers on 17 

HDL, suggesting a negative effect of smoking behavior on HDL. Smoking behavior in 18 

general is well known to be causally associated with HDL (47). In particular, smoking 19 

can modify the activity of critical enzymes for lipid transport, lower lecithin-cholesterol 20 

acyltransferase (LCAT) activity, and alter cholesterol ester transfer protein (CETP) and 21 

hepatic lipase activity, all of which can reduce HDL metabolism. In addition, smoking 22 

induces oxidative modifications that render HDL dysfunctional and deprive its 23 

atheroprotective properties (48, 49).  24 
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Importantly, MRAID did not mistakenly detect many false causal associations that 1 

were detected by the other methods. A well-known example of a potential false causal 2 

association is the effect of smoking on blood pressure. A negative association between 3 

smoking and blood pressure has been observed in observational studies (36). However, 4 

multiple subsequent MR studies on large datasets did not support a causal relationship 5 

between the two traits (47, 50). Indeed, the association between smoking and blood 6 

pressure in observational studies is likely confounded by factors that include, but not 7 

limited to age, BMI, social class, salt intake, drinking habits, as well as unmeasured 8 

confounders (51). Consistent with these previous MR studies, MRAID did not detect a 9 

significant causal effect from any of the eight smoking related traits on either SBP or 10 

DBP. In contrast, almost all other methods falsely detected causal effects of some of 11 

the smoking related traits on blood pressure. For example, the causal effect of the 12 

number of unsuccessful stop-smoking attempts on SBP is not detected by MRAID (𝑝 ൌ13 

0.44), CAUSE (𝑝 ൌ 0.01) nor Weighted mode (𝑝 ൌ 1.3 ൈ 10ିସ), but falsely identified 14 

by IVW-R (𝑝 ൌ 1.4 ൈ 10ି଺), Robust (𝑝 ൌ 4.1 ൈ 10ିଷସ), RAPS (𝑝 ൌ 5.5 ൈ 10ି଺), 15 

MRMix (𝑝 ൌ 2.8 ൈ 10ି଺ ), and Weighted median (𝑝 ൌ 2.4 ൈ 10ିହ ). Similarly, the 16 

causal effect of age started smoking in former smokers on SBP is not detected by 17 

MRAID (𝑝 ൌ 0.06) nor CAUSE (𝑝 ൌ 1.3 ൈ 10ିଷ), but falsely detected by IVW-R 18 

(𝑝 ൌ 7.8 ൈ 10ିହ ), Robust (𝑝 ൌ 1.5 ൈ 10ିଷ଴ ), RAPS (𝑝 ൌ 8.9 ൈ 10ି଻ ), Weighted 19 

median (𝑝 ൌ 1.0 ൈ 10ି଺), Weighted mode (𝑝 ൌ 1.7 ൈ 10ି଺), and MRMix (𝑝 ൌ 4.1 ൈ20 

10ି଻). As another false example, BMI is unlikely to causally influence the time spent 21 

driving, at least not positively. Indeed, MRAID (𝑝 ൌ 0.01), along with MRMix (𝑝 ൌ22 

0.12), CAUSE (𝑝 ൌ 0.02), Weighted median (𝑝 ൌ 0.04), and Weighted mode (𝑝 ൌ23 

0.04), did not detect any causal effect of BMI on time spent driving. However, both 24 
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IVW-R (𝑝 ൌ 2.5 ൈ 10ି଺) and RAPS (𝑝 ൌ 3.1 ൈ 10ିହ) detected a false positive effect 1 

of BMI on time spent driving.   2 

Finally, we note that an important feature of MRAID is its ability to effectively 3 

decompose the SNP effects on the outcome into three distinct paths: one directly acts 4 

from SNPs to the outcome, one mediated through the exposure, and the other acts 5 

through a hidden confounding factor that influences both exposure and outcome. 6 

Consequently, MRAID can be used to estimate the proportion of SNPs in different 7 

categories, including the proportion of SNPs that are associated with the exposure 8 

among the genome-wide significant ones (𝜋ఉ), the proportion of SNPs that exhibit 9 

correlated horizontal pleiotropy (𝜋௖), the proportion of SNPs that exhibit uncorrelated 10 

horizontal pleiotropy among the selected instruments (𝜋ଵ), and the proportion of SNPs 11 

that exhibit uncorrelated horizontal pleiotropy among the remaining candidate 12 

instruments (𝜋଴). In the real data applications, we estimated the mean of 𝜋ఉ, 𝜋௖, 𝜋ଵ 13 

and 𝜋଴  across the 645 analyzed trait pairs to be 14.6%, 6.4%, 16.4%, and 5%, 14 

respectively (Fig. S21). Note that these percentages were calculated based on the 15 

number of candidate instruments; thus, a value of 14.6% corresponds to an average of 16 

107 variants per trait. Additional analysis illustrated that the p-values of MRAID 17 

remains consistent with each other regardless of the prior distribution of 𝜋ఉ (Fig. S22). 18 

In addition, we estimated their means in the eight significant trait pairs to be 6.2%, 19 

5.7%, 11.4%, and 0.1%, respectively. The proportion of SNPs displaying correlated 20 

pleiotropy is also highly correlated with the proportion of SNPs displaying uncorrelated 21 

pleiotropy, with the latter generally being larger than the former (Fig. S23). These 22 

proportion estimates support the wide-spread horizontal pleiotropy previously 23 

identified in complex trait analysis (26) and provide detailed quantifications on the 24 

extent to which the two types of horizontal pleiotropy influence MR analysis. 25 
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Discussion  1 

We have presented MRAID, a two-sample MR method that can automatically select 2 

suitable instruments from a candidate set of correlated SNPs and that can control for 3 

both correlated and uncorrelated horizontal pleiotropy in a likelihood-based inference 4 

framework. Overall, by automatically selecting instrumental SNPs and performing 5 

inference under a likelihood-based framework, MRAID yields calibrated p-values 6 

across a wide range of scenarios and improves power of MR analysis over existing 7 

approaches. We have illustrated the benefits of MRAID through simulations and 8 

applications to complex trait analysis.  9 

We have primarily focused on modeling quantitative traits with MRAID in the 10 

present study. For binary exposures and outcomes, one could treat them as continuous 11 

variables and directly applied MRAID for MR analysis. Treating binary exposures and 12 

outcomes as continuous variables can be justified by recognizing the linear model as a 13 

first-order Taylor approximation to a generalized linear model such as the logistic 14 

regression (52). However, such approximation is accurate only when the SNP effects 15 

on the exposure and outcome are relatively small. While similar approaches have been 16 

applied in many previous MR studies (53-55), we caution that the interpretation of the 17 

causal effect estimate can be challenging when the linear models are used to fit binary 18 

exposures and outcomes, especially when a two-stage inference procedure is used for 19 

MR analysis (56, 57). For example, when a binary exposure is a dichotomization of a 20 

continuous risk factor, the causal effect estimation through modeling the binary 21 

exposure without the underlying continuous risk factor may require additional 22 

modeling assumptions, even when the main MR assumptions are satisfied. In addition, 23 

modeling binary exposure without the underlying continuous risk factor can lead to 24 
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violation of the exclusion restriction assumption, as the instruments can influence the 1 

outcome via the continuous risk factor even if the binary exposure does not change.  2 

Therefore, extending MRAID to explicitly model data types beyond quantitative 3 

traits is important to ensure its wide applicability. Because MRAID builds upon a data 4 

generative model and performs inference on the SNP-exposure model and the SNP-5 

outcome model jointly through a maximum likelihood-based framework, it can be 6 

naturally extended towards modeling binary outcome through a liability threshold 7 

model (58), and binary and other types of exposure or outcome data through a 8 

generalized linear model framework. To the best of our knowledge, the only likelihood-9 

based MR method that accommodates both binary risk factors and outcome is IV-MVB 10 

(59). IV-MVB, however, requires individual-level data, applies to the one-sample 11 

analysis setting, and cannot easily handle multiple instruments in a computationally 12 

efficient fashion especially for those that are correlated. Therefore, exploring the 13 

benefits of MRAID extensions towards modeling generalized data types while keeping 14 

computation in check will be an important direction for future research.   15 

Another important future direction is to extend MRAID to incorporate SNP 16 

functional annotations. Specifically, we could model the probability of a SNP 17 

exhibiting instrumental effects as a function of a given set of SNP annotations through 18 

a logistic function, similar to what was used in many SNP fine-mapping methods (60-19 

62). In addition, we could also model the probability of a SNP exhibiting horizontal 20 

pleiotropic effects as a function of its functional annotations through a logistic function. 21 

Because the biological function and importance of a SNP can be predicted in certain 22 

degree by its functional annotations, incorporating SNP functional annotations can 23 

potentially improve the performance of MRAID. Certainly, incorporating functional 24 

annotations would inevitably increase the number of parameters, making it challenging 25 
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to carry out powerful MR inference given the small instrumental effects. Therefore, it 1 

would be important to incorporating informative functional annotations while 2 

mitigating the impact by the increased number of parameters to ensure optimal MR 3 

inference power. 4 

MRAID is not without limitations. First, while MRAID performs automated 5 

selection on SNP instruments, such selection builds upon a sparsity inducing modeling 6 

assumption specified on the SNP effect sizes. The sparse modeling assumption contains 7 

multiple hyper-parameters that rely on a sampling-based algorithm for inference. 8 

Accurate and robust inference of the hyper-parameters will likely require at least a 9 

moderate number of candidate instruments. While the significance of the trait pairs 10 

evaluated by MRAID in our real data application does not appear to be dependent on 11 

the number of candidate instruments selected for the trait pair (Fig. S24), we caution 12 

that MRAID may incur low power when the instrumental effect size is small and the 13 

number of candidate instruments is low, which can happen in GWAS with small sample 14 

sizes and for exposure traits with a non-polygenic architecture. Second, MRAID 15 

primarily follows the approach of CAUSE to model correlated horizontal pleiotropy by 16 

introducing a single latent variable to serve as the confounder for both the exposure and 17 

the outcome. Because of its limitation in modeling only a single unobserved 18 

confounding factor, MRAID may not be fully effective in settings where multiple or 19 

other types of shared genetic components are present between the exposure and the 20 

outcome. Finally, the summary statistics version of MRAID requires as input two LD 21 

matrices, one from the exposure GWAS and another from the outcome GWAS. In the 22 

present study, we have estimated both LD matrices using individual level data. In the 23 

absence of individual level data, both LD matrices may be estimated from a reference 24 

panel with the same genetic ancestry (e.g. from the 1,000 Genomes Project). However, 25 
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care needs to be taken when the exposure and outcome GWASs are carried out on two 1 

populations with distinct genetic ancestries, or when the genetic ancestry of the 2 

reference panel does not match that of the GWAS (Fig. S25).  3 

  4 
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Materials and Methods 1 

MRAID for individual level data 2 

We provide an overview of our method here, with its inference and technical details 3 

provided in the Supplementary Text and an illustrative diagram displayed in Fig. 1. Our 4 

goal is to estimate and test the causal effect of an exposure variable on an outcome 5 

variable in the two-sample MR setting where the exposure and outcome variables are 6 

measured in two separate GWASs with no sample overlap. We refer to the two separate 7 

GWASs as the exposure GWAS and the outcome GWAS, respectively. To set up the 8 

notations, we denote x as an 𝑛ଵ -vector of the exposure variable measured on 𝑛ଵ 9 

individuals in the exposure GWAS. We denote y as an 𝑛ଶ-vector of the outcome 10 

variable measured on 𝑛ଶ individuals in the outcome GWAS. We scale both x and 𝐲 11 

to have zero mean and unit standard deviation. In the exposure GWAS, we perform an 12 

initial screening to select SNPs that are associated with the exposure variable with a 13 

marginal p-value below the genome-wide significance threshold of 5 ൈ 10ି଼. These 14 

SNPs are likely in LD with each other and are selected to serve as the initial set of 15 

candidate instruments. We denote 𝐙୶ as the resulting 𝑛ଵ by p genotype matrix for the 16 

p selected candidate instrumental SNPs in the exposure GWAS. We also denote 𝐙୷ as 17 

an 𝑛ଶ  by p genotype matrix for the same p candidate instrumental SNPs in the 18 

outcome GWAS. We scale each column of the two genotype matrices to have mean 19 

zero and standard deviation of one. We model the relationship among the exposure, 20 

outcome and genotypes through the following three linear regressions:  21 

      𝐱 ൌ 𝐙୶𝛃 ൅ 𝛆୶,            (1) 22 

      𝐱෤ ൌ 𝐙୷𝛃 ൅ 𝛆෤୶,            (2) 23 

𝐲 ൌ 𝐱෤𝛼 ൅ 𝐙୷𝛈଴ ൅ 𝐙୷𝛈ଵ ൅ 𝛆୷.   (3) 24 
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Above, equation (1) describes the relationship between the genotypes 𝐙୶ and the 1 

exposure variable 𝐱 in the exposure GWAS; equation (2) describes the relationship 2 

between the genotypes 𝐙୷ and the unobserved exposure 𝐱෤ in the outcome GWAS; 3 

equation (3) describes the relationship among the genotypes 𝐙୷, the outcome 𝐲, and 4 

the unobserved exposure 𝐱෤ in the outcome GWAS; 𝛃 is a p-vector of SNP effects on 5 

the exposure; both 𝛈଴ and 𝛈ଵ are p-vectors of horizontal pleiotropy effects on the 6 

outcome; 𝛼 is a scalar that represents the causal effect of the exposure on the outcome; 7 

𝛆୶ is an 𝑛ଵ-vector of residual error with each element independently and identically 8 

distributed from a normal distribution 𝑁ሺ0,𝜎௫ଶሻ; 𝛆෤୶ is an 𝑛ଶ-vector of residual error 9 

with each element distributed from the same normal distribution 𝑁ሺ0,𝜎௫ଶሻ; and 𝛆୷ is 10 

an 𝑛ଶ-vector of residual error with each element distributed from a normal distribution 11 

𝑁൫0,𝜎௬ଶ൯. We note that while the above three equations are specified based on two 12 

separate GWASs, they are connected to each other by the common parameter 𝛃. We 13 

carefully consider the modeling assumptions on the SNP effects on the exposure 14 

variable 𝛃 as well as the horizontal pleiotropic effects 𝛈଴ and 𝛈ଵ as follows. 15 

 The p SNPs included in the above model represent an initial set of candidate 16 

instruments. While all the candidate instruments are marginally associated with the 17 

exposure, the majority of them are unlikely the causal SNPs for the exposure variable. 18 

Instead, most candidate instruments likely represent tagging SNPs that are associated 19 

with the exposure variable due to LD with the truly causal ones underlying the exposure. 20 

Therefore, it would be beneficial to perform additional selections on the candidate 21 

instruments to identify SNPs that are causal for the exposure and treat them as the 22 

instruments in order to maximize the power of MR analysis. To do so, we borrow ideas 23 

from fine-mapping approaches developed in the research field of GWAS and specify a 24 

sparsity inducing modeling assumption on the SNP effects on the exposure (𝛃) to 25 
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perform automated instrument selection. In particular, we assume that 𝛽௝~𝜋ఉ𝑁൫0,1 

𝜎ఉ
ଶ൯ ൅ ൫1 െ 𝜋ఉ൯𝛿଴, where 𝛿଴ is the Dirac function that represents a point mass at zero. 2 

That is, with probability 1 െ 𝜋ఉ, the j-th SNP has zero effect on the exposure; while 3 

with probability 𝜋ఉ, the j-th SNP has a non-zero effect on the exposure and its effect 4 

size follows a normal distribution with mean zero and variance 𝜎ఉ
ଶ, where the variance 5 

parameter 𝜎ఉ
ଶ determines the magnitude of the effect sizes. The sparse assumption on 6 

𝛃 allows us to select SNPs with non-zero effects on the exposure to serve as the 7 

instruments in the MR model. 8 

In addition, the p SNPs included in the above model can also exhibit horizontal 9 

pleiotropic effects and influence the outcome variable through pathways other than the 10 

exposure. To control for the potential horizontal pleiotropic effects and improve causal 11 

effect inference, we introduce two sets of parameters, 𝛈଴ and 𝛈ଵ, to model horizontal 12 

pleiotropic effects. The two sets of parameters are placed separately for the two SNP 13 

groups – the group of selected instrumental SNPs and the group of unselected non-14 

instrumental SNPs – that are categorized by the sparse modeling assumption on 𝛃. In 15 

particular, 𝛈ଵ represents the horizontal pleiotropic effects exhibited by the selected 16 

SNPs instruments with non-zero 𝛃 while 𝛈଴  represents the horizontal pleiotropic 17 

effects exhibited by the unselected non-instrumental SNPs with zero 𝛃. Controlling for 18 

𝛈ଵ  can help mitigate the bias in causal effect estimation induced by horizontal 19 

pleiotropic effects from the instrumental SNPs. While controlling for 𝛈଴ can reduce 20 

residual error variance in equation (3) and thus help improve the statistical efficiency 21 

of causal effect estimation.  22 

To effectively control for the horizontal pleiotropic effects exhibited from both 23 

SNP groups, we specify separate modeling assumptions on 𝛈଴ and 𝛈ଵ. Specifically, 24 
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for the selected SNP instruments, we assume that they can exhibit horizontal pleiotropic 1 

effects in two different ways: they can affect the outcome through a common 2 

confounder that is associated with both the exposure and outcome, and they can affect 3 

the outcome through paths independent of the exposure. For the first type of horizontal 4 

pleiotropy, we assume that each selected SNP instrument has a probability of 𝜋௖ to 5 

induce pleiotropy through the confounder. Following(8), we assume that the 6 

confounder effect on the outcome is 𝜌 times its effect on the exposure. Consequently, 7 

the effect of the selected SNP instrument acted through the confounder on the outcome 8 

becomes 𝜌𝛽௝, if the SNP effect on the exposure is 𝛽௝. Thus, our assumption on 𝜂ଵ௝
௖ , 9 

which represents the first type of horizontal pleiotropy as a part of 𝛈ଵ for the j-th SNP, 10 

is 𝜂ଵ௝
௖ |𝛽௝ ് 0~𝜋௖𝐼ሺ𝜂ଵ௝ ൌ 𝜌𝛽௝ሻ ൅ ሺ1 െ 𝜋௖ሻ𝛿଴, where 𝐼ሺ⋅ሻ is an indicator function that 11 

sets the horizontal pleiotropic effect to be  𝜌𝛽௝ . For the second type of horizontal 12 

pleiotropy, we assume that each selected SNP instrument has a probability of 𝜋ଵ to 13 

exhibit a horizontal pleiotropic effect on the outcome directly, bypassing the exposure. 14 

We use 𝜂ଵ௝
௨  to represent the second type of horizontal pleiotropy as a part of 𝛈ଵ for 15 

the j-th SNP. Our assumption on 𝜂ଵ௝
௨  is thus 𝜂ଵ௝

௨ |𝛽௝ ് 0~𝜋ଵ𝑁൫0, 𝜎ఎଶ൯ ൅ ሺ1 െ 𝜋ଵሻ𝛿଴, 16 

where the variance 𝜎ఎଶ  determines the strength of the horizontal pleiotropic effect. 17 

Note that the first type of horizontal pleiotropic effects are correlated with the 18 

instrumental effects on the exposure due to the confounder, while the second type of 19 

horizontal pleiotropic effects are uncorrelated with the instrumental effects on the 20 

exposure. The total horizontal pleiotropy is the summation of the two, with 𝜂ଵ௝ ൌ21 

𝜂ଵ௝
௖ ൅ 𝜂ଵ௝

௨ . Certainly, because 𝛈ଵ are the horizontal pleiotropic effects for the selected 22 

SNP instruments, we have 𝜂ଵ௝ ൌ 0 if 𝛽௝ ൌ 0. For the unselected non-instrumental 23 

SNPs with a zero 𝛽௝, we assume that 𝜂଴௝|𝛽௝ ൌ 0~𝜋଴𝑁൫0, 𝜎ఎଶ൯ ൅ ሺ1 െ 𝜋଴ሻ𝛿଴. That is, 24 
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with probability 𝜋଴, the non-instrumental SNPs display horizontal pleiotropic effects 1 

characterized by the same variance parameter 𝜎ఎଶ. We use the same variance parameter 2 

𝜎ఎଶ for modeling the uncorrelated horizontal pleiotropic effects from both instrumental 3 

and non-instrumental SNPs because we often do not have enough number of SNPs to 4 

estimate two separate parameters accurately. Since 𝛈଴ are the horizontal pleiotropic 5 

effects for the non-instruments, we also have 𝜂଴௝ ൌ 0 if 𝛽௝ ് 0. 6 

The above parameterization of the horizontal pleiotropic effects is based on the 7 

selection of SNP instruments. An equivalent and alternative parametrization of the 8 

horizontal pleiotropic effects is to partition them into a correlated horizontal pleiotropic 9 

component 𝛈ୡ and an uncorrelated horizontal pleiotropic component 𝛈୳. Specifically, 10 

the correlated horizontal pleiotropy occurs only for the selected SNP instruments with 11 

𝜂௖௝|𝛽௝ ് 0~𝜋௖𝐼ሺ𝜂ଵ௝ ൌ 𝜌𝛽௝ሻ ൅ ሺ1 െ 𝜋௖ሻ𝛿଴ and 𝜂௖௝ ൌ 0 if 𝛽௝ ൌ 0. The uncorrelated 12 

horizontal pleiotropy, on the other hand, occurs for both instrumental and non-13 

instrumental SNPs with 𝜂௨௝|𝛽௝ ് 0~𝜋ଵ𝑁൫0, 𝜎ఎଶ൯ ൅ ሺ1 െ 𝜋ଵሻ𝛿଴  and 𝜂௨௝|𝛽௝ ൌ14 

0~𝜋଴𝑁൫0, 𝜎ఎଶ൯ ൅ ሺ1 െ 𝜋଴ሻ𝛿଴. In other words, 𝜂௖௝ ൌ 𝜂ଵ௝
௖  and 𝜂௨௝ ൌ 𝜂ଵ௝

௨ ൅ 𝜂଴௝. 15 

Overall, the SNP effects on the outcome in our model are exhibited through three 16 

different paths: via the exposure on outcome causal effect 𝛼 ; via the correlated 17 

horizontal pleiotropic effects mediated by an unobserved confounder; and via the 18 

uncorrelated horizontal pleiotropic effects. SNPs in the model can exhibit none, one, or 19 

multiple types of these effects. Note that the SNP effects on the outcome through the 20 

causal effect and through the correlated horizontal pleiotropy are not distinguishable 21 

from each other unless we make further modeling assumptions. Here, following(8), we 22 

assume 𝜋௖  to be small. Thus, among the selected SNP instruments with non-zero 23 

effects on the exposure, only a fraction of them exhibit correlated horizontal pleiotropic 24 

effects on the outcome.  25 
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Our key parameter of interest is the causal effect 𝛼. The causal interpretation of 𝛼 1 

in a standard MR model requires the selected SNP instruments to satisfy three 2 

conditions: (i) instruments are associated with the exposure (relevance condition); (ii) 3 

instruments are not associated with any other confounder that may be associated with 4 

both exposure and outcome (independence condition); (iii) instruments only influence 5 

the outcome through the path of exposure (exclusion restriction condition). Our 6 

modeling assumption on 𝛃 allows us to select SNPs to satisfy the relevance condition. 7 

Our modeling assumptions on 𝛈଴ and 𝛈ଵ allow us to explicitly model the violation 8 

of the independence and exclusion restriction conditions. Therefore, our model 9 

effectively replaces the general conditions (ii) and (iii) with specific modeling 10 

assumptions on 𝛃 , 𝛈଴  and 𝛈ଵ . In addition, through explicit modeling of the 11 

correlation between the instrument-exposure effects and instrument-outcome effects 12 

through 𝜌, our model no longer requires the InSIDE assumption, which is sometimes 13 

referred to as the weak exclusion restriction condition(3). Consequently, the causal 14 

effect interpretation of 𝛼 in our model only depends on the explicit assumptions made 15 

in the model. 16 

We are interested in estimating the causal effect 𝛼 and testing the null hypothesis 17 

𝐻଴:𝛼 ൌ 0. Performing inference on 𝛼, however, is computationally challenging, as the 18 

likelihood defined based on the above modeling assumptions is in a complicated form 19 

and involves integrations that cannot be obtained analytically. Here, we develop an 20 

approximate inference algorithm under the maximum likelihood framework to perform 21 

numerical integration of the likelihood and obtain an approximate p-value for testing 22 

𝛼. Our algorithm is based on the observation that the likelihood function of 𝛼 can be 23 

expressed as a ratio between the posterior and the prior. Because the posterior of 𝛼 is 24 

asymptotically normally distributed(63, 64), we can use Gibbs sampling to obtain 25 
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posterior samples of 𝛼 and use the sample mean and sample standard deviation to 1 

summarize this posterior distribution. In addition, we can also specify a normal prior 2 

on 𝛼 and obtain the prior mean and standard deviation. Because the likelihood of 𝛼 3 

is expressed as the posterior divided by the prior and is itself asymptotically normally 4 

distributed(63, 64), we can rely on the method of moments to obtain the approximate 5 

maximum likelihood estimate 𝛼ො and its standard error 𝑠𝑒ሺ𝛼ොሻ based on the mean and 6 

standard deviation from both the posterior and the prior. Afterwards, we can construct 7 

an approximate Wald test statistic and obtain a p-value for hypothesis testing. Details 8 

of the algorithm is provided in the Supplementary Text. As a unique feature of our 9 

algorithm, we introduce a set of binary indicator variables to effectively explore the 10 

joint parameter space to alleviate the issue from the inter-dependence among the 11 

parameters 𝛈ଵ , 𝛈଴  and 𝛃  (details in Supplementary Text). Note that, while our 12 

algorithm relies on Gibbs sampling, we do not perform a Bayesian analysis; rather, we 13 

treat the Gibbs sampling as a convenient and accurate numerical approximation tool to 14 

obtain the marginal likelihood of 𝛼, which is otherwise infeasible or inaccurate to 15 

obtain under various frequentist approaches.  16 

We refer to our model and algorithm together as the two-sample Mendelian 17 

Randomization with Automated Instrument Determination (MRAID). The automated 18 

instrument determination part highlights the desirable feature of our model in 19 

automatically selecting instrumental variables from a set of candidate ones that are in 20 

potentially high LD with each other. Compared with existing two-sample MR 21 

approaches, MRAID relies on a likelihood inference framework, is capable of modeling 22 

correlated instruments, performs automated instrument selection, controls for both 23 

correlated and uncorrelated horizontal pleiotropy, and is computationally scalable. 24 
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MRAID is implemented in an R package, freely available at 1 

www.xzlab.org/software.html.  2 

 3 

MRAID for summary statistics 4 

While we have described MRAID using individual-level data, MRAID can be extended 5 

to make use of only summary statistics. Details for the summary statistics version of 6 

MRAID are provided in the Supplementary Text. Briefly, the summary statistics 7 

version of MRAID requires two types of input: the SNP marginal effect size estimates 8 

on the exposure and outcome; and the SNP correlation matrices in the exposure and 9 

outcome GWASs. Both input types are obtained based on standardized genotype data 10 

where the genotypes for each SNP have been standardized to have zero mean and unit 11 

standard deviation. Here, we denote the p-vector of the SNP marginal effect size 12 

estimates on the exposure as 𝛃෡୶ and the corresponding vector of marginal effect size 13 

estimates on the outcome as 𝛃෡୷. We denote the p by p SNP correlation matrix in the 14 

exposure GWAS as Σଵ and the corresponding matrix in the outcome GWAS as Σଶ. 15 

Both Σଵ and Σଶ are positive semi-definite and can be estimated from the same LD 16 

reference panel (e.g. individuals with the same ancestry in the 1,000 Genomes Project). 17 

The MRAID model for summary statistics can be constructed based on the following 18 

two equations 19 

        𝛃෡୶ ൌ Σଵ𝛃 ൅ 𝐞୶,         (4) 20 

𝛃෡୷ ൌ 𝛼Σଶ𝛃 ൅ Σଶ𝛈଴ ൅ Σଶ𝛈ଵ ൅ 𝐞୷, (5) 21 

where 𝐞𝐱 is a p-vector of residual error that follows a multivariate normal distribution 22 

𝑁ሺ0, Σଵ𝜎௫ଶ/ሺ𝑛ଵ െ 1ሻሻ; and 𝐞୷ is a p-vector of residual error that follows another a 23 

multivariate normal distribution 𝑁൫0, Σଶ𝜎௬ଶ/ሺ𝑛ଶ െ 1ሻ൯ . A similar approximate 24 
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inference algorithm under the maximum likelihood framework is developed for the 1 

summary version of MRAID.  2 

 3 

Simulations 4 

We performed realistic simulations to evaluate the performance of MRAID and 5 

compared it with seven existing MR methods. For simulations, we randomly selected 6 

60,000 individuals from UK Biobank (32). We split these individuals randomly into 7 

two equal-sized sets: one set with 30,000 individuals to serve as the exposure GWAS 8 

and another set with the remaining 30,000 individuals to serve as the outcome GWAS. 9 

For these individuals, we obtained their genotypes from 649,695 SNPs on chromosome 10 

1 that are overlapped with the GERA study we used before (14), standardized each SNP 11 

to have mean zero and unit standard deviation, and used the standardized genotypes to 12 

simulate the exposure and outcome. Specifically, in the exposure GWAS, we randomly 13 

selected K SNPs (K =100 or 1,000) to have non-zero effects on the exposure. We 14 

denoted the genotype matrix of the K SNPs as 𝒁෩௫. We simulated the K SNP effect sizes 15 

on the exposure ( 𝛃 ) from a normal distribution 𝑁ሺ0,𝑃𝑉𝐸𝑍෨𝑥/𝐾ሻ , where the 16 

scalar 𝑃𝑉𝐸𝑍෨𝑥  represents the proportion of variance in the exposure variable explained 17 

by these genetic effects. We summed the genetic effects across all K SNPs as 𝒁෩௫𝛃. In 18 

addition, we simulated the residual errors 𝛆୶  from a normal distribution 𝑁ሺ0, 1 െ19 

𝑃𝑉𝐸𝑍෨𝑥ሻ . We then summed the genetic effects and the residual errors to yield the 20 

simulated exposure variable x. In the outcome GWAS, we obtained the genotypes for 21 

the same K SNPs as 𝒁෩௬ and used the same 𝛃 from the exposure GWAS to compute 22 
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the genetic component underlying the outcome as 𝒁෩௬𝛃. We set the causal effect 𝛼 to 1 

be 𝛼 ൌ ඥ𝑃𝑉𝐸஑/𝑃𝑉𝐸𝑍෨𝑥 , so that the proportion of variance in the outcome variable 2 

explained by the causal effect term ( 𝒁෩௬𝛃𝛼 ) is 𝑃𝑉𝐸஑ . We randomly obtained 3 

𝜋௖𝐾 SNPs (rounded to an integer) from the K SNPs to exhibit correlated pleiotropy. 4 

We simulated the correlated pleiotropic effect sizes to be 𝜌𝛃 and set 𝜌 so that the 5 

proportion of variance in the outcome variable explained by correlated pleiotropy is 6 

𝑃𝑉𝐸ୡ. In addition, we randomly obtained 𝜋ଵ𝐾 SNPs (again rounded to an integer) from 7 

the K SNPs and randomly obtained 100 െ 𝜋ଵ𝐾 SNPs from the remaining non-causal 8 

SNPs to exhibit uncorrelated pleiotropy, so that a total of 100 SNPs displayed 9 

uncorrelated pleiotropy. We simulated the uncorrelated horizontal pleiotropic effects 10 

for these 100 SNPs from a normal distribution and scaled them so that the proportion 11 

of phenotypic variance in the outcome explained by uncorrelated pleiotropy is 𝑃𝑉𝐸௨. 12 

We simulated the residual errors 𝛆୷  from a normal distribution 𝑁ሺ0, 1 െ 𝑃𝑉𝐸஑ െ13 

𝑃𝑉𝐸ୡ െ 𝑃𝑉𝐸௨ሻ . We summed the causal effect term, correlated and uncorrelated 14 

horizontal pleiotropic effects, and the residual errors to yield the simulated outcome 𝐲.15 

 We treated the causal SNPs as unknown and followed standard MR procedure to 16 

select SNPs to serve as the instrumental variables. To do so, we used the linear 17 

regression model implemented in GEMMA (65) to perform association analysis in the 18 

exposure GWAS and selected SNPs with a p-value below 5 ൈ 10ି଼ as the candidate 19 

instrumental variables for analysis. For the selected SNPs, we obtained their effect size 20 

estimates, standard errors, and Z scores to serve as the summary statistics input. We 21 

also denoted the standardized genotype matrices for the selected SNPs in the exposure 22 
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and outcome GWASs as 𝒁௫ and 𝒁௬, respectively. Based on the genotype matrices, 1 

we obtained the SNP correlation matrices as 𝜮ଵ ൌ
𝒁ೣ೅𝒁ೣ
௡భିଵ

 and 𝜮ଶ ൌ
𝒁೤೅𝒁೤
௡మିଵ

 to serve as 2 

input for MR model fitting.  3 

In the simulations, we first examined a baseline simulation setting where we set 4 

𝑃𝑉𝐸௓෨ೣ ൌ 10%, 𝑃𝑉𝐸ఈ ൌ 0, 𝐾 ൌ 100, 𝜋௖ ൌ 0, 𝑃𝑉𝐸௨ ൌ 0, 𝑃𝑉𝐸௖ ൌ 0. On top of the 5 

baseline setting, we varied one parameter at a time to examine the influence of various 6 

parameters on method performance. For 𝑃𝑉𝐸௓෨ೣ, we set it to be either 5% or 10%. For 7 

𝛃, in addition to simulating it from a normal distribution, we also simulated them from 8 

the Bayesian sparse linear mixed model (BSLMM) distribution(52). Specifically, we 9 

randomly selected either 1% or 10% of the K SNPs to have large effects and these large-10 

effect SNPs explain 20% of 𝑃𝑉𝐸௓෨ೣ. We set the remaining SNPs to have small effects 11 

to explain the remaining 𝑃𝑉𝐸௓෨ೣ. For K, we set it to be either 100 or 1,000. For 𝑃𝑉𝐸ఈ, 12 

we set it to be zero in the null simulations and examined different values in the 13 

alternative simulations. In the alternative simulations, we set 𝑃𝑉𝐸ఈ to be 0.05%, 0.15% 14 

or 0.25% when K=100 and set it to be 0.5%, 1.5% and 2.5% when K=1,000 to 15 

ensure sufficient power. For the uncorrelated horizontal pleiotropic effects, we set 16 

𝑃𝑉𝐸௨  to be either 0, 2.5% or 5%. Under the null (𝑃𝑉𝐸ఈ ൌ 0) in the absence of 17 

uncorrelated horizontal pleiotropy (𝑃𝑉𝐸௨ ൌ 0), we set K to be 100 or 1,000. In the 18 

presence of uncorrelated horizontal pleiotropy, we set K to be 100 and set 𝜋ଵ to be 19 

either 0, 10%, 20%, or 30%. We also simulated the correlated pleiotropy effects and set 20 

𝜋௖ to be either 5% or 10%, with 𝜌 being √0.02 or √0.05 following the previous 21 

literature(8).  22 
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Note that MRAID used the same variance parameter for modeling the uncorrelated 1 

horizontal pleiotropic effects of both instrumental and non-instrumental SNPs, as the 2 

number of SNPs included in the model may not be sufficiently large for accurate 3 

inference of the two separate parameters. We conducted additional simulations to 4 

evaluate the robustness of MRAID against the violation of this assumption in the 5 

presence of horizontal pleiotropic effects (𝑃𝑉𝐸௨ ൌ 5% ), with the proportion of 6 

instrumental SNPs having uncorrelated horizontal pleiotropy to be 20% and 30%, 7 

respectively. We set the variance parameter for generating the uncorrelated horizontal 8 

pleiotropic effects from the non-instrumental SNPs to be either 3 times or 1/3 of that 9 

from the instrumental SNPs. 10 

For the above simulations, we examined the number of causal SNPs in each LD 11 

block. Specifically, we used LDetect (66) and followed its default settings to divide 12 

chromosome 1 into 133 independent LD blocks. We then examined the location of the 13 

randomly selected 100 causal SNPs in each simulation. We found that the mean 14 

proportion of LD blocks that contain at least one causal SNP across the 1,000 simulation 15 

replicates is 51%. In the LD blocks that contain at least one causal SNPs, we found the 16 

number of causal SNPs ranges from 1 to 7. In particular, an average of 64% of LD 17 

blocks with at least one causal SNP contain exactly one causal SNP and an average of 18 

36% of LD blocks with at least one causal SNP contain more than one causal SNP. 19 

Therefore, it appears that multiple causal SNPs are presented in the same LD block in 20 

our simulations. For the SNPs that in the same LD block, the mean of the absolute value 21 

of pair-wise 𝑟ଶ is 0.76.  22 

For null simulations, we performed 1,000 simulation replicates in each scenario to 23 

examine type I error control. For power evaluation, we performed 100 alternative 24 
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simulations along with 900 null simulations, with which we computed power based on 1 

an FDR of 0.05. We then repeated such analysis five times and report the average power 2 

across these replicates. Note that we computed power based on FDR instead of a 3 

nominal p-value threshold to allow for fair comparison across methods, as the same p-4 

value from different methods may correspond to different type I errors.  5 

Besides the above comprehensive simulations, we also conducted a set of simple 6 

simulations to help build the intuition of the benefits of MRAID brought by modeling 7 

multiple correlated SNPs. Specifically, we first used LDetect with the default settings 8 

to divide chromosome 1 into 133 approximately independent LD blocks (66). We 9 

randomly selected one LD block and randomly selected 10 SNPs in the LD block for 10 

simulations. Among the 10 SNPs, we randomly selected one SNP to be causal and 11 

applied different methods to perform MR analysis either with the causal SNP (i.e. 10 12 

SNPs total) or without the causal SNPs (i.e. 9 SNPs total). We also randomly selected 13 

two SNPs to be causal and performed MR analysis either with the causal SNPs (i.e. 10 14 

SNPs total) or without the two causal SNPs (i.e. 8 SNPs total). In addition, we randomly 15 

selected two neighborhood LD blocks on chromosome 1 and randomly selected 10 16 

SNPs from each block for another set of simulations. We then carried out similar 17 

simulations, with one SNP in each LD block randomly selected to be causal and with 18 

the MR analysis performed either with or without the two causal SNPs. We examined 19 

both the type I error control as well as power in the absence of both correlated and 20 

uncorrelated horizontal pleiotropic effects. We set 𝑛ଵ ൌ 30000 , 𝑛ଶ ൌ 30000 , 21 

𝑃𝑉𝐸୸୶ ൌ 0.25%, 𝑃𝑉𝐸஑ ൌ 0 (null simulation) or 𝑃𝑉𝐸஑ ൌ 1% (power simulation) to 22 

examine the performance of MRAID and the MR method that uses only the lead variant. 23 

 24 

Real Data Applications 25 
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We applied MRAID and other MR methods to detect causal associations between 38 1 

lifestyle risk factors and 11 CVD-related traits in the UK Biobank. The UK Biobank 2 

data consists of 487,298 individuals and 92,693,895 imputed SNPs (32). We followed 3 

the same sample QC procedure in Neale lab 4 

(https://github.com/Nealelab/UK_Biobank_GWAS/tree/master/imputed-v2-gwas) to 5 

retain a total of 337,129 individuals of European ancestry for analysis. We also filtered 6 

out SNPs with an HWE p-value < 10-7, a genotype call rate < 95%, or an MAF < 0.001 7 

to obtain a total of 13,876,958 SNPs for analysis. For the retained individuals, we 8 

obtained all lifestyle-related quantitative traits and CVD-related traits, removed those 9 

traits with a sample size less than 10,000, and focused on the remaining set of 38 10 

lifestyle traits and 11 CVD-related traits for analysis. The 38 lifestyle traits include 8 11 

physical activity traits, 12 alcohol intake traits, 10 diet traits (e.g. coffee and fruits) and 12 

8 smoking related traits. The 11 CVD-related traits include four pulse wave traits, two 13 

blood pressure traits (SBP and DBP), four lipid traits (LDL, HDL, TC, and TG) and 14 

BMI. Details of these traits are listed in Table S2. Many of these lifestyle risk factors 15 

have been found to be associated with CVD-related traits in observational studies (67-16 

69), though it remains unclear whether these associations represent causal relationship. 17 

For each trait in turn, we removed the effects of sex and top ten genotype principal 18 

components (PCs) to obtain the trait residuals, standardized the residuals to have a mean 19 

of zero and a standard deviation of one, and used these scaled residuals for MR analysis.  20 

To mimic the two-sample MR design, we randomly split the 337,129 individuals 21 

into two non-overlap sets: an exposure GWAS set with 168,564 individuals and an 22 

outcome GWAS set with 168,565 individuals. The random data split strategy ensures 23 

sample homogeneity within each study and independence between studies, and was 24 

extensively used in the previous MR literature (6, 70-72). We examined the 38 lifestyle 25 
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traits in the exposure GWAS and examined the 11 CVD-related traits in the outcome 1 

GWAS. In both GWASs, we obtained summary statistics for each trait through linear 2 

regression implemented in GEMMA. When lifestyle traits in the exposure GWAS were 3 

treated as the exposure, we selected SNPs with a p-value below 5 ൈ 10ି଼ to serve as 4 

the candidate instruments for each exposure trait. Because almost all MR methods 5 

require at least two instrumental SNPs and some methods can become unstable when 6 

the number of instrumental SNPs is too large, we removed exposure traits for which 7 

the number of candidate instruments is either below two or above 10,000. This way, we 8 

removed three traits with less than two candidate instruments and four traits with more 9 

than 10,000 candidate instruments. We paired the remaining 31 exposure lifestyle traits 10 

with 11 outcome CVD-related traits into 341 trait pairs. The mean number of 11 

significantly associated SNPs among the 31 traits is 286. When CVD-related traits in 12 

the outcome GWAS were treated as the exposure, we removed three traits with less 13 

than two candidate instruments, including Pulse wave reflection index with no 14 

candidate SNP, Pulse wave peak to peak time with one candidate SNP and Pulse wave 15 

Arterial Stiffness index with one candidate SNP. We still found that the remaining eight 16 

traits have a total of more than 10,000 candidate instruments. Therefore, for these 17 

remaining traits, we used a more stringent p-value threshold of 1 ൈ 10ିଵହ to select 18 

SNP instruments and analyzed the resulting 304 trait pairs. The mean number of 19 

associated SNPs among the eight CVD-related traits is 2,318. In total, we analyzed 645 20 

trait pairs.  21 

 22 

Compared Methods 23 

We compared the performance of MRAID with seven existing methods that include the 24 

followings. (1) IVW-R, which is the random effects version of IVW. It obtains the 25 
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causal effect estimate through weighting and combining the effect estimates from 1 

individual instruments. It relies on random effects to account for pleiotropy and effect 2 

estimate heterogeneity across instruments(73). (2) Weighted mode, which is a mode 3 

version of IVW. It obtains the causal effect estimate as the mode, instead of the mean, 4 

of the effect estimates obtained from individual instruments(74). (3) Robust, which is 5 

a robust version of IVW. It uses the MM-estimation procedure consisting of an initial 6 

S-estimate followed by an M-estimate(75) that is further combined with Tukey’s bi-7 

weight loss function(76). (4) Weighted median, which can provide the consistent 8 

estimator even when up to 50% of the information comes from invalid instrumental 9 

variables. We fitted methods (1)-(4) using R package ‘MendelianRandomization’ with 10 

default settings. (5) RAPS, which is the MR Adjusted Profile Score method. It 11 

incorporates random effects and robust loss functions into the profile score to account 12 

for systematic and idiosyncratic pleiotropy (6). We fitted RAPS using R package 13 

‘mr.raps’; (6) MRMix, which relies on a mixture model to account for horizontal 14 

pleiotropic effects and their correlation with instrumental effect sizes (7). We fitted 15 

MRMix using R package ‘MRMix’. (7) CAUSE, which identifies instrumental effect 16 

size patterns that are consistent with causal effects while accounting for correlated 17 

pleiotropy (8). We fitted CAUSE using R package ‘cause’. We compared MRAID with 18 

the above seven methods because CAUSE is one of the most recently developed 19 

methods; IVW-R, Robust and RAPS all have been shown to have superior performance 20 

when the InSIDE assumption is satisfied; while MRMix and Weighted mode perform 21 

well even the InSIDE assumption is violated(8, 33). In both simulations and real data 22 

applications, we first obtained SNPs that achieve genome-wide significance level (𝑝 ൏23 

5 ൈ 10ି଼ ) to serve as a candidate set of instrumental SNPs. We directly use this 24 

candidate set of instrumental SNPs for MRAID. Because all other MR methods require 25 
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independent instrumental SNPs, we performed LD clumping on the candidate set of 1 

instrumental SNPs to select independent ones for analysis. LD clumping is performed 2 

using PLINK, where we set the LD 𝑟ଶ parameter to be 0.001. CAUSE also requires 3 

estimating some nuisance parameters in the model by using a random set of SNPs 4 

across the genome, and we did so by randomly selecting 100,000 SNPs following(8). 5 

Finally, we explored an oracle approach in the power simulations where we knew the 6 

actual set of instrumental SNPs that affect the exposure variable. In the oracle approach, 7 

we obtained the actual set of instrumental SNPs, selected among them the independent 8 

ones via pruning, and used the selected set of SNPs to serve as instruments using the 9 

IVW-R method. The compared methods and their corresponding software are listed in 10 

Table S3.  11 

  12 
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Table 1 Mean computational time (in minutes) of various two-sample MR methods. 

#SNPs MRAID CAUSE MRMix IVW-R 
Weighted 

mode 

Weighted 

median 
RAPS Robust 

1000 0.31(0.07) 2.63(1.90) 0.12(0.03) 0.0001(0.00001) 0.17(0.04) 0.011(0.003) 0.0004(0.0003) 0.0004(0.0001) 

2000 1.57(0.26) 2.99(2.24) 0.13(0.03) 0.0001(0.00001) 0.18(0.03) 0.012(0.002) 0.0004(0.0006) 0.0004(0.0001) 

3000 3.91(0.75) 3.66(2.36) 0.14(0.02) 0.0001(0.00002) 0.18(0.03) 0.012(0.003) 0.0004(0.0003) 0.0004(0.0001) 

4000 6.82(1.35) 4.24(1.62) 0.15(0.04) 0.0001(0.00003) 0.18(0.04) 0.013(0.003) 0.0004(0.0001) 0.0004(0.0002) 

5000 10.80(2.69) 4.92(2.29) 0.18(0.05) 0.0001(0.00004) 0.18(0.04) 0.013(0.002) 0.0004(0.0001) 0.0005(0.0003) 

Computation is carried out on a single thread of a Xeon Gold 6138 CPU. The computation time is averaged across 

20 replicates, with values inside parentheses denoting the standard deviation. #SNPs denotes the number of 

instrumental variables included in the model. The computational time for MRAID is based on 1,000 Gibbs sampling 

iterations with the first 200 as burn-in.  
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Fig. 1 Schematic of MRAID. MRAID is a Mendelian randomization method that infers the causal effect of an exposure on an outcome in the presence of 
unmeasured confounder by using SNPs as instrumental variables. MRAID first obtains an initial set of candidate SNP instruments that are marginally associated with 
the exposure (SNP1, …, SNPp) and that are in potential LD with each other (LD plot on left). MRAID imposes a sparsity assumption on the instrumental effects of 
the candidate SNPs to divide instruments with non-zero effects (SNP set 1) and zero effects (SNP set 2) on the exposure. Among the selected instruments (SNP set 
1), MRAID assumes that a proportion of them display horizontal pleiotropic effects that are uncorrelated with instrumental effects (blue path) and that another 
proportion of them display horizontal pleiotropic effects that are correlated with instrumental effects (orange path). Among the non-selected instrument candidates 
(SNP set 2), MRAID also assumes that a proportion of them display horizontal pleiotropic effects that are uncorrelated with instrumental effects (blue path). Overall, 
MRAID models jointly all genome-wide significant SNPs that are in potential LD with each other and performs automated instrument selection among them to 
identify suitable instruments. MRAID explicitly accounts for both correlated and uncorrelated horizontal pleiotropy and relies on a likelihood framework for 
effective and scalable inference. 

 . 
C

C
-B

Y
-N

C
-N

D
 4.0 International license

It is m
ade available under a 

perpetuity. 
 is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in
(w

h
ich

 w
as n

o
t certified

 b
y p

eer review
)

preprint 
T

he copyright holder for this
this version posted N

ovem
ber 4, 2021. 

; 
https://doi.org/10.1101/2021.11.03.21265848

doi: 
m

edR
xiv preprint 

https://doi.org/10.1101/2021.11.03.21265848
http://creativecommons.org/licenses/by-nc-nd/4.0/


Expected (− log10 p−value)

O
bs

er
ve

d 
(−

lo
g 1

0 p
−v

al
ue

)

1

2

3

4

5

6

1 2 3 4 5 6

CAUSE
IVW−R
MRAID
MRMix
RAPS
Robust
Weighted median
Weighted mode

A

Expected (− log10 p−value)
O

bs
er

ve
d 

(−
lo

g 1
0 p

−v
al

ue
)

1

2

3

4

5

6

1 2 3 4 5 6

B

Expected (− log10 p−value)

O
bs

er
ve

d 
(−

lo
g 1

0 p
−v

al
ue

)

2

4

6

2 4 6

C

Expected (− log10 p−value)

O
bs

er
ve

d 
(−

lo
g 1

0 p
−v

al
ue

)

1

2

3

4

5

1 2 3 4 5

D

Fig. 2 Type I error control of different MR methods in simulations. Type I error is evaluated by quantile-
quantile plots of -log10 p-values from different MR methods on testing the causal effect under the null 
simulations. Compared methods include CAUSE (blue), IVW-R (gold), MRAID (purple), MRMix (black), 
RAPS (deep pink), Robust (deep sky blue), Weighted median (light salmon), Weighted mode (green). Four 
null simulation scenarios are examined. (A) Null simulations in the absence of both correlated and 
uncorrelated horizontal pleiotropic effects. We simulated 100 instrumental SNPs with their effect sizes 
drawing from a normal distribution. (B) Null simulations in the absence of both correlated and uncorrelated 
horizontal pleiotropic effects. We simulated 1,000 instrumental SNPs with their effect sizes drawing from a 
BSLMM distribution with 1% SNPs having large effects and 99% SNPs having small effects. (C) Null 
simulations in the absence of correlated horizontal pleiotropic effect but in the presence of uncorrelated 
horizontal pleiotropic effect (PVEu=5%). We simulated 100 instrumental SNPs and set the proportion of 
instrumental SNPs having uncorrelated horizontal pleiotropy to be 20%. (D) Null simulations in the presence 
of both correlated (πc=5%, ρ=√0.05) and uncorrelated horizontal pleiotropic effects (PVEu=5%). We simulated 
100 instrumental SNPs and set the proportion of instrumental SNPs having the uncorrelated horizontal 
pleiotropy effect to be 20%.
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Fig. 3 Power of different MR methods in simulations. Power (y-axis) at a false discovery rate of 0.05 to detect 
the causal effect is plotted against different causal effect size characterized by PVEα (x-axis). Compared methods 
include CAUSE (blue), IVW-R (gold), MRAID (purple), MRMix (black), RAPS (deep pink), Robust (deep sky 
blue), Weighted median (light salmon), Weighted mode (green). Four alternative simulation scenarios are 
examined. (A) Simulations in the absence of both correlated and uncorrelated horizontal pleiotropic effects. We 
simulated 100 instrumental SNPs with their effects size drawing from a normal distribution. (B) Simulations in 
the absence of both correlated and uncorrelated horizontal pleiotropic effects. We simulated 1,000 instrumental 
SNPs with their effects size drawing from a BSLMM distribution with 1% SNPs having large effects and 99% 
SNPs having small effects. (C) Simulations in the absence of correlated horizontal pleiotropic effect but in the 
presence of uncorrelated horizontal pleiotropic effect (PVEu=5%). We simulated 100 instrumental SNPs and set 
the proportion of instrumental SNPs having the uncorrelated horizontal pleiotropy effect to be 30%. (D) 
Simulations in the presence of both correlated (πc=5%, ρ=√0.05) and uncorrelated horizontal pleiotropic effects 
(PVEu=5%). We simulated 100 causal instrumental SNPs and set the proportion of instrumental SNPs having the 
uncorrelated horizontal pleiotropy effect to be 20%.
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Fig. 4 Point estimates and 95% confidence intervals from different MR methods in the trait on itself analysis in the real data. Compared methods include CAUSE (blue), IVW-R (gold), MRAID (purple), MRMix (black), RAPS (deep pink), Robust (deep sky blue), Weighted median (light salmon), Weighted mode (green). Analyzed trait pairs include SBP-SBP (A), BMI-BMI (B), DBP-DBP (C), Pulse rate-Pulse rate (D), TC-TC (E), LDL-LDL (F), TG-TG (G), and HDL-HDL (H). The horizontal black dashed line in each panel represents the true causal effect size of α=1. Both MRAID and CAUSE can produce 95% confidence intervals that cover the true causal effects of all trait pairs, with CAUSE producing much larger confidence intervals than MRAID.   
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 Quantile-quantile plot of -log10 p-values from different MR methods on testing the causal 
relationship between lifestyle risk factors and CVD-related traits in UK Biobank. 
Compared methods include CAUSE (blue), IVW-R (gold), MRAID (purple), MRMix (black), RAPS (deep 
pink), Robust (deep sky blue), Weighted median (light salmon), Weighted mode (green). The  results  are  
shown  for  all  645  analyzed  trait  pairs  (A)  and  the  empirical  null  where  we  permuted  the  outcome  
ten  times  in  the  MR  analysis  of  lifestyle  traits  on  CVD- related traits (B). 
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