Abstract
Bloom syndrome (BS) is an autosomal recessive disease with characteristic clinical features of primary microcephaly, growth deficiency, skin lesions, cancer predisposition, and immunodeficiency. Here, we report the clinical and molecular findings of eight patients from six families diagnosed with BS. We identified causative mutations in all families, three different homozygous mutations in BLM and one causative homozygous mutation in RMI1. The homozygous c.581_582delTT (p.Phe194*) and c.3164G>C (p.Cys1055Ser) mutations in BLM have already been reported in BS patients, while the c.572_573delGA (p.Arg191Lysfs*4) is novel. Interestingly, whole-exome sequencing revealed a homozygous loss-of-function mutation in RMI1 in two BS patients of a consanguineous Turkish family. All BS patients had primary microcephaly, intrauterine growth delay, and short stature, presenting the phenotypic hallmarks of BS. However, a narrow face, skin lesions, and upper airway infections were observed only in some of the patients. Overall, patients with homozygous BLM mutations had a more severe BS phenotype compared to patients carrying the homozygous RMI1 mutation, especially in terms of immunodeficiency and associated recurrent infections. Low-level immunoglobulins were observed in all BLM-mutated patients, emphasizing the immunodeficiency profile of the disease, which should be considered as an important phenotypic characteristic of BS, especially in the current Covid-19 pandemic era.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Research Group FOR 2800, Chromosome Instability: Cross-talk of DNA replication stress and mitotic dysfunction, SP5 and SPZ to B. Wollnik and Germany's Excellence Strategy, Cluster of Excellence; Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC; EXC 2067/1-390729940) to B. Wollnik.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Written informed consent of all participants or their legal representatives was obtained prior to participation in the study. This study was performed according to the Declaration of Helsinki protocol and approved by the local institutional review board (University Medical Center Goettingen, Germany) under approval number 3/2/16.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
The whole-exome sequencing raw data are not publicly available due to privacy or ethical restrictions. Processed genetic data generated or analyzed within this study are available upon request.