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ABSTRACT 

The purpose of this study was to characterize the proteomic and phosphoproteomic profiles of 

circulating extracellular vesicles (EVs) from people with normal glucose tolerance (NGT), 

prediabetes (PDM), and diabetes (T2DM). Archived serum samples from 30 human subjects 

(N=10 per group, ORIGINS study, ClinicalTrials.gov NCT02226640) were used. EVs were 

isolated using EVTRAP (Tymora). Mass spectrometry (LC-MS)-based methods were used to 

detect the global EV proteome and phosphoproteome. Differentially expressed features, 

correlation networks, enriched pathways, and enriched tissue-specific protein sets were identified 

using custom R scripts. A total of 2372 unique EV proteins and 716 unique EV phosphoproteins 

were identified. Unsupervised clustering of the differentially expressed (fold change≥2, P<0.05, 

FDR<0.05) proteins and, particularly, phosphoproteins, showed excellent discrimination among 

the three groups. Among characteristic changes in the PDM and T2DM EVs, “integrins switching” 

appeared to be a central feature. Proteins involved in oxidative phosphorylation (OXPHOS), 

known to be reduced in various tissues in diabetes, were significantly increased in EVs from PDM 

and T2DM, which suggests that an abnormally elevated EV-mediated secretion of OXPHOS 

components may underlie development of diabetes. We also detected a highly enriched signature 

of liver-specific markers among the downregulated EV proteins and phosphoproteins in both PDM 

and T2DM groups. This suggests that an alteration in liver EV composition and/or secretion may 

occur early in prediabetes. Levels of signaling molecules involved in cell death pathways were 

significantly altered in the circulating EVs. Consistent with the fact that patients with T2DM have 

abnormalities in platelet function, we detected a significant enrichment (FDR<<0.01) for 

upregulated EV proteins and phosphoproteins that play a role in platelet activation, coagulation, 

and chemokine signaling pathways in PDM and T2DM. Overall, this pilot study demonstrates the 

potential of EV proteomic and phosphoproteomic signatures to provide insight into the 

pathobiology of diabetes and its complications. These insights could lead to the development of 

new biomarkers of disease risk, classification, progression, and response to interventions that could 

allow personalization of interventions to improve outcomes.
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INTRODUCTION 

Type 2 Diabetes mellitus (T2DM) affects 31 million people in the United States and 463 million 

globally [1], with high risk for chronic complications of cardiovascular disease (CVD), chronic 

kidney disease (CKD) and heart failure [2]. T2DM can be prevented, with lifestyle interventions 

and pharmacologic therapies targeting those at high risk of progressing [3; 4]. These interventions 

are not effectively employed, however, suggesting a need to personalize therapies. There is now 

evidence that classic T2DM is, in fact, genetically and phenotypically heterogeneous [5]. Thus, 

despite a large number of therapies are available to improve glucose levels in T2DM, there is a 

need for better biomarkers to select optimal therapies to improve outcomes and decrease 

morbidity, mortality and costs from diabetes.   

Although good progress has been achieved in the development of biomarkers with proven clinical 

utility for diseases like cancer, the development and clinical implementation of biomarkers to 

personalize therapy in diabetes is lagging behind. Accumulating evidence indicates that 

extracellular vesicles (EVs) are key players in cell-to-cell communication and inter-organ crosstalk 

[6-9]. EVs carry unique signatures (e.g., proteins, lipids, nucleic acids) that are cell and condition 

specific [10-12]. Once released from cells, EVs can make their way into blood, urine, and other 

bodily fluids [11; 13]. Because extracellular vesicles (EVs) are abundant in bodily fluids and carry 

a variety of molecules such as proteins, miRNAs, and lipids involved in both physiological and 

pathological processes, they are particularly attractive as biomarkers. Protein phosphorylation is a 

major regulatory mechanism in living cells and might provide important insight into function, but 

a number of challenges have limited the exploration of phosphoproteins as biomarkers, including 

the difficulty of reliably purifying and quantifying low-abundance phosphoproteins and 

interference from proteins and metabolites in the biofluids [14; 15]. Recent advances in the 

development of EV-based technologies (i.e., using Extracellular Vesicle Total Recovery and 

Purification (EVTRAP) beads followed by Polymer-based Metal Affinity Capture (PolyMAC), 

developed by Tymora Analytical Operations, Inc) for the characterization of the EV 

phosphoproteome may circumvent some of these limitations [16-18]. EVTRAP is a recently 

developed, broad non-antibody-based affinity isolation method that produces quantitative EV 

yields that have proven advantageous for MS/MS proteomic and phosphoproteomic studies [16-

18]. 

Recent evidence supports a role for EVs in the pathogenesis of T2DM [19-23]. However, little is 

known about the evolution of changes in EVs in the early stages of the human disease (i.e.,  PDM) 

and no characterization of the paired EV proteome and phosphoproteome across the diabetes 

spectrum exists. 

 

RESULTS 

Study design and clinical characteristics of the study cohort 

A balanced subset of patients from the ORIGINS study (ClinicalTrials.gov, ID: NCT02226640) 

was selected for this proteomics study (Table 1). Details from the parent study cohort have been 

previously described [24]. For this study, a total of 30 participants (N=10 per group) were 

specifically selected as a subgroup that was not confounded by differences in sex, age, and obesity, 
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which are known to affect metabolic function. Table 1 describes the summary of clinical 

characteristics of the study cohort. 

EVs from serum are highly enriched with exosomal proteins and phosphoproteins 

A total of 2372 unique EV proteins and 716 unique EV phosphoproteins were identified from 1 

mL of fasting serum. Most of these proteins and phosphoproteins have been reported to be present 

in extracellular vesicles (by cross-referencing to the Vesiclepedia database, Figure 1A) and 

specifically in exosomes (Figure 1B,C). Importantly, 91% of the top 100 exosomal proteins 

reported as best markers of exosomes were readily identified by our LC/MS approach. Scanning 

electron microscopy (SEM) of these preparations confirmed the presence of particles with 

morphology and dimensions consistent with those of exosomes (Figure 1D). Altogether, this data 

demonstrated that the EVTRAP method significantly enriched the preparations with exosomes.  

We further characterized the distribution of particles by nanoparticle tracking analysis (NTA) and 

detected no significant differences in the total number of circulating EV-like nanoparticles among 

the three study groups (Figures 1E-I).  

Differential expression analysis provides insight on potential tissue-specific mechanisms 

To gain insight into the biology underlying the development of diabetes and to identify potential 

circulating EV biomarkers of the disease, we implemented a multi-omic (proteomics and 

phosphoproteomics) approach to characterize the EV composition in serum. Multidimensional 

scaling analysis of all the proteomic and phosphoproteomic data (Figure 1J,K) revealed that each 

study group presented relatively homogeneous profiles of EV proteins and phosphoproteins that 

were also distinguishable from the other groups. Consequently, we were able to identify 196 and 

309 differentially expressed proteins and 53 and 191 differentially expressed phosphoproteins in 

PDM and T2DM, respectively, as compared to NGT subjects (Supplementary Tables ST1-ST4). 

Using these circulating EV signatures and unsupervised clustering, we were able to correctly 

assign study participants to their respective groups with close to 100% accuracy (Figure 2,3). 

Notably, the EV proteome and phosphoproteome displayed a relatively small number of 

commonly detected features (specifically, 245 proteins were also found as phosphorylated proteins 

in the circulating EVs) and a rather low correlation between the corresponding common features 

(Figure 4A-C). Only 25 features were differentially expressed in both protein and phosphoprotein 

states, but often in opposite directions, with AKT1 being a notable example (Figure 4B,C, 

Supplementary Tables ST5-ST6). Supporting the relevance of this finding, the change in 

phosphorylated AKT1 in circulating EVs significantly negatively correlated with the change in 

multiple relevant clinical measures including acute insulin response to glucose (AIRg), disposition 

index (DI), insulin secretion (HOMA-B), fasting plasma glucose (FPG), glucose AUC, and HbA1c 

(absolute r ≥ 0.37, P≤0.05, Supplementary Table ST7). Similarly, the change in total AKT1 protein 

significantly negatively correlated with FPG, glucose AUC, and HbA1c (r ≤ -0.39, P < 0.013, 

Supplementary Table ST8).  

In addition, signaling kinases including AKT1, GSK3B, LYN, MAP2K2, and PRKCD were all 

among the significantly upregulated EV phosphoproteins that highlighted a network enriched for 

immune-related pathways including chemokine signaling, Fc gamma R-mediated phagocytosis, 

and B cell receptor signaling, among others (Figure 5C, Figure 6A-D). Similar to phosphorylated 

AKT1, the change in phosphorylated LYN and PRKCD kinases also significantly correlated with 

the change in FPG, glucose AUC, HbA1c, and the acute insulin response to glucose (AIRg) 

(absolute |r| ≥ 0.5, P < 0.12, Supplementary Table ST7). On the other hand, the enrichment analysis 
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of the differentially expressed EV proteins highlighted respective networks in both PDM and 

T2DM with significant enrichment in oxidative phosphorylation (OXPHOS) signaling among the 

upregulated proteins (Figure 5D,F). An enrichment in upregulated proteins involved in immune 

cell mediate cytotoxicity was also detected in the PDM group (Figure 5D). 

Altered expression of platelet and immune activation and coagulation markers in circulating EVs 

is common in PDM and T2DM. Proteins and phosphoproteins that play a role in chemokine 

signaling pathways in PDM and in platelet activation and coagulation in PDM and T2DM (Figure 

5) were enriched among the differentially expressed EV proteins and phosphoproteins. Of note, 

significantly increased levels of the platelet surface markers GP1BA and integrin ITGB3 and the 

activation marker PCAM1, were common in EV preparations from both PDM and T2DM groups 

(Figure 6E-H). In addition, significant upregulation of tissue factor (TF) was also common in the 

circulating EVs from both groups (Figure 6I). TF in complex with coagulation factor F7a is the 

primary initiator of blood coagulation and has been reported to be released in EVs from platelets, 

monocytes, and pancreatic tumor cells contributing to thrombus formation [25].  

An integrin switch signature in circulating EVs is characteristic of PDM and T2DM. The networks 

of KEGG pathway-enriched downregulated EV phosphoproteins additionally highlighted a central 

role for integrins ITGB1 and ITGA2B in both the PDM and T2DM networks, as compared to the 

NGT group (Figure 5A,B; Figure 6J,K). Consequently, the modulation of interactions between the 

extracellular matrix (ECM) and cell receptors, the regulation of the actin cytoskeleton, and the 

regulation of phagosome functions were also among key pathways enriched among the 

downregulated EV phosphoproteins (Figure 5A,B). On the other hand, phosphorylated ITGA2 and 

total ITGA6 protein were highly upregulated in the T2DM group (Figure 5C,F; Figure 6M,N), 

which suggests that T2DM might be associated with a switch of integrin surface molecules in EVs 

and the originating cells. HLA proteins, which are reported to modulate the expression of integrins 

[26] were also among the differentially expressed EV proteins highlighted by the functional 

enrichment networks (i.e., HLA-DQB1 and HLA-DRA, Figure 5D,E, Figure 6N,O). Remarkably, 

these phosphorylated integrins correlated with important clinical measures of body composition 

(i.e., fat mass and waist circumference), glycemic control (i.e., FPG, glucose AUC, and HbA1c), 

glucose disposition (i.e., DI), insulin action (i.e., HOMA-IR), and beta cell function (i.e., fasting 

plasma insulin –FPI) (absolute |r| ≥ 0.4, P < 0.05, Supplementary Table ST7).   

Signatures of liver proteins and phosphoproteins are downregulated in EVs as early as the 

prediabetes stage. To gain insight into which organs or cell types might be significantly 

contributing to the differences in EV protein and phosphoprotein cargo in PDM and T2DM, we 

conducted enrichment analyses for cell-type specific signatures extracted from the Human Protein 

Atlas (HPA). As shown in Figure 7, we detected a highly enriched (FDR <<< 0.05) signature of 

liver-specific markers among the downregulated EV proteins and phosphoproteins in both the 

PDM and T2DM groups, as compared to NGT. Moreover, by conducting downstream effects 

analysis (DEA) using Ingenuity Pathway Analysis (IPA) software, we observed that the 

differentially expressed EV proteome in PDM appears to code for suppression of liver cell death 

and hyperproliferation functions with concomitant activation of liver inflammatory processes 

(Figure 8). On the other hand, the same EV proteome seems to code for the downstream activation 

of renal damage and necrotic cell death processes in connection with renal nephritis and kidney 

failure pathways (Figure 8).  
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DISCUSSION 

Understanding of the role of exosomes and EVs in type 2 diabetes has evolved in the last decade. 

Most EV profiling studies to date have focused on the miRNA cargo. Importantly, no study has 

addressed the quantification of circulating EV proteins and phosphoproteins in humans with 

prediabetes. Most studies on EV proteomics and phosphoproteomics have been conducted in the 

cancer field using cultured cells, with a small number of studies characterizing the 

phosphoproteome of EVs from urine or plasma/serum samples from healthy people or people with 

other conditions [16; 18; 27-30]. Thus, our work makes an important contribution by defining the 

proteomic and phosphoproteomic landscape of circulating EVs in prediabetes and diabetes. As 

shown in Figure 1, unsupervised clustering of select EV protein and phosphoprotein signatures 

could accurately separate the study participant samples based on their disease stage. 

In addition to identifying EV proteomic and phosphoproteomic signatures across the spectrum of 

diabetes, our data suggest potential EV-mediated mechanisms that might underlie the development 

of prediabetes and diabetes and its complications. These associations are, of course, limited by the 

cross-sectional nature of this study. An interesting finding from our work is that in people with 

T2DM (compared to both NGT and PDM groups), AKT1 was found to be highly downregulated 

among the EV proteins, but highly upregulated in the phosphorylated state (Figure 2). This finding 

is significant because phospho-AKT is a key signaling molecule downstream of the insulin 

receptor and “the substrates of AKT are intimately linked to the various physiological functions of 

insulin and are often specific to a particular cell type” [31]. Because we did not observe a 

significant change in the concentration of EVs circulating in the human serum of the study 

participants, this result suggests that an increase in cytoplasmic AKT phosphorylation in T2DM 

might be accompanied by a reduction in AKT secretion via EVs. Alternatively, EV secretion may 

not be affected but the amount of total AKT in the cells might be dramatically reduced in T2DM, 

along with higher phosphorylation levels than in NGT subjects. The fact that the change in EV 

expression of phosphorylated and total AKT correlated with multiple clinical measures related to 

glycemic control and beta cell function underscores the importance of these changes during 

diabetes development. Interestingly, impaired translocation and activation of mitochondrial AKT1 

reduced the activity of mitochondrial OXPHOS Complex V in diabetic myocardium [32; 33] and 

oxidative phosphorylation was found to be overrepresented among the differentially expressed EV 

proteins and phosphoproteins in our study (Figure 4C,D). Notably, oxidative stress has been 

demonstrated to be a causal factor in the impairment of adipose tissue metabolism and insulin 

resistance [34; 35]. Proteins involved in oxidative phosphorylation are known to be reduced in 

various tissues in diabetes [36-39] but, surprisingly, we detected them upregulated in the 

circulating EVs. We reason, then, that an abnormal removal of OXPHOS-related proteins and 

phosphoproteins via EV secretion (e.g., in adipocytes from people with obesity) might underlie 

the development of diabetes. It is tempting to speculate that abnormal EV mediated disposal 

function may be diverting phospho-AKT1 from translocating to the mitochondria.  

Other significantly upregulated phosphorylated kinases in the same pathway-enriched network as 

AKT1 included GSK3B, LYN, MAP2K2, and PRKCD. These kinases coordinate signaling of 

multiple pathways involved in immune cell activation, which were also overrepresented among 

differentially expressed EV proteins networks. Supporting our findings, these pathways have been 

shown to play important roles in obesity associated insulin resistance, among other diabetes-

associated phenomena [40-42].  
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The differentially expressed proteins and phosphoproteins were significantly enriched in platelet 

activation and coagulation effectors. This is consistent with the known crosstalk between 

coagulation and inflammation in diabetes, which is a key determinant in the development of 

complications such as cardiovascular disease, diabetic nephropathy and retinopathy, among others 

[43-45]. Interestingly, it has recently been reported that differentially expressed EV proteins 

enriched in complement and coagulation cascade signaling are among the top dysregulated 

pathways in patients with COVID-19 [46; 47]. Lam and colleagues also found that the liver may 

increase EV secretion to systemically promote coagulopathy during the course of COVID-19 and 

this consequently contributes to the prevalent COVID-19-induced liver damage [46]. In the context 

of our findings highlighting a defect in EV cargo composition or EV release from the liver in 

people with prediabetes and diabetes, the presumable “overload” of the liver exosomal 

compartment during COVID-19 in the presence of diabetes likely contribute to the exacerbation 

of the liver damage and the severity of the diseases under interaction. 

We also detected a significant reduction in phosphorylated integrins ITGB1 and ITGA2B in the 

circulating EVs, while phosphorylated ITGA2 and total ITGA6 protein were significantly 

upregulated. Of note, HLA proteins have been reported to modulate the expression of integrins 

[26] and we found some (i.e., HLA-) coordinately and significantly changing and highlighted in 

the functional enrichment networks. We speculate that these changes may indicate a switch of 

integrin surface markers in cells and their released EVs, which may consequently change their 

interaction patterns with the surrounding ECM and tropism for the circulating EVs, respectively 

[48; 49]. The fact that these EV proteins and phosphoproteins were identified as central hubs in 

their respective pathway enrichment networks and that their changes significantly correlated with 

changes in relevant clinical variables including measures of body composition, glycemic control, 

insulin action, and beta cell function suggests that their presence and changes in abundance in the 

circulating EVs is important in the development of T2DM. However, our evidence is only 

correlative, therefore we cannot determine causality. Remarkably, ECM-integrin signaling (e.g., 

due to increased density of the collagen-binding integrin α2β1 dimer, a key collagen-binding 

receptor in the plasma membrane of platelets and muscle cells, among others) has been associated 

with muscle insulin resistance [50; 51], inflammation [52], angiogenesis [53], and cardiovascular 

risk [54], among others. Our study did not aim to quantify the levels of integrin heterodimers but 

the fact that the phosphorylated α2 (ITGA2) subunit was elevated in the circulating EVs of both 

PDM and T2DM subjects may indicate elevated density and/or activity of its heterodimers in 

specific tissues and secreted EVs. Consistent with its role in platelet function, platelet activation 

was among the pathways most commonly and significantly enriched among the differentially 

expressed proteins and phosphoproteins detected in this study in both PDM and T2DM subjects. 

On the other hand, altered density or activity of integrin molecules such as integrin β1 (ITGB1) 

have been implicated in a variety of diabetic complications, particularly diabetic nephropathy [55-

57]. ITGB1 has been found to be particularly important in podocytes, where it mediates signaling 

in the axis IGFBP-1/ITGB1/FAK and contributes to essential podocyte functions by promoting 

cell adhesion, motility, and survival [58]. The activity of this axis was found to be controlled by 

FOXO1, which was in turn inhibited by activated insulin-PI3K-AKT signaling [58]. Interestingly, 

we found phosphorylated AKT upregulated in the circulating EVs from the T2DM group. 

Moreover, the activity of the axis was demonstrated to be reduced in glomeruli from humans with 

early type 2 diabetic kidney disease (DKD). Supporting the key role of ITGB1 in the kidneys, the 

β1-integrin-knockout mice develops severe proteinuric kidney disease from birth [59] and patients 

with Abatacept-stabilized β1-integrin activation are protected from B7-1-positive proteinuric 
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kidney disease [60]. Remarkably, Ingenuity DEA analysis suggested that the differentially 

expressed EV proteome identified in people with PDM in our study, is associated with the 

activation of pathways involved in renal damage and necrotic cell death, as well as in renal 

nephritis and kidney failure. Altogether, our data now suggest that profiling the integrin 

composition of circulating EVs could aid in the early detection of diabetic complications. 

Another novel and important finding from our study is the highly significant downregulation of 

circulating EV proteins and phosphoproteins from the liver in both the PDM and T2DM groups. 

This defect may be caused by (1) decreased expression of proteins and phosphoproteins in liver 

cells, hence reduced levels in the liver-derived EVs, (2) by decreased packaging of proteins and 

phosphoproteins into EVs, (3) by reduced secretion of EVs with neither a defect in EV packaging 

nor in cytoplasmic levels of the specific proteins and phosphoproteins, or (4) by some combination 

of the previous three defects. With the data at hand, we are unable to dissect the specific cause for 

the alterations in EV cargo composition in the liver or any other tissue. However, the fact that 

additional analyses (i.e., DEA) suggested that the differentially expressed EV proteins are involved 

in suppression of liver cell death and hyperproliferation functions with concomitant activation of 

liver inflammatory processes in PDM, supports an important early role for the liver (potentially 

mediated by alterations in EV cargo and inter-organ cross-communication) during diabetes 

development. Indeed, the important role of the liver in diabetes is well established and elegantly 

incorporated in the Twin Cycle Hypothesis [61; 62]. Our study now suggests that alterations in the 

cargo and/or in the number of liver-derived circulating EVs represent early pathophysiological 

changes that could serve as biomarkers of disease development. These EV protein dynamics, 

identifiable as early as in prediabetes, appear to represent early events contributing to the known 

increased risk of developing steatosis and renal fibrosis in subjects with type 2 diabetes [63-65]. 

Notably, important links between liver, kidney, and heart pathologies have been reported and the 

pathogenic crosstalk between the liver and the inflamed adipose tissue is widely accepted [66; 67]. 

Our data adds support for a role of circulating EVs in this pathogenic crosstalk pointing at the liver 

and kidneys as early partners in crime.   

Contrasting with our finding that no significant changes occur in the total concentration of 

circulating EVs in diabetes, other authors have reported increased numbers of circulating particles 

[21]. However, their EV isolation methods (i.e., polymer precipitation and ultracentrifugation) are 

less specific than the EVTRAP method employed in this study. Polymer precipitation and 

ultracentrifugation are known to isolate other types of contaminating particles that could 

mistakenly be counted as EVs. On the other hand, using flow cytometry quantification of blood 

cell-specific markers, the same authors reported a significant increase in erythrocyte-derived EVs 

in diabetes. This latter finding is in agreement with the significant enrichment that we observe in 

bone marrow cell-specific markers among the upregulated EV proteins and phosphoproteins in 

people with T2DM (Figure 7). 

Study limitations include the small sample size, the cross-sectional nature, the lack of functional 

measures or imaging of the liver and kidneys, and the fact that we cannot separate out tissue 

specific EVs. Despite these limitations, our study has several strengths, including careful control 

for confounding factors, balanced sex, and the use of state-of-the-art methods for broad non-

antibody-based specific EV isolation, proteomics, phosphoproteomics, and EV bioinformatics. 
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CONCLUSIONS 

This work makes an important contribution towards defining the proteomic and phosphoproteomic 

landscape of circulating EVs across the diabetes disease spectrum. Among key findings, our data 

indicate that reduced levels of AKT1 protein but with increased phosphorylation status in 

circulating EVs may underlie the development of pathogenic events during diabetes. Among 

characteristic common changes in the prediabetic and diabetic EVs, “integrins switching” appear 

to be a central feature of functional enrichment networks with potential impact in disease 

development and the known increased risk for complications. In addition, a highly significant 

signature of downregulated liver-specific EV proteins is demonstrated in both the EV proteome 

and phosphoproteome as early as prediabetes. This suggests a reduced EV output from the liver, 

among other possible causes, due to an impaired endocytic secretory pathway in early stages of 

disease development. Suppressed liver cell death functions contrasted by activated cell death 

functions in kidneys in prediabetes may represent early events contributing to the known increased 

risk for steatosis/NASH and renal fibrosis/diabetic nephropathy comorbidities in people with type 

2 diabetes. We further demonstrated that upregulated EV proteins and phosphoproteins involved 

in platelet activation, coagulation, chemokine signaling, and oxidative phosphorylation pathways 

are evident early in the course of the development of diabetes. 

 

MATERIALS & METHODS 

Samples: All procedures were approved by the AdventHealth Translational Research Institute 

(AH/TRI) Institutional Review Board (IRB). Informed consent was obtained from all volunteers 

before initiation of the study. Archived serum samples from 30 human subjects (N=10 per group, 

ORIGINS study, ClinicalTrials.gov NCT02226640). The groups were selected, according to ADA 

guidelines [68] to have either normal glucose tolerance (NGT), prediabetes PDM) of T2DM. 

Subjects with type 1 diabetes or other types of diabetes were not included in the ORIGINS study. 

The inclusion and exclusion criteria of the subjects were described previously (ClinicalTrials.gov, 

ID: NCT02226640). Participants were specifically selected as a subgroup that was relatively well 

balanced for sex, age, and obesity. This selection was partially automated using custom script 

based on the MatchIt package [69] in the R programing environment through a series of recursive 

pairwise propensity score matching cycles (between two of the study groups at a time), until all 

pairwise comparisons were exhausted and the desired sample size was achieved). 

Clinical and metabolic measurements: Anthropometric measures were performed according to 

standardized protocols. Body composition was measured using a GE Lunar iDEXA whole-body 

scanner (GE, Madison, WI). Fasting blood samples were obtained and subjects underwent a 2-

hour 75 g oral glucose tolerance test (OGTT). On a different visit, an insulin-modified frequently-

sampled intravenous glucose tolerance test (FSIVGTT) [70] was performed. Plasma glucose 

concentrations were measured using the glucose oxidase method with a YSI 2300 STAT Plus 

Analyzer (YSI Life Sciences, Yellow Springs, OH). Plasma insulin and C-peptide concentrations 

were determined using the MSD human insulin assay kit and C-peptide kit, respectively (MSD, 

Rockville, MD). HbA1c levels were measured using a Cobas Integra 800 Analyzer (Roche, Basel, 

Switzerland). The β cell function was assessed by calculating HOMA-B, the insulinogenic index 

[ΔIns0-30’/ΔGluc0-30’] and the insulin and C-peptide areas under the curve (AUC) in response to 

OGTT. Insulin activity was assessed by calculating HOMA-IR as described elsewhere. Data from 

the FSIVGTT were used to calculate insulin sensitivity (Si) and acute insulin response to glucose 
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(AIRg) using the Minimal Model method of Bergman (MINMOD-Millennium,© R. Bergman 

[71]). 

EV purification using EVTRAP™, a non-antibody-based affinity technology developed by Tymora 

to specifically and quantitatively isolate EVs: Frozen serum samples were thawed, and any large 

debris removed by centrifugation at 2,500 × g for 10 minutes. The pre-cleared plasma samples 

were then diluted 20-fold in PBS and incubated with EVTRAP beads for 30 min [17]. After 

supernatant removal using a magnetic separator rack, the beads were washed with PBS, and the 

EVs were eluted by a 10 min incubation with 200 mM triethylamine (TEA, Millipore-Sigma) and 

the resulting EV samples fully dried in a vacuum centrifuge. 

Mass spectrometry (LC-MS)-based methods developed by Tymora used to detect the global EV 

proteome and phosphoproteome: Isolated EV samples were dried and lysed to extract proteins 

using the phase-transfer surfactant aided procedure [16]. For this, EVs were solubilized in the lysis 

solution containing 12 mM sodium deoxycholate, 12 mM sodium lauroyl sarcosinate, 10 mM 

TCEP, 40 mM CAA, and phosphatase inhibitor cocktail (Millipore-Sigma) in 50 mM Tris·HCl, 

pH 8.5 by incubating 10 min at 95°C. This step also denatured, reduced and alkylated the proteins. 

The samples were then diluted fivefold with 50 mM triethylammonium bicarbonate and digested 

with Lys-C (Wako) at 1:100 (wt/wt) enzyme-to-protein ratio for 3 h at 37°C. Trypsin was added 

to a final 1:50 (wt/wt) enzyme-to-protein ratio for overnight digestion at 37°C. The samples were 

acidified with trifluoroacetic acid (TFA) to a final concentration of 1% TFA. Ethyl acetate solution 

was added at 1:1 ratio to the samples. The mixture was vortexed for 2 min and then centrifuged at 

20,000 × g for 2 min to obtain aqueous and organic phases. The organic phase (top layer) was 

removed, and the aqueous phase was collected, dried down to <10% original volume in a vacuum 

centrifuge, and desalted using Top-Tip C18 tips (Glygen) according to manufacturer’s instructions. 

Each sample was split into 99% and 1% aliquots for phosphoproteomic and proteomic experiments 

respectively. The samples were dried completely in a vacuum centrifuge and stored at -80°C. For 

phosphoproteome analysis, the 99% portion of each sample was subjected to phosphopeptide 

enrichment using PolyMAC Phosphopeptide Enrichment kit (Tymora Analytical) according to 

manufacturer’s instructions, and the eluted phosphopeptides dried completely in a vacuum 

centrifuge. For phosphoproteomics analysis the whole enriched sample was used, while for 

proteomics only 50% of the sample was loaded onto LC-MS. 

Nanoparticle Tracking Analysis (NTA): The size distribution and concentration of particles in EV 

preparations were analyzed using dynamic light-scattering technology with a NanoSight NS300 

instrument and NTA-3.4 software (Malvern Panalytical, Malvern). The instrument was equipped 

with a 488 nm blue laser module, flow-cell top plate, integrated temperature control, and a single-

syringe pump module. Samples were diluted using cell culture grade water (Corning cat# 25-005-

CI) to produce an optimal particle concentration for final measurement in the range of 107 to 109 

particles/ml. Dilutions were initially assessed with a single quick static measurement of 30 second 

to identify the optimal dilution (which represented approximately 20 to 100 particles in the 

instrument’s field of view, per video frame). For final, more accurate quantification, 5 standard 

measurements of 1 minute of duration each were taken at a controlled temperature of 25 °C and 

under constant automatic flow (continuous syringe pump speed set to 50 arbitrary units). Camera 

level for video capture was set to 12 and detection threshold to 5 for all sample measurements. 

Scanning Electron Microscopy (SEM): Representative SEM images of EV samples were obtained 

at the Interdisciplinary Center for Biotechnology Research (ICBR) Electron Microscopy Core 

Laboratory (RRID:SCR_019146), at University of Florida. In short, EV preps were fixed in 
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Trump’s fixative for 30 minutes at room temperature then spread onto Isopore 0.2 µm GTTP filters 

(Merck Millipore, Tullagreen, Ireland) that had been pre-treated with 0.01% poly-L-lysine 

solution. The filters were washed 3 times with 1x PBS and 3 times with filter-sterilized deionized 

water. The fixed EVs were microwave-stabilized in a Ted Pella Pelco Biowave, then dehydrated 

through an ethanol series at 10, 25, 50, 75, 90 and 100%, followed by critical-point drying (CPD) 

using a Tousimus CPD system. Samples were sputter coated with gold-palladium and imaged with 

a Hitachi SU5000 Schottky Field-Emission SEM. 

Detection of tissue-specific signatures and KEGG pathway enrichment analysis: The lists 

(signatures) of tissue-specific proteins were downloaded from the Human Protein Atlas [72] 

(https://www.proteinatlas.org/humanproteome/tissue/tissue+specific). Enrichment for the tissue-

specific signatures among the lists of differentially expressed EV proteins and phosphoproteins 

was then assessed via implementation of the hypergeometric test using the phyper() function from 

the stats package in the R environment. The complete list of proteins reported by Vesiclepedia 

[73] (http://microvesicles.org/Archive/VESICLEPEDIA_PROTEIN_MRNA_DETAILS_4.1.txt) 

plus the additional novel EV proteins detected by our proteomics experiments were used as 

background (universe) for the hypergeometric tests. Enrichment of KEGG pathway annotations 

among the sets of differentially expressed proteins and phosphoproteins was assessed using the R 

package clusterProfiler [74] with a P < 0.05 and adjusted P < 0.1 as thresholds for statistical 

significance. 

Statistical analysis. Data normality was tested using the Shapiro-Wilk test, and nonnormal data 

was log-transformed to approximate normality. Differences in baseline clinical characteristics 

were assessed using the Welch two-sample t test (for continuous variables) or the Fisher exact test 

(for categorical variables). For assessment of differential expression in EV-shuttled proteins and 

phosphoproteins, linear models using the limma R package [75] were implemented. The limma 

package was originally developed for the analysis of microarray data but later adapted for RNA-

seq analysis and more recently used for proteomics experiments [76-79]. Because limma’s 

empirical Bayes approach improves statistical power, its use has been proposed to be beneficial 

for proteomic experiments, which often have relatively small sample sizes [80]. The empirical 

Bayes approach specifically allows for a realistic distribution of biological variances by using the 

full data to shrink the observed sample variances towards a pooled estimate [75; 80]. Our models 

included age, sex, and BMI as established covariates. Although these variables were balanced in 

our study cohort, we had a priori decided to include them in the models to account for any residual 

confounding effects, adding stringency to the analysis. Partial correlations were also calculated in 

the R environment adjusting for the same covariates. Post-hoc analysis was performed using the 

phia package. Calculated effects and correlations with two-tailed P values < 0.05 were considered 

significant. False discovery rates (FDR) correcting for multiple testing were calculated using the 

Benjamini-Hochberg (BH) correction as implemented for the p.adjust function in the stats R 

package.  
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Table 1. Clinical characteristics of the study cohort 

 

  Healthy PreT2D T2D p 

n 10 10 10   

Sex = Male (%) 5 (50.0) 5 (50.0) 5 (50.0) 1.000 

Age (years) 45.9 (10.5) 48.0 (7.8) 50.7 (11.0) 0.560 

BMI (kg/m2) 33.1 (6.5) 34.1 (5.6) 34.7 (5.2) 0.825 

Weight Average (kg) 89.7 (16.7) 101.0 (15.6) 97.8 (21.4) 0.368 

Height Average (cm) 165.4 (7.8) 172.8 (11.1) 167.5 (9.6) 0.223 

Waist Circumference (cm) 99.6 (16.4) 110.8 (15.8) 109.63 (16.2) 0.252 

DEXA Lean Mass (g) 52541.6 (8827.6) 56993.2 (12429.7) 54111.7 (12128.5) 0.672 

DEXA Fat Mass (g) 34737.9 (16103.2) 41785.8 (15705.2) 41624.5 (12800.2) 0.494 

DEX Fat Percentage (%) 38.3 (14.0) 41.7 (12.2) 43.0 (9.3) 0.672 

HDL (mg/dL) 55.9 (11.8) 42.2 (8.9) 48.7 (16.6) 0.076 

LDL (mg/dL) 113.7 (26.5) 113.6 (46.7) 102.3 (37.0) 0.741 

Triglycerides (mg/dL) 105.0 (60.4) 159.7 (134.1) 139.5 (53.4) 0.404 

TSH (mIU/L) 1.6 (0.7) 2.1 (1.1) 2.4 (1.1) 0.180 

Temperature (F) 98.0 (0.3) 97.9 (0.4) 97.8 (0.2) 0.605 

Respiration Rate (breaths per min) 14.7 (2.1) 15.5 (1.8) 15.2 (1.9) 0.646 

Systolic Blood Pressure (mmHg) 124.4 (10.1) 125.2 (10.4) 126.0 (11.9) 0.950 

Diastolic Blood Pressure (mmHg) 78.30 (9.1) 77.2 (9.9) 79.80 (8.2) 0.815 

Heart Rate (beats per min) 63.4 (8.4) 71.0 (11.5) 67.6 (13.4) 0.340 

HbA1C (%) 5.4 [5.3, 5.5] 5.9 [5.8, 6.1] 6.3 [6.1, 7.0] 0.001 

Glucose baseline (mg/dL) 90.3 (6.7) 100.6 (8.2) 122.2 (20.3) <0.001 

Insulin baseline (µIU/mL) 3.6 (2.2) 8.6 (6.8) 5.8 (5.8) 0.134 

Glucose AUC (mg/dL ∙ min) 14797.3 [13302.1, 16433.5] 17202.3 [16488.6, 18909.1] 25796.2 [23196.5, 29180.5] <0.001 

Insulin AUC (µIU/mL ∙ min) 3594.0 [2560.8, 7438.8] 6271.0 [2964.6, 11626.3] 3463.6 [2254.2, 4915.9] 0.237 

C-peptide AUC (ng/mL ∙ min) 694.2 [569.6, 820.0] 950.3 [573.5, 1262.8] 816.4 [687.6, 887.7] 0.783 
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  Healthy PreT2D T2D p 

Insulinogenic Index                     

(ΔIns0-30min/ΔGlu0-30min) 
0.9 (0.6) 0.3 (3.0) 0.2 (0.2) 0.623 

HOMA IR 0.8 (0.5) 2.1 (1.5) 2.0 (2.2) 0.155 

HOMA_B 51.5 (36.4) 96.0 (107.6) 30.7 (22.5) 0.102 

MATSUDA 12.2 (9.4) 6.3 (5.5) 9.7 (8.9) 0.276 

AIRg 468.6 (349.8) 549.32 (530.1) 48.75 (64.6) 0.041 

Si 4.6 (4.5) 2.7 (2.9) 4.6 (2.6) 0.434 

DI  1150.7 (494.2) 890.3 (569.4) 249.5 (348.3) 0.005 

Data presented as Mean (Standard Deviation), otherwise indicated   
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Figure Legends 

Figure 1. Characterization of EVs isolated from human serum from people with normal glucose 

tolerance (NGT), prediabetes (PDM) and type 2 diabetes mellitus (T2DM). (A,B) Euler diagram 

cross-referencing all reliably detected EV proteins and EV phosphoproteins to the Vesiclepedia 

database and to the list of best exosomal markers, as reported by Exocarta Top 100 database. (C) 

Representative scanning electron microscopy of circulating EV, (D-F) Representative 

nanoparticle tracking analysis (NTA) traces of circulating EVs, depicting size distribution of 

particles in the 3 study groups. (G,H) Boxplots of total EV concentration and mean EV size, 

respectively. (I,J) Multidimensional scaling plots using all reliably detected EV proteins and 

phosphoproteins, respectively. 

Figure 2. Heatmap of differentially expressed EV proteins reliably discriminate the 3 study 

groups. 

Figure 3. Heatmap of differentially expressed EV phosphoproteins discriminate the 3 study 

groups with almost 100% accuracy. 

Figure 4. Global comparison of changes in the EV proteome and the EV phosphoproteome. (A) 

Correlation of changes in PDM, as compared to NGT. (B) Correlation of changes in T2DM, as 

compared to NGT. (C) Correlation of changes in T2DM, as compared to PDM. (D,E) Boxplots 

for total EV AKT1 protein and phosphorylated EV AKT1. 

Figure 5. Pathway enrichment networks. (A,B) Network of enriched KEGG pathways in EV 

phosphoproteins that are downregulated in PDM compared to NGT (A) and in T2DM compared 

to NGT (B). (C) Network of enriched KEGG pathways in EV phosphoproteins that are 

upregulated in T2DM compared to NGT. (D) Network of enriched KEGG pathways in EV 

proteins that are upregulated in PDM compared to NGT. (E) Network of enriched KEGG 

pathways in EV proteins that are downregulated in T2DM compared to NGT. (F) Network of 

enriched KEGG pathways in EV proteins that are upregulated in T2DM compared to NGT. 

Figure 6. Expression profiles of select EV proteins and phosphoproteins. (A-D) Boxplots of 

differentially expressed EV proteins that are surface markers (A,B) and activation markers (C,D) 

of platelets. (E) Boxplot of differentially expressed tissue factor (TF), primary initiator of 

coagulation. (F-I) Boxplots of differentially expressed integrins. (J,K) Boxplots of differentially 

expressed major histocompatibility complex proteins in EVs. 

Figure 7. Enrichment for differentially expressed (DE) tissue-specific proteins (A) and 

phosphoproteins (B) in circulating EVs in people with prediabetes (PDM) and type 2 diabetes 

(T2DM), as compared to people with normal glucose tolerance (NGT). Pr: proteome; Ph: 

phosphoproteome; light blue color: downregulated features in PDM, dark blue color: 

downregulated features in T2DM; light red color: upregulated features in PDM, dark red color: 

upregulated features in T2DM. 

Figure 8. Downstream effects analysis (DEA) for differentially expressed proteins in PDM, as 

compared to NGT, using the Ingenuity Pathway Analysis (IPA) software.   
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