Association between maternal depression and the nutritional status of children under five-years-old in Peru: An analysis of the Demographic and Health Survey 2014-2017

Nicole Villagaray-Pacheco^{1,2}, Pamela Villacorta-Landeo†^{1,2}, Leslie Mejía-Guerrero†^{1,2}, Manuel A. Virú-Loza³, Percy Soto-Becerra⁴

¹Facultad de Medicina, Universidad Nacional Mayor de San Marcos. Lima, Perú.

²Asociación para el Desarrollo de la Investigación Estudiantil en Ciencias de la Salud (ADIECS). Lima, Perú.

³ Department of Pediatrics, Edgardo Rebagliati Martins National Hospital. Lima, Perú.

⁴Centro de Excelencia en Investigaciones Económicas y Sociales en Salud, Vicerrectorado de

Investigación, Universidad San Ignacio de Loyola (USIL). Lima, Peru.

†Both authors contributed in the same way

Summary

Objective: To evaluate the association between maternal depression and nutritional status of children under 5 years old in Peru.

Design: Cross-sectional study of the Demographic and Health Survey 2014-2017. Outcomes were mild (height Z-score for age <-2 SD) and moderate/severe (<-3DE) childhood chronic undernutrition and also mild (hemoglobin <11 g/dL) and moderate/severe (hemoglobin <10 g/dL) childhood anemia. Maternal depression was assessed by the questionnaire PHQ-9. Odds ratios and their confidence intervals (CIs) were estimated by multinomial logistic regression models, considering the complex sample design.

Setting: Peru

Participants: Peruvian women of childbearing age from 15 to 49 years who live with children from 6 to 59 months.

Results: Maternal depression was significantly associated with a higher odds of moderate/severe chronic undernutrition in children aged 6-59 months (OR = 2.67; 95% CI 1.16-6.16).

Conclusions: There was evidence that maternal depression was associated with an increased risk of moderate/severe chronic undernutrition

Keywords: Mothers, depression, mental health, child undernutrition disorders, Peru.

Introduction

Malnutrition originates from an imbalance in the nutritional status of people, either due to a deficiency or excesses in caloric or nutrient intake. This includes anemia and undernutrition mainly⁽¹⁾. Anemia and childhood undernutrition are public health problems of global importance, which prevent optimal cognitive and social development^(2–4). In Peru, the prevalence of child undernutrition was 13.1% in 2016, and that of childhood anemia was 43.6% in 2016 and $2017^{(5,6)}$.

Interventions to reduce the prevalence of childhood anemia and undernutrition have a great economic impact in Peru. The budget to combat anemia and undernutrition is between 2 165 to 3 105.99 million soles^(7,8). The interventions achieved a 58% reduction in infant mortality associated with undernutrition⁽⁹⁾. However, some studies suggest that interventions should be complemented with the evaluation and improvement of psychosocial determinants of maternal health, empowerment and psychological state^(10,11).

Maternal mental health is a determining factor in the nutritional and neurological development of children during the first years of $life^{(12)}$. Studies reveal that children's nutritional status is influenced by maternal mental health^(13–16), since its impairment decreases the ability to provide adequate care to their children and develops negative parenting behaviors^(17,18).

Maternal depression in developing countries affects between 19% and 25% of mothers⁽¹⁹⁾. In Peru, it is estimated that perinatal depression represents between 24% and 40% but only 10% of this population receives care⁽¹⁹⁾. As maternal depression is treatable, it could be part of population-level interventions^(19,20). In addition, it is an important objective in programs that seek to reduce childhood anemia and undernutrition^(18–21).

Several studies have found an association between maternal mental health and childhood nutritional status^(13–16). However, not all studies arrive at the same conclusions^(22,23). For this reason, the aim of our study is to determine the association between maternal depression and infant nutritional status in Peru. Studies of this type in Peru are necessary to evaluate the possibility of country-level interventions.

Methods

Design and study population

The study used cross-sectional data from the Demographic and Health Survey (DHS) in Peru between 2014 and 2017, using a probabilistic, stratified, independent and two-staged sample. In the first stage conglomerates were selected, while in the second, dwelling selection was performed. In both urban and rural areas, conglomerates were distributed. Conglomerates were geographic areas made up of one or several blocks that include an average of 140 households each, with a selection probability proportional to their size. Between 2014 and 2017, the annual number of households ranged from 29,941 to 35,919; while the unweighted sample sizes of women aged 15 to 49 years were 16 000 per year on average, and the weighted sample sizes of children aged 6 to 59 months were 3 000 per year on average⁽²⁴⁾.

Maternal Depressive symptoms

The exposure of interest was maternal depressive symptoms in the last two weeks determined by a Patient Health Questionnaire-9 (PHQ9) score ≥ 10 points⁽²⁵⁾. This questionnaire has nine items with scores from 0 to 3. A 10 cut-off point has a sensitivity of 88% and a specificity of 92%⁽²⁶⁾.

Childhood chronic undernutrition

Chronic undernutrition in children was defined according to the World Health Organization (WHO) criteria as mild (Height-for-age z-score < -2 standard deviations) and moderate/severe (Height-for-age z-score < -3 standard deviations).

Childhood anemia

Childhood anemia was determined by the colorimetric method with a HemoCue \square portable equipment (HemoCue AB, Angelhome, Sweden), which has a precision similar to direct methods with venous and arterial blood⁽²⁷⁾. According to the WHO criteria, it was classified as mild (Hemoglobin <11g/dL) and moderate/severe (Hemoglobin <10g/dL).

Covariates:

Confounding variables related to the child were: sex, age, birth weight, disability and health insurance; and those related to the mother were: age, pregnancy, number of pregnancies, body mass index (BMI), anemia, health insurance, marital status, ethnicity, education level, work and home status, natural region, area of origin, economic level and access to the

"Programa Juntos" (a government's economic support program). Another variable was the year in which the survey was carried out.

Ethical approval

The data were obtained from the open-access website of the National Institute of Statistics which is responsible for the collection of the data with the previous approval of its Ethics Board.

Analysis of data

Data analysis was performed using Stata v.14.0 statistical package. Data-sets from the 4 survey rounds were pooled. Sample weights were used to account for uneven sampling probability and non-response. The descriptive analysis of the confounding variables was performed using absolute frequencies and percentages. Bivariate analysis for categorical variables was performed using the Chi Square test corrected for complex sample design. Numerical variables were compared between groups using the Wald test corrected for complex sampling. Multilevel analyses represented the strata and sample groupings. Logistic regression analyses included potential confounding variables, and the crude (cORm) and adjusted (aORm) multinomial Odds Ratios were estimated with a 95% confidence interval (CI) and considering the complex sample design.

Results

Population characteristics

A total of 11,518 children with an average age of 32.6 ± 15.7 months were included. The time period was between 2014 to 2017. Regarding sex, 51.7% were males and 48.2% were females. Regarding birth weight, 7.2% had low birth weight (<2500g). The average age of the 11,518 mothers was 26.1 ± 5.6 years. Regarding location by geographic region, they were distributed in Metropolitan Lima and the rest of the Coast (55.6%), Highlands (29.6%) and the Jungle (14.8%). 76% and 24% lived in urban and rural areas, respectively (Table 1).

Prevalence of anemia and chronic undernutrition in children aged 6-59 months

The prevalence of anemia in children by age was 57%, 50%, 29.2%, 21.5% and 18% in those aged 6-11 months, 12-23 months, 24-35 months, 36-47 months and 48-59 months, respectively. Regarding the prevalence of anemia by sex (p-value=0.033), we found in males

that 22% had mild anemia and 11.9% moderate/severe anemia. On the other hand, in females, 21.2% and 10.1% had mild and moderate/severe anemia, respectively (Table 2).

The prevalence of chronic undernutrition in children by age was 9.7%, 13.7%, 12.3%, 10% and 9.7% in those aged 6-11 months, 12-23 months, 24-35 months, 36-47 months and 48-59 months, respectively. Regarding the prevalence of chronic undernutrition by sex (p-value=0.041) we found in males that 10.6% had mild chronic undernutrition and 1.6% had moderate/severe chronic undernutrition. On the other hand, in females, 9.1% and 1.1% had mild and moderate/severe chronic undernutrition, respectively (Table 2).

Mother's depressive symptoms and anemia in children aged 6-59 months

In children, neither mild anemia (ORm=0.082; 95% CI; p = 0.264) nor moderate/severe anemia (ORm=1.36; 95% CI; p = 0.086) were significantly associated with mother's depressive symptoms in crude analysis. Adjusted analysis led to the same conclusion for mild (ORm = 0.87; 95% CI; p = 0.445) and moderate/severe anemia (ORm = 1.53; 95% CI; p = 0.058) (Table 3).

Mother's depressive symptoms and chronic undernutrition in children aged 6-59 months

In children, neither mild chronic undernutrition (ORm = 0.76; 95% CI; p = 0.177), nor moderate/severe chronic undernutrition (ORm = 2.19; 95% CI; p = 0.080) were significantly associated with mother's depressive symptoms in unadjusted analysis. Adjusted analysis led to the same conclusion for mild chronic undernutrition in children (ORm = 0.81; 95% CI; p = 0.372). However, moderate/severe chronic undernutrition showed a significant association (ORm = 2.67; 95% CI; p = 0.0021) (Table 4).

Discussion

During the 4-year period evaluated, the present study found that children of mothers who have depression have 2.67 times more probability to have moderate/severe chronic undernutrition than those who do not have mothers with depression. This is the first publication on the association between maternal depression and the nutritional status of children in a period of 4 years with a representative sample. Our results suggest that the late diagnosis and treatment of maternal depression is related with a moderate/severe poor nutritional status of children.

The highest national prevalence of chronic undernutrition in children between 6 to 59 months was 14.6% in 2014, but in later years this figure was decreasing⁽²⁸⁾. Compared to WHO global figures, national figures are 2 times higher^(28,29). There was a higher prevalence in those living in urban areas, belonging to the highlands and being in the bottom quintile of wealth, according to an analysis by subgroups⁽³⁰⁾. The highest national prevalence of anemia in children aged 6 to 35 months between 2014 and 2017 was 46.8% in 2014. This was 2 times higher compared to WHO global figures^(28–31). According to subgroup analysis, moderate and severe anemia were the most prevalent⁽³²⁾.

Regarding undernutrition, Ashaba et al. carried out a study in children between 1 and 5 years of age in Africa, in which they concluded a 2.4 times greater probability of undernutrition in children of depressed mothers compared to children of mothers without depression (OR: 2.4, 95% CI: 1.1 to 5.18, p: 0.03), but this study had a short follow-up and few measurements⁽³³⁾. Anoop et al. carried out a study in children of mothers with symptoms of postpartum major depression in India, in which children were evaluated in the 6th, 10th, 14th, 36th and 72nd weeks after birth, that suggests a 7.4 times greater probability of presenting child undernutrition compared to children of mothers without symptoms (OR: 7.4, 95% CI: 1.6 to $(38.5, p: 0.01)^{(34)}$. The association was 3 times that found in our study. This may be due to its longitudinal design, so it had multiple measurements to monitor the child's nutritional status. In addition, it was carried out in a rural area, where there is a greater probability of presenting depression due to the difficulty of accessing health services⁽³⁵⁾. Mohatlhedi et al. conducted a case-control study in Botswana, where they assessed the association between depression in non-maternal primary caregivers and malnourishment in children from 6 months to 5 years of age⁽³⁶⁾. They found a 4.3 times greater presence of malnutrition in children with depressed caregivers compared to children with non-depressed caregivers (OR = 4.33, 95% CI: 1.90 to 9.90, p: 0.001). The association was 2 times that found in our study. This could be due to the sociodemographic characteristics of the caregivers since a lower educational level and wealth are associated with less care provided to children⁽³⁶⁾. Furthermore, the care provided by caregivers may be less than that provided by mothers.

Regarding chronic undernutrition, Nguyen et al. published a study with children between 19 and 42 months of age and their respective mothers in India, in which the authors suggest a 1.4 times greater probability of presenting growth retardation in children with mothers with high depression indexes (OR: 1.47, 95% CI: 1.09 to 1.98, p <0.05)⁽³⁷⁾. This association is less than

that in our study and may be due to the fact that most of those mothers were housewives and spent more time caring for their children, as well as belonging to ethnic groups where there is an important role for the mother in taking care of their children. Surkan et al. carried out a study in 3 Brazilian cities, whose population consisted of 595 low-income mothers and their respective children aged 6 to 24 months⁽³⁸⁾. They concluded that maternal depressive symptoms increased the chances of delaying child growth in 1.8 times (OR: 1.8, 95% CI: 1.1 to 1.98, p <0.01). Although the sample size is smaller than ours, the results are significant and can be generalized. Rahman et al. conducted a prospective cohort study in Pakistan, which included 160 depressed mothers, 160 psychologically healthy mothers, and their respective children⁽³⁹⁾. The results suggested that maternal depression increased the chances of stunting by 4.4 times in 6-month-old children (RR: 4.4, 95% CI: 1.7 to 4.1) and 2.5 times in 12-month-old children is similar to that found in our study since their study sample had characteristics similar to ours such as the age of mothers, which is between 17 to 40 years old; however, the study designs are different.

On the other hand, some studies did not demonstrate association between maternal depression and child undernutrition, when it was analyzed by sociocultural variables. For example, Joshi, et al. published a study with 300 children between 0 to 11 months and their mothers in India. They concluded that maternal depression did not present a significant association with nutritional status indicators like stunting (OR: 1.485, 95% CI: 0.833 - 2.649)⁽⁴⁰⁾. The results differ from ours, maybe because the family characteristics are different since the majority of mothers surveyed had a nuclear and complete family, so they probably received emotional and financial support from their husbands. Emerson et al. carried out a study with 828 children and their mothers, who participated in Congo's polls. Their study concluded that being underweight in children (OR: 0.91, 95% CI: 0.60 to 1.37, p=0.64) did not have a significant association with maternal depression⁽⁴¹⁾. The results are different from ours despite similar socio-cultural characteristics study populations. This could be because their study population lived in a place with diverse food resources and provided high levels of nutrients.

There is no precedent of studies that had evaluated directly the association between maternal depression and anemia; therefore, we will discuss studies that determined the association between anemia and inadequate mother-child interaction. For example, Corapci et al.

conducted a 5-year longitudinal study in Costa Rica, which included babies between 12 and 23 months of age and their respective mothers, that suggested a significant association between a lower quality of mother-child interaction with chronic iron deficiency (OR: 0.43, 95% CI: 0.22 to 0.87, p <0.05)⁽⁴²⁾. These results differ from the marginally significant association that we found, which may be because some maternal socio demographics characteristics are different such as the maternal economic and education level. In the study mentioned mothers have a very low-low economic level and only reached incomplete high school education⁽⁴²⁾. However, in our study, the maternal economic and education level are mainly low-medium and high-school or higher education, respectively.

According to Pullum et al. DHS in Peru faces methodological challenges⁽⁴³⁾. The data provided by the mothers are self-reports of their health, their own experience in caring for their children. Only anthropometric measurements are obtained independently and are not affected by self-report bias. Regarding anthropometry, important sources of error include incorrect measurement of age and height/length. DHS reports the digit bias in the child's height record but concludes that the digit bias will probably not introduce a significant level of error in the calculation of the chronic undernutrition variables. However, to reduce this type of error, a series of procedures were carried out, such as careful design and numerous tests of the questionnaire, intense training of the interviewers, arduous supervision and permanent fieldwork, revision of the questionnaires, appropriate supervision at the coding and processing of data and careful cleaning of the file with feedback to supervisors and interviewers from quality^(44–46).

The operational definition of maternal depression deserves critical consideration. The depressive symptoms are not accurate enough to diagnose depression. However, it can be measured in an indirect way using depressive symptoms. The standard used for depressive symptoms is the PHQ-9 survey, which was validated in Peru⁽²⁵⁾, since it has many advantages as it is a rapid screening instrument, self-applied, and a near diagnostic tool. Furthermore, it indicates the severity, so it would serve to monitor the management and evolution of symptoms. On the other hand, the standards for determining chronic undernutrition and anemia were established by the WHO based on the results of the Multicentre Growth Reference Study^(47,48). Therefore, the general pattern of results seems to reasonably support our main conclusions.

Despite these limitations, our study provides unique data on the association between maternal depression and poor child nutritional status using the currently recommended standards for chronic undernutrition, anemia and depression, and provides estimates for a large demographic group. It shows evidence that maternal depression is significantly associated with chronic undernutrition. Besides, we found a marginally significant association between maternal depression and anemia. Furthermore, the results of this study will contribute to increasing maternal mental health research, which is a research priority in Peru⁽⁴⁹⁾. Likewise, they could be useful for the development of prevention policies against anemia and undernutrition in children of mothers with depressive syndrome by organizations such as WHO, Pan American Health Organization (PAHO), United Nations International Children's Emergency Fund (UNICEF) and the Peruvian Ministry of Health. In addition, the results will help to promote prevention policies related to maternal mental health, because the decline of it could be harmful to the nutritional status of their children.

References

1. World Health Organization (2020) Malnutrición. https://www.who.int/es/news-room/fact-sheets/detail/malnutrition.

2. Black R, Victora C, Walker S, et al. (2013) Maternal and child undernutrition and overweight in low-income and middle-income countries. *The Lancet* **382**, 427–451.

3. Das J, Lassi Z, Hoodbhoy Z, et al. (2018) Nutrition for the Next Generation: Older Children and Adolescents. *Ann. Nutr. Metab.* **72**, 56–64. Karger Publishers.

4. Leiva Plaza B, Inzunza Brito N, Pérez Torrejón H, et al. Algunas consideraciones sobre el impacto de la desnutrición en el desarrollo cerebral, inteligencia y rendimiento escolar. *Arch. Latinoam. Nutr.* **51**, 19.

 Instituto Nacional de Estadística e Informática Encuesta Demográfica y de Salud Familiar
 2017.

https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1525/inde x.html.

 Instituto Nacional de Estadística e Informática Encuesta Demográfica y de Salud Familiar
 2018.

https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1656/inde x1.html.

7. Organización Panamericana de la Salud (2013) *Impacto económico de la anemia en el Perú. GRADE Acción Contra El Hambre.*

8. El Peruano Presupuesto del Midis para 2019. https://elperuano.pe/noticia-presupuesto-del-midis-para-2019-72385.aspx.

9. Huicho L, Segura E, Huayanay C, et al. (2016) Child health and nutrition in Peru within an antipoverty political agenda: a Countdown to 2015 country case study. *The Lancet* **4**, 414–26. Elsevier.

10. Butha Z & Black R (2008) What works? Interventions for maternal and child undernutrition and survival. *Lancet*, 417–40.

11. Galván M & Amigo H (2007) Programas destinados a disminuir la desnutrición crónica: Una revisión en América Latina. *ALAN* **57**, 316–326.

12. Strain J, Davidson P, Bonham M, et al. (2008) Associations of maternal long-chain polyunsaturated fatty acids, methyl mercury, and infant development in the Seychelles Child Development Nutrition Study. *Neurotoxicology* **29**, 776–82. NIH Public Access.

13. Surkan P, Kennedy C, Hurley K, et al. (2011) Maternal depression and early childhood growth in developing countries: systematic review and meta-analysis. *Bull. World Health Organ.* **89**, 607–615. World Health Organization.

14. Garg A, Toy S, Tripodis Y, et al. (2015) Influence of Maternal Depression on Household Food Insecurity for Low-Income Families. *Acad. Pediatr.* **15**, 305–310.

15. Audelo J, Kogut K, Harley KG, et al. (2016) Maternal Depression and Childhood Overweight in the CHAMACOS Study of Mexican-American Children. *Matern. Child Health J.* **20**, 1405–1414.

16. Surkan P, Ettinger A, Hock R, et al. (2014) Early maternal depressive symptoms and child growth trajectories: a longitudinal analysis of a nationally representative US birth cohort. *BMC Pediatr.* **14**, 185. BioMed Central.

17. Kingston D, Tough S & Whitfield H (2012) Prenatal and Postpartum Maternal Psychological Distress and Infant Development: A Systematic Review. *Child Psychiatry Hum. Dev.* **43**, 683–714. Springer US.

18. Goodman S & Garber J (2017) Evidence-Based Interventions for Depressed Mothers and Their Young Children. *Child Dev.* **88**, 368–377. NIH Public Access.

19. Ministerio de Salud (2018) Plan nacional de fortalecimiento de servicios de salud mental comunitaria.

20. Ministerio de Salud (2016) Salud mental comunitaria: nuevo modelo de atención. .

21. Gelaye B, Rondon M, Araya R, et al. (2016) Epidemiology of maternal depression,

risk factors, and child outcomes in low-income and middle-income countries. *Lancet Psychiatry* **3**, 973–982. NIH Public Access.

22. Husain N, Cruickshank J, Tomenson B, et al. (2002) Maternal depression and infant growth and development in British Pakistani women: a cohort study. *BMJ Open* 2. British Medical Journal Publishing Group.

23. Harpham T, Huttly S, De Silva M, et al. (2005) Maternal mental health and child nutritional status in four developing countries. *J. Epidemiol. Community Health* **59**, 1060–4. BMJ Publishing Group Ltd.

24. Instituto Nacional de Estadística e Informática Encuesta Demográfica y de Salud Familiar. https://proyectos.inei.gob.pe/endes/documentos.asp.

25. Calderón M, Gálvez J & Cueva G (2012) Validación de la versión peruana del PHQ-9 para el diagnóstico de depresión. *29* **4**, 578–9.

26. Gilbody S, Richards D & Brealey S (2007) Screening for depression in medical settings with the Patient Health Questionnaire (PHQ): a diagnostic meta-analysis. *J Gen Intern Med* **29**, 578–9.

27. Sanchis F, Cortell J & Pareja H (2013) Hemoglobin point-of-care testing: the HemoCue system. *J Lab Autom* **18**, 198–205.

28. Instituto Nacional de Estadística e Informática (2018) Informe Perú: Indicadores de Resultados de los Programas Presupuestales, 2013-2018 – Primer Semestre.

29. World Health Organization (2015) Levels and trends in child malnutrition.

30. Instituto Nacional de Estadística e Informática (2018) *Lactancia y nutrición de niñas, niños y mujeres*.

31. World Health Organization Prevalence of anaemia in children under 5 years. https://www.who.int/data/gho/data/indicators/indicator-details/GHO/prevalence-of-anaemia-in-children-under-5-years-(-).

32. Instituto Nacional de Estadística e Informática (2018) *Perú: Línea de base de los principales indicadores disponibles de los objetivos de desarrollo sostenible.*

33. Ashaba S, Rukundo GZ, Beinempaka F, et al. (2015) Maternal depression and malnutrition in children in southwest Uganda: a case control study. *BMC Public Health* **15**, 1303.

34. Anoop S, Saravanan B, Joseph A, et al. (2004) Maternal depression and low maternal intelligence as risk factors for malnutrition in children: a community based case-control study from South India. *Arch. Dis. Child.* **89**, 325–329.

35. Judd FK, Jackson, HJ, Komiti A, et al. (2002) High prevalence disorders in urban and

rural communities. Aust N Z J Psychiatry 36, 104–13.

36. Motlhatlhedi K, Setlhare V & Ganiyu A (2017) Association between depression in carers and malnutrition in children aged 6 months to 5 years. *Afr J Prim Health Care Fam Med* **9**, 1–6.

37. Nguyen P, Friedman J & Kark M (2018) Maternal depressive symptoms are negatively associated with child growth and development: Evidence from rural India. *Matern Child Nutri* **14**.

38. Surkan PJ, Kawachi I, Ryan LM, et al. (2008) Maternal Depressive Symptoms, Parenting Self-Efficacy, and Child Growth. *Am. J. Public Health* **98**, 125–132.

39. Rahman A, Iqbal Z, Bunn J, et al. (2004) Impact of Maternal Depression on Infant Nutritional Status and Illness: A Cohort Study. *Arch. Gen. Psychiatry* **61**, 946–952.

40. Joshi MN & Raut AV (2019) Maternal depression and its association with responsive feeding and nutritional status of infants: A cross-sectional study from a rural medical college in central India. *J Postgrad Med* **65**, 212–218.

41. Emerson JA, Caulfield LE, Kishimata EM, et al. (2020) Mental health symptoms and their relations with dietary diversity and nutritional status among mothers of young children in eastern Democratic Republic of the Congo. *BMC Public Health* **20**, 225.

42. Corapci F, Radan AE & Lozoff B (2007) Iron Deficiency in Infancy and Mother-Child Interaction at 5 Years. 15.

43. Pullum T & Staveteig S (2017) *An Assessment of the Quality and Consistency of Age and Date Reporting in DHS Surveys, 2000-2015.* United States Agency for International Development.

44. Instituto Nacional de Estadística e Informática Encuesta Demográfica y de SaludFamiliar2014.

https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1211/inde x.html.

45. Instituto Nacional de Estadística e Informática Encuesta Demográfica y de SaludFamiliar2015.

https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1356/.

46. Instituto Nacional de Estadística e Informática Encuesta Demográfica y de Salud Familiar 2016.

https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1433/inde x.html.

47. World Health Organization (2006) WHO Child Growth Standards: Length/height-for-

> age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age: Methods and development.

48. World Health Organization (2019) WHO Anthro Survey Analyser.

49. Ministerio de Salud (2019) Prioridades Nacionales de Investigación en Salud en Perú 2019-2023.

			Mother's status					
	То	tal	No depressive symptoms		With depressive symptoms		р	
	n	%	n	%	n	%		
Child variables								
Child's age, months	32.6*	15.7	32.5*	15.7	34.8*	15.4		
Age group of the child								
6 a 11	1262	11.4	1220	11.6	42	8.0		
12 a 23	2608	22.4	2492	22.5	116	19.8		
24 a 35	2470	21.3	2363	21.4	107	18.9		
36 a 47	2550	22.0	2405	21.9	145	25.5		
48 a 59	2628	22.9	2482	22.7	146	27.7		
Sex							0.188	
Male	5983	51.7	5706	51.8	277	49.7		
Female	5535	48.3	5256	48.2	279	50.3		
Low birth weight							0.170	
≥2500g	10658	92.8	10149	92.9	509	90.7		
<2500g	860	7.2	813	7.1	47	9.3		
Anemia of the child	113.23*	11.8	113.3*	11.8†	112.62*	12 †	0.082	
Mild	2481	21.8	118	18	2599	21.6		
Moderate/severe								
	1265	10.9	71	14.7	1336	11		
Chronic child undernutrition	0.8*	1.0†	0.9 *	1.0†	0.8 *	1.0†	0.061	
Mild	1146	10	51	7.6	1197	9.9		
Moderate/severe	167	1.3	13	2.8	180	1.3		

 Table 1. Characteristics of children under five years-old according to depressive symptoms in their mothers (Demographic and Health Survey 2014-2017)

Child disability							0.028
Yes	102	0.9	97	0.9	5	2.3	
No	11416	99	10865	99.1	551	97.7	
Child health insurance							0.639
Yes	9818	84.1	9352	84.1	466	83	
No	1700	15.9	1610	15.9	90	17	
Mother variables							
Mother's age	26.1*	5.6†	26.1*	5.6†	26.2*	5.4	0.093
11 a 24	7092	59.2	6760	59.4	332	55.9	
25 a 34	3851	34.7	3646	34.4	205	40.3	
35 a 45	575	6.1	556	6.2	19	3.8	
Mother's pregnancy							0.188
Yes	562	4.9	532	5	30	3.6	
No	10956	95.1	10430	95	526	96.4	
Number of pregnancies							
1	8887	77.5	8483	77.9	404	70.7	
2	2478	21.2	2335	20.9	143	27.5	
3 or more	153	1.3	144	1.2	9	1.8	
Mother's BMI (kg / m2)	26.0*	4.3†	26.4*	4.7	26.0*	4.4†	0.941
<25	5167	44.9	4940	44	227	44.1	
25 a 30	4460	39.3	4225	39.3	235	38.4	
>30	1891	16.8	1797	16.7	94	17.5	
Mother's anemia							0.079
Mild	2163	18.9	2046	18.8	117	21.3	
Moderate/severe	252	2	233	1.9	19	19	
Mother's insurance							0.521
Yes	9692	82.7	9225	82.7	467	84.2	
No	1826	17.3	1737	17.4	89	15.8	
Marital status							<0.001
Single	952	8.7	905	8.7	47	7.5	

Never married/cohabiting	9394	81.3	8999	81.7	395	74.4	
Carried/cohabiting	1172	10	1058	9.6	114	18.1	
Mother's ethnicity							0.519
Spanish	10658	94.4	10136	94.4	522	95.1	
Quechua, aymara and other native languages	860	5.6	826	5.6	34	4.9	
Mother's education level							<0.001
No education/initial/primary	1574	13.7	1512	13.9	62	9.6	
Secondary	5663	48.2	5338	47.6	325	60.4	
Technical superior/university	4281	38.1	4112	38.5	169	30	
Mother's employment status							0.227
Unemployed	5937	51.4	5670	51.2	267	55.2	
Employed							
	5581	48.6	5292	48.9	289	44.8	
Home related							
Natural region							0.224
Metropolitan Lima and the rest of Coast	4907	55.6	4679	55.6	228	55.2	
Highland	3892	29.6	3689	29.4	203	32.8	
Jungle	2719	14.8	2594	15	125	11.9	
Area of origin							<0.001
Urban	8369	76	7922	75.5	447	85.2	
Rural	3149	24	3040	24.5	109	14.8	
Economic level							0.043
Very low (quintile I)	2577	18.9	2491	19.3	86	12.2	
Low	3339	25.8	3142	25.5	197	31.6	
Medium	2499	21.9	2362	21.8	137	24.4	
High	1825	18.1	1743	18.1	82	18.2	
Very high (quintile V)	1278	15.2	1224	15.3	54	13.6	
Beneficiary household of the Juntos program							0.343
Yes	1129	8.5	1084	8.6	45	7.1	
100	1120	0.0	1001	0.0	10		

No	10389	91.5	9878	91.4	511	92.9	
Survey year							0.095
2014	1310	23.3	1249	23.3	61	23	
2015	3515	24	3323	23.6	192	30.5	
2016	3168	24.6	3018	24.7	150	23.2	
2017	3525	28.1	3372	28.4	153	23.2	

n: absolute frequency, %: percentage, BMI: Body mass index

* mean, † standard deviation

Table 2. Prevalence of anemia and chronic undernutrition in children under five years-old and its bivariate
association with selected characteristics (Demographic and Health Survey 2014-2017)

			Anemi	ia		Chronic undernutrition						
	Μ	Mild		Mild Moderate/ severe		р	Mild		Moderate/ severe		Р	
	n	%	n	%		n	%	n	%			
Child variables												
Age, months	28.6*	15.1†	20.7*	13.0		32.0*	15.2	29.2*	14.3			
Age group of the child					0.034					0.041		
6 a 11	372	29.7	365	27.3		110	8.4	13	1.3			
12 a 23	775	28.7	578	21.3		308	11.6	70	2.1			
24 a 35	593	21.9	190	7.3		282	10.7	42	1.6			
36 a 47	470	17.6	115	3.9		250	9.1	26	0.9			
48 a 59	389	14.4	88	3.6		247	8.9	29	0.8			
Sex					0.033					0.041		
Male	1370	22	754	11.9		657	10.6	100	1.6			
Female	1229	21.2	582	10.1		540	9.1	80	1.1			
Low birth weight					0.202					<0.001		
≥2500g	2406	21.6	1216	10.8		1037	9.3	126	0.9			
<2500g	193	21.5	120	13.6		160	17.9	54	6.8			
Anemia of the child	106.0*	2.8†	92.0*	8.4	<0.001	110.11*	12.5	108.0*	15.3	<0.001		

Mild	587	25	405	17.6		316	10.9	51	1.4	
Moderate/severe	68	27.3	51	21.3		204	15.6	37	2.2	
Chronic child undernutrition	1.0*	1.0†	1.2*	1.0†	<0.001	2.4*	0.3†	3.4*	0.4†	<0.001
Mild	316	23.6	204	17.2		316	23.6	204	17.2	
Moderate/severe	51	23.5	37	18.9		51	23.5	37	18.9	
Child disability					0.216					0.306
Yes	13	15.6	14	17.7		1186	9.9	177	1.3	
No	2586	21.7	1322	11		11	13.3	3	3.1	
Child health insurance					0.288					0.553
Yes	2226	21.7	1110	10.8		1033	9.9	158	1.4	
No	373	21.2	226	12.6		164	9.9	22	1	
Mothers variables										
Mother's age*	25.3*	5.4	24.0*	5.0†	<0.001	24.2*	5.0†	24.2*	5.1†	<0.001
11 a 24	1677	22.9	951	12.9		902	12.1	128	1.6	
25 a 34	818	20.2	344	8.9		264	7	47	1	
35 a 45	104	16.9	41	5.6		31	5.3	5	0.8	
Mother's pregnancy					0.093					0.36
Yes	131	20.4	45	7.8		58	11.8	9	1	
No Number of	2468	21.7	1291	11.2		1139	9.8	171	1.4	
pregnancies	1020	00.7	017	0.0		000	0.4	440		
1 2	1938	20.7	917	9.8		809	8.4	112	1.1	
	616	24.7	389	15.2		354	14.7	61	2.1	
3 or more Mother's BMI	45	25.8	30	17.8		34	20.2	7	4.2	
(kg/m2)	25.8*	4.3†	25.3*	4.2†	<0.001	24.9*	3.7†	24.6*	3.8†	<0.001
<25	1245	23.3	716	13.5		665	12	106	1.6	
25 a 30	968	20.7	426	8.7		420	8.7	60	1.2	
>30	386	19.2	194	9.9		112	7	14	0.8	

Mother's anemia					<0.001					0.682
Mild	587	25	405	17.6		247	10.8	36	1.3	
Moderate/severe	68	27.3	51	21.3		26	8.9	5	2	
Mother's insurance					0.173					0.018
Yes	2209	21.2	1141	11.4		1059	10.3	163	1.5	
No	390	21.7	195	9.4		138	7.8	17	0.7	
Marital status					0.184					0.032
Single	221	22.8	117	9.7		121	10.4	21	1.5	
Never married/cohabiti ng	2111	21.5	1112	11.5		980	10.2	145	1.4	
Married/cohabiti ng	267	21.3	107	8.6		96	7	14	0.9	
Mother's ethnicity					<0.001					<0.001
Spanish	2356	21.2	1172	10.5		1009	9.3	129	1.1	
Quechua, aymara or other native languages	243	28	164	20		188	20.5	51	5.1	
Mother's education level No					<0.001					<0.001
education/initial/ primary	416	25.7	216	12.4		368	25	78	4	
Secondary	1357	23.4	769	13.3		612	9.8	82	1.2	
Superior technical/univers ity	826	17.8	351	7.6		217	4.6	20	0.6	
Mother's employment status					<0.001					<0.001
Unemployed	1432	22.9	796	13.2		723	11.6	113	1.6	
Employed	1167	20.2	540	8.7		474	8.1	67	1	
Home related										
Natural region					<0.001					<0.001

Metropolitan Lima	934	18.4	389	7.7		258	5.4	30	0.8	
Highland	1004	26	639	16.5		619	16.8	167	2.3	
Jungle	661	24.8	308	12.6		320	12.9	43	1.7	
Area of origin					<0.001					<0.001
Urban	1781	20	843	9.5		616	6.8	71	0.7	
Rural	818	26.4	493	15.7		581	19.5	109	3.2	
Economic level					<0.001					<0.001
Very low	689	27.1	421	15.6		560	23	107	4	
Low	821	23.2	477	15.3		347	10.6	46	1.4	
Medium	569	22.4	261	10.5		183	7.6	20	0.6	
High	326	18.4	121	6.4		72	3	5	0.1	
Very high	194	14.3	56	4.1		35	3.7	2	0.5	
Beneficiary household of the Juntos program					0.062					<0.001
Yes	266	23.1	147	13.2		239	21.6	55	4.1	
No	2333	21.5	1189	10.8		958	8.8	125	1.1	
Survey year					0.45					0.141
2014	294	22.6	176	11.9		161	11.2	19	1.1	
2015	781	20.9	399	10.8		388	9.8	65	1.7	
2016	704	20.3	343	10.6		326	10.3	44	1.2	
2017	820	22.5	418	10.9		322	8.5	52	1.4	

n: absolute frequency, %: percentage, BMI: Body mass index

* mean, † standard deviation

Table 3. Adjusted and unadjusted association between maternal depressive symptoms and anemia in children under five years-old (Demographic and Health Survey 2014-2017)

Bivariado	Multivariado*

	Mild†		Moderate/Sev	vere†	Mild†		Moderate/Severe ⁺		
	ORm (95% CI)	р	ORm (95% CI)	Р	ORm (95% CI)	р	ORm (95% CI)	Р	
Maternal depressive symptoms									
No	1.00 (Reference)		1.00 (Reference)		1.00 (Reference)		1.00 (Reference)		
Yes	0.82 (0.59, 1.16)	0.264	1.36 (0.96, 1.93)	0.086	0.87 (0.61, 1.24)	0.445	1.53 (0.98, 2.38)	0.058	

ORm: odds ratio multinomial, CI: confidence interval

*Multinomial logistic regression model controlled by age of the child, sex, low birth weight, anemia of the child, chronic malnutrition of the child, child disability, health insurance of the child, age of the mother, pregnancy of the mother, number of pregnancies, Mother's BMI, mother's anemia, mother's insurance, marital status, mother's ethnicity, mother's education level, mother's employment status, natural region, area of origin, economic level, beneficiary household of the program together and survey year.. †Reference category of the outcome variable for multinomial logistic regression model: no anemia.

Table 4. Adjusted and unadjusted association between maternal depressive symptoms and chronic undernutrition in children
under five years-old (Demographic and Health Survey 2014-2017)

	Bivariate				Multivariate*			
	Mild**		Moderate/Severe**		Mild**		Moderate/Severe**	
	ORm (95% CI)	р						
Maternal depressive symptoms								
No	1.00 (Reference)		1.00 (Reference)		1.00 (Reference)		1.00 (Reference)	
Yes	0.76 (0.50, 1.14)	0.177	2.19 (0.91, 5.31)	0.080	0.81 (0.51, 1.28)	0.372	2.67 (1.16, 6.16)	0.021

ORm: odds ratio multinomial, CI: confidence interval

* Multinomial logistic regression model controlled by age of the child, sex, low birth weight, anemia of the child, chronic malnutrition of the child, child disability, health insurance of the child, age of the mother, pregnancy of the mother, number of pregnancies, Mother's BMI, mother's anemia, mother's insurance, marital status, mother's ethnicity, mother's education level, mother's employment status, natural region, area of origin, economic level, beneficiary household of the program together and survey year.

† Reference category of the outcome variable for multinomial logistic regression model: no chronic undernutrition.