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Abstract 

 

Cortical neurons receive mixed information from collective spiking activities of 

primary sensory neurons in response to a sensory stimulus. A recent study 

demonstrated that the time underlying the onset-offset of a tactile stimulus and its 

varying intensity can be respectively represented by synchronous and asynchronous 

spikes of S1 neurons in rats. This evidence capitalized on the ability of an ensemble 

of homogeneous neurons to multiplex, a coding strategy that was referred to as 

synchrony division multiplexing (SDM). Although neural multiplexing can be 

conceived by distinct functions of individual neurons in a heterogeneous neural 

ensemble, the extent to which nearly identical neurons in a homogeneous neural 

ensemble encode multiple features of a mixed stimulus remains unknown. Here, we 

present a computational framework to provide a system level understanding on how 

an ensemble of homogeneous neurons enable SDM. First, we simulate SDM with 

an ensemble of homogeneous conductance-based model neurons receiving a mixed 

stimulus comprising slow and fast features. Using feature estimation techniques, we 

show that both features of the stimulus can be inferred from the generated spikes. 

Second, we utilize linear nonlinear (LNL) cascade models and calculate temporal 

filters and static nonlinearities of differentially synchronized spikes. We 

demonstrate that these filters and nonlinearities are distinct for synchronous and 

asynchronous spikes. Finally, we develop an augmented LNL cascade model as an 

encoding model for the SDM by combining individual LNLs calculated for each 

type of spike. The augmented LNL model reveals that a homogeneous neural 

ensemble can perform two different functions, namely, temporal- and rate- coding, 

simultaneously.  
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I. Introduction 

Transmitting multiple signals over a single communication channel increases 

channel bandwidth and enhances coding efficiency [1, 2]. Similar to digital 

communication systems, the brain utilizes different forms of multiplexing – in 

different brain regions and in regard to different stimuli – to represent multiple 

features of a stimulus by a neural code [2]. For example, in the auditory sensory 

system, the frequency and intensity of a periodic stimulus are encoded by the phase-

locked spikes and the probability of spiking per stimulus cycle, respectively[3]. 

Similarly, the frequency and intensity of vibrotactile stimuli are represented by the 

timing and rate of spikes in the somatosensory cortex [4]. Recently, differentially 

synchronized spiking neurons of the primary somatosensory cortex was shown to 

enable multiplexed coding of low- and high- contrast features of tactile stimuli [5]. 

Despite various forms of neural multiplexing, a thorough understanding of how the 

brain enables multiplexing remained undiscovered. Specifically, functional 

characteristics – in the sense of linear or nonlinear filtering properties – of a neural 

ensemble that multiplexes different features of a stimulus is yet to be uncovered. 

Different features of stimuli, like the intensity, frequency, onset and offset, etc., 

dictate which multiplexing strategies are most appropriate [4]. In addition to the 

properties of stimuli, heterogeneity of neurons in a population code enables 

different neurons to encode different stimulus features. The functional properties of 

a heterogeneous neural ensemble, which includes neurons with different functions, 

e.g., integrators vs. coincidence detectors, might be fully described by the dynamics 

of individual neurons. For example, an ensemble of heterogeneous cochlear nuclei 

in the auditory cortex is composed of two anatomically distinct sub-nuclei, namely, 

the magnocellular- and the angular- nucleus, each of which selectively encodes a 

specific feature of the stimulus. The magnocellular nucleus selectively encodes 

stimulus frequency with a temporal code by implementing high-pass filter whereas 

angular nucleus selectively encodes stimulus intensity with a rate code by 

implementing a low-pass filter [6]. In contrast to heterogeneous neural ensemble, 

functional characteristics of an ensemble of homogenous neurons, which includes 

neurons with nearly identical functions, cannot be identified based on the properties 

of individual neurons solely [4, 5]. For example, in synchrony division multiplexing 
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(SDM) [5], information about slow and fast stimulus features were respectively 

represented by asynchronous and synchronous spikes of the same neurons. Thus, 

this form of multiplexing suggests that both slow and fast features of the stimulus 

can be encoded by homogeneous (identical) neurons that operate in a hybrid mode 

[5], i.e., neither low-pass nor high-pass filtering the stimulus [7, 8]. Thus, a 

challenging question is that whether multiplexing (like SDM) in a homogeneous 

neural ensemble reveals system-level functions beyond those performed by 

individual neurons [5].  

In this paper, we utilize conductance-based and linear nonlinear (LNL) cascade 

models to establish a theoretical framework to address this question [9-12]. First, 

we use conductance-based models and construct a homogeneous neural ensemble 

that multiplexes slow and fast features of a common stimulus using asynchronous 

and synchronous spikes, respectively. Using the LNL cascade models, we explore 

whether different linear filters and static nonlinearities are associated with different 

types of spikes. We show that a low-pass filter followed by a nonlinearity with mild 

slope generates asynchronous spikes whereas a high-pass filter followed by a 

nonlinearity with steep slope detects fast features of the stimulus by generating 

synchronous spikes. Then, we develop an augmented LNL model for SDM by 

integrating LNL models underlying each type of spike. 

 

II. Results 

In the present paper, we developed an augmented LNL cascade model as an 

encoding model for the SDM [5]. Conductance-based neuron models were used to 

create an ensemble of homogeneous neurons whose input (mixed stimulus) – output 

(spikes) relationship was estimated by the augmented LNL model.  

As shown in Figure 1A, we construct an ensemble of homogenous neurons with 30 

Morris-Lecar (ML) neuron models (see Methods) all of which receive a common 

mixed signal comprising slow and fast features as well as independent 

physiologically-realistic conductance noise [5, 13]. The parameters of the ML 

model were selected in a way that all neurons operate in a hybrid mode [14]. Spikes 

generated by an ensemble of ML neurons were used to fit the augmented LNL 

model in which two separate LNL models were combined to represent rate and 
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temporal codes simultaneously. This study shows that an ensemble of homogeneous 

neurons utilizes different strategies to generate synchronous and asynchronous 

spikes which enable simultaneous coding of fast and slow features of a mixed 

stimulus, respectively. Although the biophysical mechanisms underlying 

implementation of SDM by an ensemble of homogeneous neurons is still unknown, 

the two-stream augmented LNL model provides a system-level understanding of 

the SDM function.  

 

II. A. Different temporal filters map distinct features of a mixed stimulus  

To explore how slow and fast features of the stimulus are encoded by spikes of an 

ensemble of neurons, we used well-known feature space estimators like the spike-

triggered average (STA) [15, 16] or information-theoretic spike-triggered average 

and covariance (iSTAC) to reveal temporal characteristics of neurons in response 

to a stimulus[17]. 

The STA filter is a precise and unbiased predictor for a neural population given a 

stationary and single dimension stimulus [16]. However, it fails to provide precise 

predictions when the dimensionality of the stimulus is larger than one. For example, 

in retinal ganglion cells the STA cannot predict the neural response of both ON and 

OFF cells given a mixed input comprising more than one feature. To explore other 

possible subspace features of the neural response, we used the iSTAC method and 

calculated the optimal subspace features. The iSTAC quantifies the significance of 

subspaces based on the mutual information between stimulus and neural response 

[17]. In this method, we choose eigenvectors of the spike-triggered stimulus 

ensemble matrix more precisely by minimizing the Kullback-Leibler (KL) 

divergence between the eigenvectors of ensemble matrix and the raw stimulus 

distributions (see the method section for more details). In fact, the iSTAC 

maximizes information based on the first two moments of the spike-triggered 

stimulus ensemble and provides a unifying information-theoretic framework that 

captures the ensemble neuron activity in different subspaces. This provides an 

implicit model of the contribution of the nonlinear function mapping the feature 

space to the neural response. As shown in Figure 1B (left), the iSTAC matrix 

calculated for the mixed stimulus has two significant eigenvalues whose underlying 
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eigenvectors reveal two distinct temporal filters, namely, 𝜈1 and 𝜈2. The projection 

of the spike-triggered stimulus ensemble on 𝜈1 and 𝜈2, shown in Figure 1B (right), 

reveals two distinct clusters.  

In synchrony-division multiplexing, a mixed input signal containing slow and fast 

features drives an ensemble of neurons. The fast component of the stimulus whose 

neural representation is synchronous and sparse does not appear in the STA, as it 

averages out sparsely-occurring fast features of the stimulus [5]. However, unlike 

the fast signal, neural representation of the slow signal is asynchronous and dense , 

thus the STA filter mainly contains information of the slow components of the 

mixed signal [5]. Unlike the STA filter, the most informative subspaces selected by 

the iSTAC method behave as multi-space feature estimators and illustrate slow and 

fast features of the mixed stimulus. 

Figure 1C shows that the STA filter calculated for the mixed stimulus mainly 

captures the slow feature of the signal, but cannot truly capture the dynamics of 

synchronous spikes. Unlike the STA filter, 𝜈1 and 𝜈2of the iSTAC method illustrates 

slow and fast features of the mixed stimulus. As can be observed in Figure 1C, 𝜈1 

is similar to the STA filter and represents the slow component of the stimulus, and 

𝜈2 describes fast features of the stimulus (note that the STA filter was duplicated in 

Figure 1C (left and right) and compared with both 𝜈1 and 𝜈2) .  

 

II. B. Low-dimension feature space of the neural response can be characterized 

by the STAs of synchronous and asynchronous spikes  

Recently, it has been shown that synchronous and asynchronous spikes encode 

information of slow and fast features of a mixed stimulus (equivalent to that used 

in the present study), respectively [13, 18, 19]. Using an information theoretic 

approach, it was shown that synchronous and asynchronous spikes carry 

information in different time scales. By classifying spikes of a population of neurons 

into synchronous and asynchronous spikes, it was demonstrated that the STA filters 

underlying these spikes, namely, 𝜇𝐴𝑠𝑦𝑛𝑐 and 𝜇𝑆𝑦𝑛𝑐, reflect the fast and slow features 

of the stimulus, respectively. Figure 2A shows classified synchronous (red) and 

asynchronous (blue) spikes in the raster plot. 
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Here, we compared these filters with those obtained by the iSTAC method. First, 

we tested if the projection of the spike-triggered stimulus ensemble on 𝜇𝐴𝑠𝑦𝑛𝑐 and 

𝜇𝑆𝑦𝑛𝑐 creates two distinct clusters similar to that projected on 𝜈1 and 𝜈2. As shown 

in Figure 2B (left), two distinct and separable clusters were generated by 𝜇𝐴𝑠𝑦𝑛𝑐 

and 𝜇𝑆𝑦𝑛𝑐. More importantly, one can distinguish between these clusters by 

projecting synchronous- and asynchronous-spike-triggered stimulus ensemble on 

𝜇𝐴𝑠𝑦𝑛𝑐 and 𝜇𝑆𝑦𝑛𝑐. Figure 2B (right) reveals that these stimulus ensembles are 

separable and mutually exclusive. Figure 2C shows temporal patterns of 𝜇𝐴𝑠𝑦𝑛𝑐 and 

𝜇𝑆𝑦𝑛𝑐 versus the STA filter. As expected, 𝜇𝐴𝑠𝑦𝑛𝑐resembles the STA filter, indicating 

slow features of the stimulus, and 𝜇𝑆𝑦𝑛𝑐(similar to 𝜈2) describes abrupt changes in 

the stimulus.  

Furthermore, to investigate the functional roles of the above filters, we tested how 

they contribute in the signal reconstruction. The reconstructed signal was obtained 

by the convolution of spikes - either all spikes for STA (Fig 3A) or 𝜈1 and 𝜈2 (Fig 

3B) or asynchronous and synchronous spikes for 𝜇𝐴𝑠𝑦𝑛𝑐 and 𝜇𝑆𝑦𝑛𝑐 respectively (Fig 

3C). Figure 3 illustrates 10 sec sample of the reconstructed signal using these 

methods.  As clear in Figure 3.B, the signal reconstructed by 𝜈1 and 𝜈2(iSTAC 

method) resemble that generated by 𝜇𝐴𝑠𝑦𝑛𝑐 and 𝜇𝑆𝑦𝑛𝑐, and both of these signals 

better capture fast features than that obtained by the STA filter, indicating the 

functional relevance between these filters.  

 

II. C. Different nonlinear functions are associated with synchronous and 

asynchronous spikes 

Given different temporal filters underlying synchronous and asynchronous spikes, 

we sought how these filters map fast and slow features of the mixed stimulus to the 

firing rate of an ensemble of conductance-based model neurons. Moreover, since 

the dynamics of a neural ensemble is not fully linear, these linear filters are not 

sufficient to project the stimulus to spikes. We utilized a well-known 

phenomenological model, namely, the LNL cascade model, which uses a linear 

stimulus filter followed by a static nonlinear transformation, to estimate the firing 

rate of an ensemble of neurons. Figures 4 and 5 (panel A in both figures) show the 
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LNL diagram for asynchronous and synchronous spikes, respectively. We tested if 

a pair of linear filter and static nonlinearity is different for synchronous and 

asynchronous spikes given a common mixed signal. We obtained static nonlinearity 

functions for synchronous and asynchronous spikes by applying 𝜇𝑆𝑦𝑛𝑐 and 𝜇𝐴𝑠𝑦𝑐𝑛 

filters to the mixed stimulus (𝑠) and mapping their outputs (through the 

nonlinearity)  to the PSTHs of synchronous and asynchronous spikes, respectively: 

𝑃𝑆𝑇𝐻𝐴𝑠𝑦𝑛𝑐 = 𝑓𝐴𝑠𝑦𝑛𝑐  (𝜇𝐴𝑠𝑦𝑛𝑐 ∗ 𝑠)      (1.a) 

𝑃𝑆𝑇𝐻𝑆𝑦𝑛𝑐 = 𝑓𝑆𝑦𝑛𝑐(𝜇𝑆𝑦𝑛𝑐 ∗ 𝑠)      (1.b) 

where 𝑓𝐴𝑠𝑦𝑛𝑐(𝑥) and 𝑓𝑆𝑦𝑛𝑐(𝑥) are the nonlinearities associated with 

asynchronous and synchronous spikes, respectively.  

Figures 4(B) and 5(B) show respectively the raw nonlinearities for asynchronous 

and synchronous spikes that correspond to the mapping of every single point of the 

output of linear filters (x-axis) to the values of PSTHs (y-axis). For the 

nonlinearities underlying asynchronous and synchronous spikes, we fitted the ReLU 

nonlinearity and sigmoid functions, respectively [20].  The nonlinearly associated 

with asynchronous, 𝑓𝐴𝑠𝑦𝑛𝑐(𝑥), has mild slope and broad dynamic range, enabling 

rate-modulated coding. In contrast, the nonlinearly underlying synchronous spikes, 

𝑓𝑆𝑦𝑛𝑐(𝑥)), has steep slope and narrow dynamic range, enabling event (abrupt 

changes) detection. Although more sophisticated nonlinear functions could provide 

better fits, we chose simple and well-established nonlinear functions to highlight 

the difference in shapes of nonlinearities underlying rate- versus temporal- codes in 

the context of SDM. The instantaneous firing rates of each type of spike can be 

constructed by passing the output of temporal filter through the fitted nonlinearities. 

These firing rates were estimated and drawn against the PSTHs of asynchronous 

and synchronous spikes in Figures 4(C-D) & 5(C-D), respectively. As shown in 

these figures, the nonlinear functions and estimated PSTHs underlying temporal 

filters obtained by the iSTAC (V1 and V2) and classified spikes (𝜇𝐴𝑠𝑦𝑛𝑐 and 𝜇𝑆𝑦𝑛𝑐) 

are nearly identical.  
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II. D. An augmented LNL cascade model for synchrony-division multiplexing  

The LNL cascade models were utilized to encode specific features of a mixed 

stimulus by synchronous or asynchronous spikes. As shown in the previous 

sections, temporal filters and nonlinear transformations of either types of spikes 

were distinct and estimated by separate LNL cascade models. Here, we sought if a 

combination of these cascade models, i.e., an augmented LNL model, could 

accurately encode different features of a mixed stimulus through different types of 

spikes. We developed a two-stream LNL cascade model that combines the PSTHs 

of synchronous and asynchronous spikes to reconstruct the mixed PSTH of both 

type of spikes, as: 

 

𝑃𝑆𝑇𝐻𝑡𝑜𝑡𝑎𝑙 = ∑  𝑖∈{𝑆𝑦𝑛𝑐,𝐴𝑠𝑦𝑛𝑐}  𝜔𝑖× 𝐺𝑖∗𝑓𝑖(𝜇𝑖∗𝑠)                      (2) 

where 𝜔 is the combination weight for each stream of reconstructed PSTHs. To 

reduce the model complexity and promote smoothness in the output, we 

applied parameterized Gaussian kernels, 𝐺𝐴𝑠𝑦𝑛𝑐 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 (0, 𝜎𝐴𝑠𝑦𝑛𝑐) and 

𝐺𝑆𝑦𝑛𝑐 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 (0, 𝜎𝑆𝑦𝑛𝑐), to the reconstructed PSTHs in each stream [21, 

22]. The augmented LNL model simultaneously encodes slow and fast features of 

the stimulus by asynchronous and synchronous spikes, respectively. Figure 6(A) 

shows the block diagram of the augmented LNL model. This model implies that the 

low-pass filter and shallow non-linearity underlying asynchronous spikes are 

required to produce the rate code. In contrast, the high-pass filter and sigmoid 

nonlinearity of synchronous spikes are necessary to preserve reliable spike times 

underlying fast features of the stimulus. Taken together, the augmented LNL model 

makes the coexistence of the rate- and temporal- codes happen to encode multiple 

features of a mixed stimulus. To capitalize on the significance of temporal filters 

and nonlinearity transformations of each type of spike in estimating the total firing 

rate of a neural ensemble, we compared the performance of augmented LNL model 

with that of a conventional one stream LNL. Figure 6(B-D) shows the estimated 

firing rate of three methods, namely, Poisson GLM and augmented LNL models 

(Figure 6(C-D)) (used Section II.C), against the PSTH of ensemble of neurons. As 

can be observed, the firing rate estimated by the augmented LNL models can better 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted October 30, 2021. ; https://doi.org/10.1101/2021.10.29.21265658doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.29.21265658


10 
 

capture both the rate of asynchronous spikes and timing of synchronous events 

compared to those estimated by one stream Poisson GLM.  

III. Discussion 

 

The ability of an ensemble of homogeneous cortical neurons to multiplex multiple 

features of a mixed stimulus was studied in [5]. However, specific encoding 

functions underlying these neurons were not determined. In this paper, we presented 

a computational framework to provide a system level understanding of the encoding 

mechanism underlying SDM. We used conductance-based neuron models to 

construct a homogenous neural ensemble that encodes slow and fast features of a 

mixed stimulus through asynchronous and synchronous spikes, respectively. To 

elucidate the contribution of slow and fast features of the mixed stimulus on the 

spikes generated by model neurons, we calculated most significant subspaces 

(eigenvectors) of spike-triggered stimulus matrix using the iSTAC method. We 

demonstrated that the calculated first and second eigenvectors resemble slow and 

fast features of the stimulus, respectively. Furthermore, the projection of spike-

triggered stimulus matrix on these eigenvectors created two distinct clusters. We 

tested if these clusters can be characterized by synchronous and asynchronous 

spikes. By computing the spike-triggered average (STA) filters of synchronous and 

asynchronous spikes, and projecting this matrix on these filters, we clearly separated 

those clusters.   Furthermore, we fitted a LNL model to each type of spikes. Similar 

to distinct temporal filters for synchronous and asynchronous spikes, their static 

nonlinearities have different properties. We found that the nonlinearity associated 

with asynchronous spikes is very shallow and can be approximated by a linear 

function. On the other hand, the nonlinearity associated with synchronous spikes 

has a very steep slope and can be approximated by highly nonlinear functions like 

sigmoid function. Finally, we developed an augmented LNL model to capture both 

dynamical characteristics of synchronous and asynchronous spikes and reconstruct 

the PSTH of all spikes.  

Subspace Feature Estimators; iSTAC vs. STC  

To explore more than one subspace features for stimulation-evoked neural 

responses, we compared the performance of the STC and iSTAC methods. One can 
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find most informative subspaces that maximize the mutual information between 

stimulus and response [23, 24]. Nevertheless, an accurate estimation of mutual 

information requires a large amount of data although no guarantee for optimal 

estimation can be necessarily expected[24]. A conventional way to find these 

subspaces is to calculate those related to the most significant eigenvectors of the 

spike-triggered covariance (STC) matrix [16]. The eigenvectors of the STC matrix 

provide analytic expressions for filter estimation using the moments of the stimulus 

and spike-triggered stimulus distribution [16, 17]. However, this method does not 

incorporate joint information between the mean and the variance, and also there is 

no specific measurement for selecting the most significant subspaces based on that 

information. We calculated the most important eigenvectors of the STC matrix 

underlying the mixed stimulus and neural response (see II.B, details are provided 

in Methods). The first eigenvector of the STC matrix was similar to the STA of all 

spikes (see Figure 7) including both slow and fast features of the stimulus. Unlike 

the first eigenvector of the STC matrix, the second eigenvector comprised fast 

features of the stimulus. As shown in Figure 7, the 2-D projection of the spike-

triggered stimulus matrix on eigenvectors of the STC matrix cannot be clearly 

separated in two distinct clusters. 

To avoid this problem, we used the iSTAC method that allows to choose 

eigenvectors of the spike-triggered stimulus ensemble matrix more precisely by 

minimizing the Kullback-Leibler (KL) divergence between the eigenvectors of this 

matrix and that obtained by raw stimulus distributions [17]. It is to be noted that the 

whitening transformation is usually used before finding subspaces of the spike 

response. One can use whitening transformation to calculate uncorrelated and 

normalized subspaces (for both STC and iSTAC methods). However, due to the 

type of the mixed stimulus (i.e., structured and not a random process), we found that 

eliminating this transformation results in more representative subspace features as 

shown in Figure 1. We compared the 2-D projection of the spike-triggered stimulus 

matrix on eigenvectors of the iSTAC method with and without whitening. It can be 

clearly observed that the iSTAC without whitening can better separate the 2-D 

space. 
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Choice of Static Nonlinearity in the LNL Model 

The static nonlinearities obtained in the augmented LNL model can describe why 

synchronous and asynchronous spikes are associated with different functions. For 

example, the smoothness and linear behavior of 𝑓𝐴𝑠𝑦𝑛𝑐(𝑥) , for x>0, generates a 

smooth PSTH for asynchronous spikes which linearly encodes to the intensity of 

the stimulus. In contrast, the sigmoid-like nonlinearity of synchronous spikes, 

𝑓𝑆𝑦𝑛𝑐(𝑥), maintains the PSTH of synchronous spikes very sparse which nonlinearly 

detects abrupt changes of stimulus. It is worth mentioning that more flexible 

nonlinear functions could provide better fits for representing the PSTH of 

synchronous and asynchronous spikes. Of note, one can use deep neural networks 

(DNNs) to give more flexibility to the models. A DNN is simply a high-dimensional 

non-linear function estimator which gives a multilayer nonlinear function in the 

form of a neural network [25, 26]. To use that in our augmented LNL model or any 

LNL model, one can easily replace the nonlinearity estimator with a DNN. 

Generalized Linear Model (GLM) for Augmented LNL 

The proposed augmented LNL can also be interpreted in the GLM framework. From 

this point of view, synchronous and asynchronous PSTHs are modeled by two 

separated GLMs with different random processes, which eventually combine their 

PSTHs linearly.  The first GLM, filters the mixed stimulus with the first eigenvector 

of iSTAC and then by passing it through a nonlinearity and then a Gaussian random 

process (with a linear nonlinearity as its link function), it models the PSTH related 

to asynchronous spikes. Likewise, the second GLM, filters the mixed stimulus with 

the second eigenvector of iSTAC and then by passing it through a nonlinearity and 

then a Bernoulli random process (with a sigmoid nonlinearity as its link function), 

it models the PSTH related to synchronous spikes (See the method section for more 

details about GLMs). Or, we even simply can interpret the augmented LNL as a 

single Poisson GLM, with two input filters (the first two eigenvectors of iSTAC) 

and a Poisson random process at the end (see the appendix A for more details). To 

reach the optimal parameters set for the model and avoid computational complexity, 

we use  parametric models for the static nonlinearities [9]. We also can use more 

flexible parametric function (with parameter set θ) like ex-quadratic function 𝑓𝜃(𝑥) 

as the static nonlinearities. By using ex-quadratic function as nonlinearities we 
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eventually need to optimize a convex cost function, Which gives the optimum 

parameters set θ for the nonlinearity and can be optimally optimized by a maximum-

likelihood (ML) algorithm (details in the Appendix B) [9, 27, 28]. 

Materials and Methods 

Simulated mixed input 

According to the feasibility of neural systems to multiplexed coding, we simulated 

the activity of a homogeneous neural ensemble in response to a mixed-stimulus to 

explore how much information can be encoded by different patterns of spikes. Each 

neuron received a mixed signal (𝐼𝑚𝑖𝑥𝑒𝑑) which consists of a fast signal (𝐼𝑓𝑎𝑠𝑡) and 

a slow signal (𝐼𝑠𝑙𝑜𝑤). 𝐼𝑓𝑎𝑠𝑡 Stands for the timing of fast events or abrupt changes in 

the stimulus and was generated by convolving a randomly (Poisson) distributed 

Dirac-delta function with a synaptic waveform (normalized to the peak amplitude), 

𝜏𝑟𝑖𝑠𝑒 = 0.5 𝑚𝑠, and 𝜏𝑓𝑎𝑙𝑙 = 3 𝑚𝑠. Fast events occurred at a rate of ∼ 1 𝐻𝑧 and were 

scaled by 𝑎𝑓𝑎𝑠𝑡 =  85 𝑝𝐴. 

𝐼𝑠𝑙𝑜𝑤 was generated by an OU process as follows. 

𝑑𝐼𝑠𝑙𝑜𝑤
𝑑𝑡

= −
𝐼𝑠𝑙𝑜𝑤(𝑡) − 𝜇

𝜏
+ 𝜎

√2

𝜏
𝜉(𝑡), 𝜉 ∼  (0,1) (3) 

where 𝜉 is a random number drawn from a Gaussian distribution, 𝜏 =  100 𝑚𝑠 is 

the time constant of the slow signal that produces a slow-varying random walk with 

an average of µ =  15 𝑝𝐴 and a standard deviation of 𝜎 = 60 𝑝𝐴. The mixed signal 

(𝐼𝑚𝑖𝑥𝑒𝑑) was obtained by adding 𝐼𝑓𝑎𝑠𝑡 and 𝐼𝑠𝑙𝑜𝑤, were generated independently.  

An independent noise (equivalent to the background synaptic activity) was added 

to each neuron, thus each neuron receives a mixed signal plus noise. Similar to, the 

noise (𝐼𝑛𝑜𝑖𝑠𝑒) was generated by an OU process of 𝜏 = 5 𝑚𝑠, µ = 0 𝑝𝐴, and 𝜎 =

10 𝑝𝐴. 

Simulated neural ensemble and its response to mixed input 

The neural ensemble consists of 30 neurons, each of them was modeled by Morris-

Lecar equations [13, 29]. The equations of a single model neuron receiving a mixed-

signal plus noise can be written as follows. 
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𝐶
𝑑𝑉

𝑑𝑡
= 𝐼𝑚𝑖𝑥𝑒𝑑(𝑡) + 𝐼𝑛𝑜𝑖𝑠𝑒(𝑡) − �̅�𝑁𝑎𝑚∞(𝑉)(𝑉 − 𝐸𝑁𝑎) − �̅�𝐾𝑤(𝑉 − 𝐸𝐾)

− 𝑔𝐿(𝑉 − 𝐸𝐿) − �̅�𝐴𝐻𝑃𝑧(𝑉 − 𝐸𝐾) − 𝑔𝑒𝑥𝑐(𝑉 − 𝐸𝑒𝑥𝑐)

− 𝑔𝑖𝑛ℎ(𝑉 − 𝐸𝑖𝑛ℎ) 

(4) 

where, 

𝑑𝑤

𝑑𝑡
= 𝜙

𝑤(𝑉) − 𝑤

𝜏𝑊(𝑉)
 (5) 

𝑑𝑧

𝑑𝑡
=

1
1 + 𝑒(𝛽𝑧−𝑉)/𝛾 

− 𝑧

𝜏𝑧
 (6) 

𝑚∞(𝑉) = 0.5 [1 + 𝑡𝑎𝑛ℎ (
𝑉 − 𝛽𝑚
𝛾𝑚

) ] (7) 

𝑤∞(𝑉) = 0.5 [1 + 𝑡𝑎𝑛ℎ (
𝑉 − 𝛽𝑤
𝛾𝑤

) ] (8) 

𝜏𝑤(𝑉) =
1

𝑐𝑜𝑠ℎ (
𝑉 − 𝛽𝑤
2𝛽𝑤

) 
 

(9) 

where {𝑔𝑁𝑎 = 20, 𝑔𝑘 = 20, 𝑔𝐿 = 20, 𝑔𝐴𝐻𝑃 = 25, 𝑔𝑒𝑥𝑐 = 1.2, 𝑔𝑖𝑛ℎ = 1.9}
𝑚𝑆

𝑐𝑚2
,  

𝛽
𝑚
= −1.2, 𝛾𝑚 = 18, 𝛽𝑤 = −19, 𝛾𝑤 = 10, 𝛽𝑧 = 0, 𝛾𝑧 = 2,𝜏𝑎 = 20 𝑚𝑠, 𝜙 =

0.15, 𝑎𝑛𝑑 𝐶 = 2
𝜇𝐹

𝑐𝑚2
. These parameters were set to ensure a neuron operates in a 

hybrid mode [30], i.e., an operating mode between integration and coincidence 

detection [5, 31]. The inclusion of background excitatory and inhibitory synaptic 

conductance in (2) reproduced a “balanced” high conductance state. The surface 

area of the neuron was set to 200 µ𝑚2 so that 𝐼𝑚𝑖𝑥𝑒𝑑 is reported in 𝑝𝐴, rather than 

as a density[32, 33]. Figure 1.A Shows the mixed stimulus and the spiking activates 

of the ensemble of neurons in response to this stimulus. 

Generalized Linear Model (GLM) details 

GLM model is a generalization of traditional linear models, which gives the neural 

encoding models more flexibility to capture nonlinear dynamics of neural activity. 

GLM contains three stages. The first stage is a linear mapping which consists of a 

set of 𝑑 linear-filters, let’s assume 𝑲 = [𝑘1, … , 𝑘𝐷], that maps high dimensional 

sensory stimulus 𝑠 ∈ 𝑅𝑀 into a low dimensional stimulus feature map 𝑥 ∈ 𝑅𝐷: 
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𝒙 = 𝑲𝑻𝒔         (10) 

The second stage is a pointwise nonlinearity, 𝑓: 𝑅𝐷 → 𝑅, which maps the linear 

features of 𝑑 dimensions into a nonnegative spike rate: 

𝝀 = 𝑓(𝒙)         (11) 

In the final stage, the number of spikes generated by a random process: 

𝑃𝜃(𝒀 = 𝒓| 𝒔)          (12) 

Where 𝑌 is random variable related to spikes occurrence,  𝒓 is instantaneous firing 

rate, and the 𝜃is parameter set of the random process 

In simple words, by using GLM we approximate the instantaneous firing rate by 

considering feature from 𝐷 dimensions instead of 𝑀 dimensions: 

𝑃(𝒀|𝒔) ∼ 𝑃(𝒀|𝑲𝑻𝒔)        (13) 

So, there are two set of parameters, the estimators (𝑲) and the pointwise 

nonlinearity ( 𝑓), which can be optimized to reach the desired model.  

 

STA and STC estimator 

If we assume that 𝑝(𝑠) is has zero mean, then the STA can be defined as the average 

of the stimulus given the instantaneous firing rate: 

𝜇 =
1

𝑛𝑠𝑝
∑ 𝑠𝑖{𝑠𝑖|𝑠𝑝𝑖𝑘𝑒}

, 𝑛𝑠𝑝 = ∑ 𝑟𝑡
𝑁
𝑡=1       (14) 

Where 𝑁 is the total number of time points. The STA is an unbiased, consistent 

estimation which gives the direction in the stimulus space along which the means 

of 𝑃(𝒔|𝑠𝑝𝑖𝑘𝑒) and 𝑃(𝒔) differ most. The problem is The STA gives a single 

direction in stimulus space and leads to a single estimator which is not efficient to 

capture all information in the stimulus space (we previously discussed we have a 

mixed stimulus in this research). To involve other possible directions with 

maximally differences in variances between 𝑃(𝒔|𝑠𝑝𝑖𝑘𝑒) and 𝑃(𝒔)  we can use 

eigenvectors of the STC matrix, defined as: 

 

𝛬 =
1

𝑛𝑠𝑝
∑ (𝑠𝑖 − 𝜇)(𝑠𝑖 − 𝜇)

𝑇
{𝑠𝑖|𝑠𝑝𝑖𝑘𝑒}

.      (15) 
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The STA and eigenvectors of the STC matrix can provide a basis, 𝐾, for a reduced 

dimensional model of the neural response.  

iSTAC estimator 

There are two major problems with STA/STC, when we consider more than one 

direction for stimulus space. The first one is that STA is not orthogonal to STC 

eigenvectors and this increases the risk of losing information, and the second one is 

that the measure we use to select eigenvectors of STC is based on eigenvalues, 

which does not truly represent most informative directions. As we mentioned before 

the objective in iSTAC is to reduce KL divergence between Gaussian 

approximations to the spike-triggered and raw stimulus distributions. Therefore, we 

define 𝑄 as a Gaussian approximation of 𝑃(𝒔|𝑠𝑝𝑖𝑘𝑒) based on the information 

contained only in the mean and covariance of the 𝑃 as: 

 

𝑄(𝒔) =
1

(2𝜋)
𝑛
2|𝛬|

1
2

 𝑒−
1

2
(𝒔−𝜇)𝑇𝛬−1(𝒔−𝜇)       (16) 

Where n is dimensionality of stimulus space. Now we drive KL divergence between 

𝑄 and 𝑃 as: 

𝐷(𝑄, 𝑃) = ∫ 𝑄(𝑠) 𝑙𝑜𝑔 𝑙𝑜𝑔 (
𝑄(𝑠)

𝑃(𝑠)
)  𝑑𝑠     

 (17) 

By considering that mean of 𝑃  and 𝑃. 𝑄 is zero and have identity covariance (if not, 

we can use “whitening” technique) we can rewrite 𝐷 in a simpler form as: 

𝐷(𝑄, 𝑃) =
1

2
(𝑇𝑟(𝛬) −𝑙𝑜𝑔 𝑙𝑜𝑔 |𝛬|  + 𝜇𝑇𝜇 − 𝑛)    (18) 

Where 𝑇𝑟(. ) And |. | indicate trace and determinant, respectively. 

Based on the fact that we are interested in 𝑑 subspaces we can approximate the 𝐷 

with: 

𝐷[𝐾](𝑃, 𝑄) =
1

2
(𝑇𝑟[𝐾𝑇(𝛬 + 𝜇𝑇𝜇)𝐾 −𝑙𝑜𝑔 𝑙𝑜𝑔 |𝐾𝑇𝛬 𝐾| − 𝑑 ]  (19) 

where 𝑑 is the dimension of the interested subspaces. 

So, in terms of finding the 𝑑 most informative subspaces decomposed by STA and 

eigenvectors of STC we need to find 𝐷[𝐾](𝑃, 𝑄) for all subspaces and select the first 

𝑑 ones. 
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An important advantage of the iSTAC approach over traditional STA/STC analysis 

is that it makes statistically efficient use of changes in both mean and covariance of 

the response spaces. 
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Figures 
 

 

 
 
Figure 1. Slow and fast features of a mixed signal can be inferred from responses of a 

homogeneous ensemble of neurons using the iSTAC method. (A) Slow and fast signals 

constructing a mixed signal. (A, Bottom) Sample raster plot of 30 model neurons receiving 

the common mixed signal (and independent noise). Spikes evoked by the fast and slow 

signals cannot be distinguished visually. (B) The iSTAC method was applied to spike-

triggered mixed signal and eigenvalues and eigenvectors were obtained (see Methods). (B, 

Left) The eigenvalues of the iSTAC matrix reveals two significant components of the 

population code. (B, Right) The projection of spike-triggered mixed signal onto the main 

eigenvectors of the iSTAC matrix. Two clusters can be visually distinguished. (C) The 1st 

and 2nd eigenvectors of the iSTAC matrix, V1 and V2, respectively, are shown against the 

spike-triggered average (STA). V1 resembles the STA filter reflecting slowly-varying 

changes in the signal. Unlike V1, V2 resembles a high-pass filter (differentiator) which 

reflects fast features of the mixed signal. 
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Figure 2. Synchronous and asynchronous spikes represent information of slow and fast 

features of the mixed signal, respectively. (A) Synchronous (red) and asynchronous (blue) 

spikes are distinguished by setting a threshold on the instantaneous firing rate calculated by 

a narrow kernel (see Methods). Synchronous spikes evoked by the fast signals can be 

distinguished visually. (B) The projection of spike-triggered mixed signal onto the STA Sync 

and STAAsync. Two (visually) distinguishable clusters belong to asynchronous spikes 

representing the slow feature of the signal (blue dots) and synchronous spikes representing 

the fast features (red circles). (C) The spike-triggered average of synchronous (red) and 

asynchronous (blue) spikes, namely, STASync and STAAsync, respectively, was shown against 

the STA of all spikes (similar to Figure 1. C).  
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(A) 

 

(B) 

 

(C)  

Figure 3. Block diagram of decoding the mixed signal from spikes by (A) the STA filter (light 

brown), (B) a weighted sum of the 1st and 2nd eigenvectors of the iSTAC method (light purple), 

and (C) a weighted sum of filtered asynchronous spikes (by STA Async) and filtered 

synchronous spikes (by STASync) (purple). Original mixed signal overlaid with black color in 

the plots. As can be seen in these figures, the reconstructed signal based on STASync and 

STAAsync – similar to that obtained by eigenvectors of iSTAC method– can capture both slow 

and fast components of the signal accurately. 
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(A) 

 

(B) 

 

(C)  

 

(D) 

Figure 4. Static nonlinearities underlying asynchronous spikes. (A) Blog diagram of 

LNL model for asynchronous spikes. (B) Static nonlinearity calculated for the 

asynchronous spikes is obtained by mapping the output of filtered stimulus to the 

instantaneous firing rate of asynchronous spikes (calculated by a wide kernel, σ = 25 

msec). Static nonlinearity calculated based on 1st eigenvectors of the iSTAC method, V1, 

(Left) and STAAsync (Right). The solid black shows fitted rectifiers. (C) The PSTHs 

constructed by the fitted nonlinearities based on V1 were drawn against the PSTH of 

asynchronous spikes. (D) The PSTHs constructed by the fitted nonlinearities based on 

STAAsync were drawn against the PSTH of asynchronous spikes. 

 

 

STAAsync

0 1
Output of temporal filter 

(normalized)

1st Eigenvector of iSTAC

50

0

F
ir

in
g
 R

at
e 

(H
z)

0 1
Output of temporal filter 

(normalized)

Mixed 

Stimulus
Asynchronous 

Temporal Filter
fAsync PSTHAsync

One-to-one mapping

Estimated

One-to-one mapping

Estimated

0 1 2 3 4 5 6 7 8 9 10

Time (s)

F
ir

in
g
 R

a
te

 (
H

z
)

25

0

50

PSTH (1st Eigenvector of iSTAC)

PSTH (STAAsync)

25

0

50

F
ir

in
g

 R
a
te

 (
H

z
)

OriginalPSTH

Estimated PSTH

STAAsync

0 1
Output of temporal filter 

(normalized)

1st Eigenvector of iSTAC

50

0

F
ir

in
g
 R

at
e 

(H
z)

0 1
Output of temporal filter 

(normalized)

Mixed 

Stimulus
Asynchronous 

Temporal Filter
fAsync PSTHAsync

One-to-one mapping

Estimated

One-to-one mapping

Estimated

0 1 2 3 4 5 6 7 8 9 10

Time (s)

F
ir

in
g
 R

a
te

 (
H

z
)

25

0

50

PSTH (1st Eigenvector of iSTAC)

PSTH (STAAsync)

25

0

50

F
ir

in
g

 R
a
te

 (
H

z
)

OriginalPSTH

Estimated PSTH

STAAsync

0 1
Output of temporal filter 

(normalized)

1st Eigenvector of iSTAC

50

0

F
ir

in
g
 R

at
e 

(H
z)

0 1
Output of temporal filter 

(normalized)

Mixed 

Stimulus
Asynchronous 

Temporal Filter
fAsync PSTHAsync

One-to-one mapping

Estimated

One-to-one mapping

Estimated

0 1 2 3 4 5 6 7 8 9 10

Time (s)

F
ir

in
g
 R

a
te

 (
H

z
)

25

0

50

PSTH (1st Eigenvector of iSTAC)

PSTH (STAAsync)

25

0

50

F
ir

in
g

 R
a
te

 (
H

z
)

OriginalPSTH

Estimated PSTH

STAAsync

0 1
Output of temporal filter 

(normalized)

1st Eigenvector of iSTAC

50

0

F
ir

in
g
 R

at
e 

(H
z)

0 1
Output of temporal filter 

(normalized)

Mixed 

Stimulus
Asynchronous 

Temporal Filter
fAsync PSTHAsync

One-to-one mapping

Estimated

One-to-one mapping

Estimated

0 1 2 3 4 5 6 7 8 9 10

Time (s)

F
ir

in
g
 R

a
te

 (
H

z
)

25

0

50

PSTH (1st Eigenvector of iSTAC)

PSTH (STAAsync)

25

0

50

F
ir

in
g

 R
a
te

 (
H

z
)

OriginalPSTH

Estimated PSTH

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted October 30, 2021. ; https://doi.org/10.1101/2021.10.29.21265658doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.29.21265658


22 
 

 

(A) 

 

(B) 

 

(C) 

 

(D) 

Figure 5. Static nonlinearities underlying synchronous spikes. (A) Blog diagram of LNL 

model for synchronous spikes. (B) Static nonlinearity calculated for the synchronous 

spikes is obtained by mapping the output of filtered stimulus to the instantaneous 

synchronous events (calculated by a narrow kernel, σ = 1 msec). Static nonlinearity 

calculated based on 2nd eigenvectors of the iSTAC method, V2, (Left) and STASync 

(Right). The solid black shows fitted sigmoid functions. (C) The PSTHs constructed by 

the fitted nonlinearities based on V2 were drawn against the PSTH of synchronous 

spikes. (D) The PSTHs constructed by the fitted nonlinearities based on V2 were drawn 

against the PSTH of synchronous spikes. 
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(A) 

 

(B) 

 

(C) 

 

(D) 

Figure 6. Two stream LNL model, referred to as augmented LNL model, enables co-

existence of temporal- and rate-codes. (A) Blog diagram of the augmented LNL model 

for combining rate of asynchronous spikes and events of synchronous spikes. (B) The 

PSTHs estimated by a conventional Poisson GLM (red) were shown against the original 

PSTH (calculated by 1 msec Gaussian kernel). (C) The PSTHs estimated by the 

segmented LNL using temporal filters of iSTAC method. (D) The PSTHs estimated by 

LNL using the segmented LNL using STAAsync and STASync. 
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Figure 7. Slow and fast features decomposition of a mixed signal of a homogeneous 

ensemble of neurons using the STC method. (A) The projection of spike-triggered mixed 

signal onto the 1st eigenvector and (B) 2nd eigenvector of the STC matrix. (C) The 1st and 

2nd eigenvectors of the STC matrix, V1 and V2, respectively, are shown against the spike-

triggered average (STA) calculated using all spikes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted October 30, 2021. ; https://doi.org/10.1101/2021.10.29.21265658doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.29.21265658


25 
 

References 
1. Li, Y.G., J.H. Winters, and N.R. Sollenberger, MIMO-OFDM for wireless 

communications: signal detection with enhanced channel estimation. IEEE 
Transactions on communications, 2002. 50(9): p. 1471-1477. 

2. Laughlin, S.B. and T.J.J.S. Sejnowski, Communication in neuronal networks. 2003. 
301(5641): p. 1870-1874. 

3. Johnson, D.H., The relationship between spike rate and synchrony in responses of 
auditory‐nerve fibers to single tones. The Journal of the Acoustical Society of 
America, 1980. 68(4): p. 1115-1122. 

4. Harvey, M.A., et al., Multiplexing stimulus information through rate and 
temporal codes in primate somatosensory cortex. PLoS Biol, 2013. 11(5): p. 
e1001558. 

5. Lankarany, M., et al., Differentially synchronized spiking enables multiplexed 
neural coding. 2019. 116(20): p. 10097-10102. 

6. Sullivan, W. and M. Konishi, Segregation of stimulus phase and intensity coding 
in the cochlear nucleus of the barn owl. Journal of Neuroscience, 1984. 4(7): p. 
1787-1799. 

7. Saal, H.P., M.A. Harvey, and S.J. Bensmaia, Rate and timing of cortical responses 
driven by separate sensory channels. Elife, 2015. 4: p. e10450. 

8. Saal, H.P. and S.J. Bensmaia, Touch is a team effort: interplay of submodalities in 
cutaneous sensibility. Trends in neurosciences, 2014. 37(12): p. 689-697. 

9. Paninski, L., Maximum likelihood estimation of cascade point-process neural 
encoding models. Network: Computation in Neural Systems, 2004. 15(4): p. 243-
262. 

10. Latimer, K.W., et al., Multiple timescales account for adaptive responses across 
sensory cortices. Journal of Neuroscience, 2019. 39(50): p. 10019-10033. 

11. Churchland, M.M., et al., Techniques for extracting single-trial activity patterns 
from large-scale neural recordings. Current opinion in neurobiology, 2007. 17(5): 
p. 609-618. 

12. Paninski, L., J. Pillow, and J.J.P.i.b.r. Lewi, Statistical models for neural encoding, 
decoding, and optimal stimulus design. 2007. 165: p. 493-507. 

13. Rezaei, M.R., M.R. Popovic, and M. Lankarany, A Time-Varying Information 
Measure for Tracking Dynamics of Neural Codes in a Neural Ensemble. Entropy, 
2020. 22(8): p. 880. 

14. Prescott, S.A., et al., Pyramidal neurons switch from integrators in vitro to 
resonators under in vivo-like conditions. Journal of neurophysiology, 2008. 
100(6): p. 3030-3042. 

15. Paninski, L., Convergence properties of three spike-triggered analysis techniques. 
Network: Computation in Neural Systems, 2003. 14(3): p. 437-464. 

16. Schwartz, O., et al., Spike-triggered neural characterization. Journal of vision, 
2006. 6(4): p. 13-13. 

17. Pillow, J.W. and E.P. Simoncelli, Dimensionality reduction in neural models: an 
information-theoretic generalization of spike-triggered average and covariance 
analysis. Journal of vision, 2006. 6(4): p. 9-9. 

18. Lankarany, M. and S.A. Prescott, Multiplexed coding through synchronous and 
asynchronous spiking. BMC Neuroscience, 2015. 16(1): p. 1-2. 

19. Bojak, I. and T. Nowotny, 27th Annual Computational Neuroscience Meeting 
(CNS* 2018): Part Two. 2018, BMC Neuroscience. 

20. Ramachandran, P., B. Zoph, and Q.V. Le, Searching for activation functions. arXiv 
preprint arXiv:1710.05941, 2017. 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted October 30, 2021. ; https://doi.org/10.1101/2021.10.29.21265658doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.29.21265658


26 
 

21. Pillow, J.W., et al., Prediction and decoding of retinal ganglion cell responses with 
a probabilistic spiking model. Journal of Neuroscience, 2005. 25(47): p. 11003-
11013. 

22. Pillow, J.W., et al., Spatio-temporal correlations and visual signalling in a 
complete neuronal population. Nature, 2008. 454(7207): p. 995-999. 

23. Paninski, L., Estimation of entropy and mutual information. Neural computation, 
2003. 15(6): p. 1191-1253. 

24. Sharpee, T., N.C. Rust, and W. Bialek, Analyzing neural responses to natural 
signals: maximally informative dimensions. Neural computation, 2004. 16(2): p. 
223-250. 

25. Moskovitz, T.H., N.A. Roy, and J.W. Pillow, A comparison of deep learning and 
linear-nonlinear cascade approaches to neural encoding. BioRxiv, 2018: p. 
463422. 

26. Rezaei, M.R., et al. A Comparison Study of Point-Process Filter and Deep Learning 
Performance in Estimating Rat Position Using an Ensemble of Place Cells. in 2018 
40th Annual International Conference of the IEEE Engineering in Medicine and 
Biology Society (EMBC). 2018. IEEE. 

27. Amidi, Y., et al., Parameter Estimation in Multiple Dynamic Synaptic Coupling 
Model Using Bayesian Point Process State-Space Modeling Framework. Neural 
Computation, 2021. 33(5): p. 1269-1299. 

28. Fard, R.S., et al., Analysis of Distributed Neural Synchrony through State-Space 
Coherence Analysis. bioRxiv, 2020. 

29. Morris, C. and H.J.B.j. Lecar, Voltage oscillations in the barnacle giant muscle 
fiber. 1981. 35(1): p. 193-213. 

30. Ratté, S., et al., Impact of neuronal properties on network coding: roles of spike 
initiation dynamics and robust synchrony transfer. 2013. 78(5): p. 758-772. 

31. Pirschel, F. and J. Kretzberg, Multiplexed population coding of stimulus 
properties by leech mechanosensory cells. Journal of Neuroscience, 2016. 36(13): 
p. 3636-3647. 

32. Destexhe, A., M. Rudolph, and D.J.N.r.n. Paré, The high-conductance state of 
neocortical neurons in vivo. 2003. 4(9): p. 739-751. 

33. Prescott, S.A., Y. De Koninck, and T.J. Sejnowski, Biophysical basis for three 
distinct dynamical mechanisms of action potential initiation. PLoS Comput Biol, 
2008. 4(10): p. e1000198. 

 

 

 

 

 

 

 

 

 

 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted October 30, 2021. ; https://doi.org/10.1101/2021.10.29.21265658doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.29.21265658


27 
 

 

 

 

Appendix A: The augmented LNL as a Poisson GLM  

We assume the number of spikes in time are discrete events. By dividing the time 

horizon of the experiment, (0, 𝑇], into 𝐾 (𝐾 is a large number) subintervals 

(𝑡𝑘−1, 𝑡𝑘]𝑘=1
𝐾  and consider 𝑁𝑘 as number of the events in the time interval (𝑡𝑘−1, 𝑡𝑘]. 

We can model the spike observation process with a point process by inhomogeneous 

Poisson distribution and parameter 𝜆𝑘 as: 

𝑃(𝑁𝑘|𝑠𝑘) =
1

𝑁𝑘!
 (𝛥𝜆𝑘)

𝑁𝑘𝑒−𝛥𝜆𝑘        (A1) 

Where 𝛥 is the width of the time-bins. By assuming that number of spikes are 

conditionally independents in time, we can write the whole observation process as 

  

𝑃(𝑁1:𝐾|𝑠1:𝐾) = ∏
1

𝑁𝑘!
 (𝛥𝜆𝑘)

𝑁𝑘𝑒−𝛥𝜆𝑘𝐾
𝑘=1       (A2) 

In other hand, we can model the 𝜆𝑘 in a way that captures effects of two features of 

the stimulus as linear combination of their effects in  𝜆𝑘 (discussed in the Result 

section), as 

𝜆𝑘 = ∑ 𝜔𝑖𝑓𝑖(𝜇𝑖 ∗ 𝑠𝑘)
𝐷
𝑖=1         (A3) 

where, 𝜃 = {𝜔1, … , 𝜔𝐷} is our parameters set and 𝐷 is the dimension of the feature 

map. Finally by using maximum-likelihood estimation we can tune the model 

parameters 

𝜃 = 𝑎𝑟𝑔 𝑙𝑜𝑔  𝑃(𝑁1:𝐾|𝑠1:𝐾) →  

𝑙𝑜𝑔  𝑃(𝑁1:𝐾|𝑠1:𝐾)  = ∑ 𝑙𝑜𝑔
1

𝑁𝑘!
𝐾
𝑘=1   + ∑ 𝑁𝑘 𝑙𝑜𝑔  𝛥

𝐾
𝑘=1  +𝑁𝑘(∑ 𝜔𝑖𝑓𝑖(𝜇𝑖 ∗ 𝑠1:𝑘)

𝐷
𝑖=1 )  

−𝛥∑ 𝜔𝑖𝑓𝑖(𝜇𝑖 ∗ 𝑠1:𝑘)
𝐷
𝑖=1         (A4) 

Based on Jensen’s inequality and considering that 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑥  is a concave function, 

we have: 

𝑙𝑜𝑔  𝑃(𝑁1:𝐾|𝑠1:𝐾)  ≥ 𝐶+ ∑ 𝑁𝑘 (∑ (𝜔𝑖𝑓𝑖(𝜇𝑖 ∗ 𝑠1:𝑘))
𝐷
𝑖=1  −𝛥𝜔𝑖𝑓𝑖(𝜇𝑖 ∗ 𝑠1:𝑘))

𝐾
𝑘=1 =

𝑄 ,  𝐶 = ∑ 𝑙𝑜𝑔  
1

𝑁𝑘!

𝐾
𝑘=1   + ∑ 𝑁𝑘 𝑙𝑜𝑔  𝛥

𝐾
𝑘=1  + 𝑁𝑘      (A5) 

where 𝑄 is a lower bound for the Log-likelihood. So, we can find the 𝜃s by 

maximizing the 𝑄 over them as  

 

𝜃𝑀�̂� =
𝜕𝑙𝑜𝑔 𝑃(𝑁1:𝐾|𝑠1:𝐾) 

𝜕𝜃
= 0 →  

𝜕𝑙𝑜𝑔 𝑃(𝑁1:𝐾|𝑠1:𝐾) 

𝜕𝜃
= 0 + ∑ (

𝑁𝑘

𝜔𝑖
− 𝛥𝑓𝑖(𝜇𝑖 ∗ 𝑠1:𝑘))

𝐾
𝑘=1 = ∑ 𝑁𝑘

𝐾
𝑘=1  −  

1

𝜔𝑖
∑ 𝛥𝑓𝑖(𝜇𝑖 ∗
𝐾
𝑘=1

𝑠1:𝑘) = 0 → 𝜔�̂� =
∑ 𝑁𝑘
𝐾
𝑘=1  

∑ 𝛥𝑓𝑖(𝜇𝑖∗𝑠1:𝐾)
𝐾
𝑘=1

       (A6) 
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By estimating the model parameters, we reach a model for encoding the firing rate 

of the multiplexed spikes. 
 

Appendix B: Modeling nonlinearity (f(x)) by ex-quadratic functions 

The estimators do dimensionality reduction task and map high dimensional sensory 

stimulus to a lower dimensional linear feature map = 𝐾𝑇𝑠 , 𝐾 is the basis of the 

feature map space. Based on the definition of GLM, mentioned above, we still need 

to find optimum model for 𝑓(𝑥), 𝑓: 𝑅𝑑 → 𝑅. By considering motivation in [4], a 

reasonable way is using exponential general quadratic function: 

𝑓 =𝑒𝑥𝑝  (
1

2
𝑥𝑇𝐶𝑥 + 𝑏𝑇𝑥 + 𝑎)      (B1) 

where 𝐶 is a symmetric matrix, 𝑏 is a vector, and 𝑎 is a scalar. So, now we can use 

maximum-likelihood to optimize the parameters set, {𝐶, 𝑏, 𝑎}. To do that we need 

to maximize the log-likelihood of observing spike given all spikes and the 

parameters set (𝐿 =𝑙𝑜𝑔 𝑙𝑜𝑔 𝑃(𝑟1:𝑁|𝑠1:𝑁, 𝐶, 𝑏, 𝑎) ). By assuming that spikes firing in 

time are independent then we can rewrite it as: 

𝐿 =
1

𝑛𝑠𝑝
∑ 𝑙𝑜𝑔  𝑃(𝑟𝑖|𝑠𝑖, 𝐶, 𝑏, 𝑎)𝑖         (B2) 

  

where 𝑛𝑠𝑝 is total number of spikes, so our objective is to maximize 𝐿 by finding 

best parameters set: 

{�̂�, �̂�, �̂�} = 𝑎𝑟𝑔𝑚𝑎𝑥{𝐶,𝑏,𝑎} 𝐿        (B3) 

By following the optimization steps in [5] and assuming that the stimulus are drawn 

from 𝑥 ~ 𝑁 (0, 𝛷); the maximum-likelihood estimation of the parameters are: 

�̂� = 𝛷−1 − 𝛬−1, �̂� = 𝛬−1𝜇        (B4.a) 

�̂� =𝑙𝑜𝑔 (
𝑛𝑠𝑝

𝑁
|𝛷𝛬−1|0.5 )  −

1

2
𝜇𝑇𝛷−1𝛬−1𝜇       (B4.b) 
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