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Abstract 

Background: 

Consumer-grade wearable devices enable detailed recordings of heart rate and step counts 

in free-living conditions. Recent studies have shown that summary statistics from these 

wearable recordings have potential uses for longitudinal monitoring of health and disease 

states. However, the relationship between higher resolution physiological dynamics from 

wearables and known markers of health and disease remains largely uncharacterized. 

 

Objective: 

We aimed to (i) derive high resolution digital phenotypes from observational wearable 

recordings, (ii) characterize their ability to predict modifiable markers of cardiometabolic 

disease, and (iii) study their connections with genetic predispositions for cardiometabolic 

disease and with lifestyle factors. 
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Methods:  

We introduce a principled framework to extract interpretable high resolution phenotypes 

from wearable data recorded in free-living conditions. The proposed framework 

standardizes handling of data irregularities, encodes contextual information about 

underlying physiological state at any given time, and generates a set of 66 minimally 

redundant features across active, sedentary and sleep states. We applied our approach on a 

multimodal dataset, from the SingHEART study (NCT02791152), that comprises of heart 

rate and step count time series from wearables, clinical screening profiles, whole genome 

sequences and lifestyle survey responses from 692 healthy volunteers. We employed 

machine learning to model non-linear relationships between the high resolution phenotypes 

and clinical risk markers for blood pressure, lipid and weight abnormalities. For each risk 

type, we performed model comparisons based on Brier Skill Scores (BSS) to assess 

predictive value of the high resolution features over and beyond typical baselines. We then 

examined associations between the wearable-derived features, polygenic risk for 

cardiometabolic disease, and lifestyle habits and health perceptions. 

 

Results:  

Compared to typical summary statistic measures like resting heart rate, we find that the 

high-resolution features collectively have greater predictive value for modifiable clinical 

markers associated with cardiometabolic disease risk (average improvement in Brier Skill 

Score=52.3%, P<.001). Further, we show that heart rate dynamics from different activity 

states contain distinct information about type of cardiometabolic risk, with dynamics in 

sedentary states being most predictive of lipid abnormalities and patterns in active states 

being most predictive of blood pressure abnormalities (P<.001). Finally, our results reveal 

that subtle heart rate dynamics in wearable recordings serve as physiological correlates of 

genetic predisposition for cardiometabolic disease, lifestyle habits and health perceptions.  

 

Conclusions:  

High resolution digital phenotypes recorded by consumer wearables in free-living states 

have the potential to enhance prediction of cardiometabolic disease risk, and could enable 

more proactive and personalized health management. 

 

Trial Registration:  

ClinicalTrials.gov NCT02791152; https://clinicaltrials.gov/ct2/show/NCT02791152  

 

Keywords: Wearable device, heart rate, cardiometabolic disease, risk prediction, digital 

phenotypes, polygenic risk scores, time series analysis, machine learning, free-living   
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Introduction 

The adoption of consumer-grade wearable activity trackers into routine use has been 

increasing rapidly in recent years, with approximately one in five U.S. adults reported to 

regularly use wrist-worn smartwatches and fitness trackers in 2019 [1]. This phenomenon 

has generated an unprecedented scale of consumer health data, and led to many studies on 

the wider health uses of such data. These studies are increasingly generating evidence to 

reveal relations between recordings from wearable activity trackers and the risk for 

conditions ranging from mental health and infectious disease [2,3] to cardiovascular and 

metabolic (“cardiometabolic”) diseases [4–7]. Amongst these, due to apparent links 

between activity levels and cardiometabolic health, the evidence for broader health uses of 

wearables is most established in the cardiometabolic domain [4,8–11].  

Previous studies in the cardiometabolic domain have focused on the utility of wearable-

derived summary statistics, and fall into one of two categories. First, electrocardiogram 

signals from wearables have been studied in relation to the development of cardiometabolic 

conditions such as atrial fibrillation [12–14], hyperkalaemia [15,16] and heart failure [17–

19]. As many of these conditions are amenable to early intervention via dietary changes or 

increased physical activity, there is also interest in using wearables to promote self-

awareness and regulation [20] and to enhance screening [11]. Second, wearable-derived 

measures, such as circadian measures, sleep patterns/quality [11,21], step counts [4], 

wearable-derived resting heart rate [4,8,10,21,22] and heart rate variability (HRV) [23–27] 

have been found to correlate with outcomes in cardiometabolic disease. As such, there is 

increasing recognition in the clinical community to incorporate wearable-derived measures 

into practical cardiometabolic disease management [6,28].  

At the same time, consumer wearable technology is developing rapidly and enabling better, 

richer, and more granular measurements. In particular, advanced sensors in present day 

consumer wearable and mobile health devices enable recording and extraction of step 

counts, activity patterns, heart rate, and sleep states at fine temporal resolutions [6,29,30]. 

Therefore, the logical evolution of research in this area would be to extract higher-

resolution features, beyond traditional summary statistics and standard wearable-derived 

measurements, from these time series recordings, and to assess their utility in relation to 

cardiometabolic health states. A few recent studies have employed black-box deep neural 

networks to relate high-resolution heart rate and step count time series recorded using 

wearables to the risk of developing atrial fibrillation, sleep apnoea and hypertension 

[31,32]. However, as their primary goal focused on risk target classification, the nature of 

the intermediate predictive time series features and their connection with other known 

biological and lifestyle-related markers of cardiometabolic disease remains unresolved.  

In this paper, we introduce a framework to derive interpretable high resolution features 

from heart rate and step count time series recorded by consumer wearables. We applied 
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our approach on multidimensional data from normal volunteers in the SingHEART study 

[33] to examine associations of high resolution wearable-based phenotypes with diverse 

indicators of cardiometabolic health and disease. We found that high resolution digital 

phenotypes from wearables had higher predictive value for modifiable risk markers of 

cardiometabolic disease than established summary statistic measures like resting heart rate. 

In order to better understand the wearable-derived features, we investigated how they relate 

to genetic predispositions for cardiometabolic disease and to lifestyle habits. We 

discovered that subtle high resolution patterns in wearable recordings may reflect 

subclinical physiological changes associated with both genetic risk markers and lifestyle 

factors. Our findings have implications for use of digital phenotypes from consumer 

wearables as objective and quantitative indicators of cardiometabolic health and disease.  

 

 

Methods 

Data 

We sourced data from the SingHEART study (NCT02791152) as of October 8, 2019. This 

study [33,34] was established at the National Heart Center Singapore (NHCS), a tertiary 

specialty hospital in Singapore, and approved by the SingHealth Centralized Institutional 

Review Board (CIRB Ref: 2015/2601 and 2018/3081). Enrolment targeted healthy 

volunteers who provided written informed consent to use data (including electronic health 

records) for research. Subjects were required to fulfil the following inclusion criteria: (i) 

21-69 y/o, (ii) no personal medical history of prior cardiovascular disease (myocardial 

infarction (MI), coronary artery disease (CAD), peripheral arterial disease (PAD), stroke), 

cancer, autoimmune/genetic disease, endocrine disease, diabetes mellitus, psychiatric 

illness, asthma, chronic lung disease or chronic infective disease, and (iii) no family 

medical history of cardiomyopathies.  

At the point of enrolment, each subject was profiled using a range of health assessment 

modalities. The resulting dataset includes (a) heart rate and step count time series 

recordings over 3-5 days from consumer wearable devices (Fitbit® Charge HR), together 

with the associated sleep logs generated by Fitbit®, (b) self-reported answers to a lifestyle 

and quality-of-life questionnaire [4], (c)  genotypic data from whole genome sequencing 

(WGS) using the Illumina HiSeq X platform, and (d) laboratory measurements for nine 

clinically-relevant markers (systolic and diastolic blood pressure; blood levels of 

triglycerides, total cholesterol,  high density lipoprotein (HDL) and low density lipoprotein 

(LDL); fasting blood glucose level; waist circumference and body mass index (BMI)). As 

of October 8, 2019, the full study cohort contained 1,101 subjects, amongst whom 692 
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subjects had complete wearable recordings. A full description of the data is provided in 

Supplementary Information (SI) Table 1.  

While all health assessments above were performed at the point of enrolment into the study, 

we also longitudinally tracked each subject for occurrence of any actual clinical events. In 

particular, we extracted all ICD-10 codes pertaining to any acute care utilization events in 

the regional health system associated with the NHCS until January 2021 to characterize 

links between data features, risk markers and actual clinical events.  

Extraction of Features from Wearable Time Series Recordings  

We now describe steps to derive resting heart rate, summary statistics on activity and sleep 

patterns, and high resolution features from the wearable heart rate and step count time 

series recordings. As all these physiologic features are derived from the same recordings, 

they are internally consistent and can be meaningfully used for downstream comparative 

analyses. 

Computation of Resting Heart Rate 

We used the wearable heart rate time series recordings to derive resting heart rate 

(RestingHR) [4].  Specifically, we defined RestingHR as the average of heart rate values 

across all time points that had a valid heart rate record and a step count of <=100. We note 

that there are similarities between wearable-derived resting heart rate and the clinical gold 

standard, ECG-derived heart rate [4,35].  

Annotation of Wearable Time Series Recordings 

We extracted the wearable time series recordings for each subject, and utilized only days 

with at least 20 hours of step count and/or heart rate data as per Lim et al [4]. This procedure 

yielded 642 subjects. Heart rate recordings were available either at regular one-minute 

intervals, or as irregular bursts of recordings over 5, 10 or 15-second intervals. Step count 

recordings were sampled at either 15-minute or one-minute intervals. We resampled all 

heart rate and step count consumer wearable records to one-minute intervals, and then 

annotated the time series to reflect data availability and physical activity levels (Figure 

1A). We assigned a “null” value for heart rate at time points where it was missing. Then, 

we annotated time points with available data for both heart rate and step count as “sleep”, 

“active” or “sedentary”. Specifically, we applied the “sleep” annotation to all time points 

captured by the Fitbit sleep log, the “sedentary” annotation to any time points with zero 

step count value, and denoted the remaining time points as “active”. On average, the 642 

subjects in our study had 3.72 days of valid heart rate data, and the average missing heart 

rate periods in a day were 94.9 minutes long. The median lengths of the longest 

uninterrupted time series for the “active”, “sedentary” and “sleep” periods were 31mins, 

105mins, and 465mins respectively. 
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Figure 1. Wearable Data Processing Pipeline. (A) Construction of low-resolution 

features based on summary statistics. (B) Construction of high-resolution features based 

on Catch22 algorithm. (C) UpSet plot of the 692 subjects with features from the various 

categories. Only non-empty set intersections are presented. Intersection size indicates the 

number of subjects found within the intersections of given sets. Of the largest intersection 

with 328 subjects, 321 also had laboratory measurement recordings. 
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For each subject, we processed the heart rate and step count time series recordings from 

the consumer wearable devices to yield a range of summary and high-resolution features, 

as detailed below.  

Derivation of Summary Features from Wearable Time Series Recordings 

We employed a three-step procedure to derive a range of wearable summary statistics 

(Figure 1A). First, we used our physical activity annotations to compute mean daily 

durations for the different activity levels. Second, we used device logs to obtain statistics 

relating to sleep-wake patterns. Third, we converted the wake and sleep time into a 24-hr 

format, and averaged the resulting values over all days where a given subject had wearable 

data recordings. To account for the cyclical nature of sleep/wake patterns, we transformed 

the average wake and sleep times using sinusoidal functions. Overall, this process yields 

10 summary features for each subject. All the summary statistics included are listed in SI 

Table 2. 

Derivation of High Resolution Features from Wearable Time Series Recordings 

We further developed a data processing pipeline to extract high resolution time series 

features from the wearable device heart rate recordings (Figure 1B).  Reasoning that heart 

rate and step count patterns under different physiological states or activity levels could 

provide distinct insights into cardiovascular health, we sought to derive time series features 

that encode contextual information about the physiological state or activity level. 

Specifically, we processed heart rate time series recordings for each of the three physical 

activity levels (sleep, sedentary, active) separately, as follows.  

For each subject, we chose the longest uninterrupted time period of the heart rate time 

series recordings for each physical activity level. Because the data exhibits significant 

variability in the lengths of these time periods across subjects, we defined pre-specified 

lengths to extract standardized sleep, sedentary and active segments. Specifically, we 

extracted the first twenty minutes for active segments, the first one hour for sedentary 

segments and the first five hours for sleep segments. If the recordings available for a subject 

did not fulfil the aforementioned length criteria even with the longest segment for a given 

activity level, we did not consider that particular activity level for high-resolution analyses. 

This process yields up to three heart rate time series segments for each subject.  

We then processed each of these extracted heart rate time series segments to obtain high 

resolution features. Given a time series segment, it is possible to employ computational 

packages such as the highly comparative time series analysis [36,37] and TSFRESH 

[38,39] to generate thousands of high resolution features. However, such approaches can 

generate many redundant features and the process of selecting a concise but effective 

representation is often not straightforward. Recent work [40] introduced a minimally 

redundant and interpretable set of 22 features, termed Catch-22 features, that have high 
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predictive value across 93 diverse time series classification datasets. For any given time-

series segment, the Catch22 feature set captures several important dynamical properties, 

including autocorrelations (both linear and non-linear), value distributions and fluctuation 

analysis. We applied the Catch22 methodology [40] to obtain 22 high resolution features 

for each available heart rate time series segment. Collectively, our pipeline results in up to 

three sets of 22 high resolution features per subject, namely Catch22 (Sleep), Catch22 

(Active), and Catch22 (Sedentary). All the Catch22 features included are listed in SI Table 

3.  

As our study did not prescribe controlled experimental settings for the wearable recordings, 

the resulting time series segments often exhibit significant noise and irregularities. Hence, 

we considered the reliability of our featurization approach in these real-world settings. In 

particular, we assessed stability and sensitivity of the Catch22 features to the length 

specifications across activity levels (SI-1). The results suggest that the features are 

relatively robust within the intervals considered, and provide confidence for downstream 

use of these high resolution features.  

Overlap amongst Features Derived from Wearable Time Series Recordings 

Figure 1C illustrates the overlaps amongst subjects with the different wearable derived 

features, using UpSet plots [41,42]. For example, 41 individuals had features for active and 

sedentary segments, but did not have sleep segments or summary statistics (due to lack of 

sufficiently long continuous sleep recordings). We note that all the different types of 

wearable features are available for a total of 328 subjects, of which 321 had laboratory 

measurements as well. We considered this set of 321 subjects for ensuing risk modelling 

and analysis.   

 

Characterization of Predictive Value of Wearable-Derived Features for Clinical Targets  

We describe the overall approach to characterize predictive value of the different wearable-

derived features with respect to a variety of clinical risk markers. Specifically, we 

considered model types based on six different feature sets (Table 1). We then defined four 

target clinical risk markers based on whether the nine laboratory measurements exceeded 

thresholds in Table 2: (a) abnormal blood pressure (“bp_abnormal”) for either I or II, (b) 

abnormal lipid levels (“lipids_abnormal”) for at least one of III-VI, (c) obese (“obesity”) 

for either VIII or IX, and (d) an omnibus category for lipid, blood sugar, obesity and/or 

sugar abnormalities (“anyRISKoutof9”) for any of I to IX.  
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Table 1: Description of the Different Model Types 

Model Name Features Included Number of 

Features 

Baseline [4] Age + Gender 2 

RHR Baseline features + RestingHR 3 

SummaryStats Baseline features + Wearable Summary Stats 12 

HighRes.ActiveSeg Baseline features + Catch22 (active) 24 

HighRes.SedenSeg Baseline features + Catch22 (sedentary) 24 

HighRes.SleepSeg Baseline features + Catch22 (sleep) 24 

 

 

Table 2: Lab Measurements and Corresponding Thresholds 

 Lab Measurement Threshold to be considered at risk 

I Systolic Blood Pressure More than 140 mmHg 

II Diastolic Blood Pressure More than 90 mmHg 

III Triglycerides More than 2.3 mmol/l 

IV Total Cholesterol More than 6.2 mmol/l 

V HDL Less than 1 mmol/l 

VI LDL More than 4.1 mmol/l 

VII Fasting Blood Glucose Level More than 6 mmol/l 

VIII Waist Circumference More than 100 cm (males)/ 90 cm (females) 

IX Body Mass Index  More than 27.5 

 

All the 321 subjects who had a complete set of wearable-derived features also had complete 

data for the nine laboratory measurements. We considered this set of 321 subjects as our 

training set to model clinical risk targets. Of these 321 subjects, 149 were not positive for 

any of the four risk markers, while 172 were positive for at least one risk marker (see SI-

2).  We note that a given subject can be positive for more than one of the four labels, but 

the majority of subjects exhibiting positive risk markers were exclusively labelled by a 

single risk marker. Specifically, out of the 172 positive subjects, 69% were positive for one 

clinical risk marker, 23% were positive for two risk markers, and only 8% were positive 

for three or more risk markers. 

We employed machine learning to model the complex non-linear relationships between a 

given feature set and target pairing using two separate approaches. First, for any given 

target, we analysed comparative value of the different feature sets (Table 1) by using a 
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model comparison approach. Specifically, we consider the degree to which the wearable-

derived features (RestingHR, wearable summary statistics, different high resolution 

wearable features) augment the predictive value of the baseline demographic feature set, 

and also compared the performance of the high resolution wearable features against that of 

the lower resolution features. For appropriate comparison of value-add over the baseline 

features, all feature sets based on wearable data also include the corresponding baseline 

feature. Second, for each prediction target, we also compared the importance of the 

individual feature variables. So as to have a common basis for these variable importance 

calculations, we developed a unified model with all features included, and used this model 

to compare variable importance for the different features. 

Prediction Model and Variable Importance 

We trained a series of models to estimate the probability that a subject exhibits clinical risk 

markers for common cardiometabolic disease abnormalities. Specifically, we used random 

forest classifiers [43] to model the four targets of interest as they are general purpose non-

linear classifiers that perform well in diverse settings. We trained the random forest models 

in R using the randomForest package [44]. To handle the imbalanced nature of the 

prediction tasks at hand, we set the number of minority class samples chosen for each tree 

at 80% of the total minority class size. We then downsampled the majority class to match 

the number of minority class samples used [45]. This was implemented via the strata and 

sampsize parameters. For each of the four prediction targets, we constructed 200 such 

random forests with different starting random seeds, and for each random forest trained, 

we recorded the out-of-bag (OOB) prediction errors.  

To obtain statistically meaningful estimates of variable importance, for a given prediction 

target, we averaged the mean decrease in accuracy (MDA) for each feature across the 200 

random forests. We then ranked the features by their average MDA to obtain the list of top 

ten ranked features for the target of interest. For analysis of variable importance, we 

considered the union of the top ten ranking features for the four cardiometabolic disease 

risk targets. 

Model Comparison Metric 

As our goal is to comparatively characterize predictive value of the different wearable-

derived feature sets over and beyond the baseline features, we chose to evaluate relative 

gains in prediction accuracy.  Specifically, as the prediction task is inherently probabilistic, 

we evaluated the accuracy of probabilistic predictions with the commonly used Brier Skill 

Score [46,47].  

For a given target, we considered the 200 baseline models constructed, computed the Brier 

Scores for each model (see equation 1), and selected the best performing model with the 

lowest Brier Score. We denote this selected model as B. Then, for each of the other 
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wearable-based model types (Table 1) for the same target, we obtained the corresponding 

Brier Skill Score as shown in equation 2.  

BrierScore(𝑀) =  
1

𝑁
∑(𝑝𝑖 − 𝑜𝑖)

2

𝑁

𝑖=1

, (1) 

 BrierSkillScore(𝑀) = 1 −  
BrierScore(𝑀)

BrierScore(𝐵)
, (2) 

where M is the wearable-based model under consideration, 𝑝𝑖 is the prediction probability 

of observing target i using the model under evaluation, 𝑜𝑖 is the actual observed target or 

label (binary: 0/1), and N is the total number of subjects included for modeling. The Brier 

Skill Score ranges from negative infinity to 1; a positive Brier Skill Score indicates that 

model M performs better than the comparative baseline model B, while a negative score 

indicates model M performs worse than the comparative baseline model B. If M has the 

exact same performance as B, the Brier skill score is zero. 

In total, the above process yields 200 Brier Skill Scores for each pairing of prediction target 

and wearable-derived feature set (model) type. We note that the Skill Scores are based on 

out-of-bag estimates [43,48], which provides close approximation to an independent test 

set. We conducted comparisons of Skill Scores between model types via two-sided t-tests, 

with the P values adjusted using the Benjamini-Hochberg procedure (BH-adjusted P 

values) [49,50]. 

Illustrative Profiling Based on Clinical Outcomes 

Beyond the quantitative characterizations detailed above, we also examined how the high 

resolution wearable recordings may connect to clinically relevant cardiometabolic disease 

outcomes. For this, we selected subjects who actualized clinical events with primary ICD10 

diagnosis codes for cardiometabolic disease during our longitudinal monitoring period 

(Table 3).  Amongst these subjects, we only considered those not included in the training 

set for the clinical risk target models. Then, for the selected subjects, we profiled the 

wearable-derived features alongside other cross-sectional information (demographics, 

BMI and ECG heart rate).  

 

Table 3: ICD Codes Used for Profilinga 

Clinical Diagnosis ICD Codes 

Cardiovascular Disease (CVD) I200, I208, I211, I214, I2511, I258, I259, 

I420, I48, R000, R001, I471, I440, I447, 

I451, I458, I493, I495, I498 

Dyslipidemia E780, E781, E782, E783, E784, E785, 

E786 
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Hypertension I10, I11, I12, I13 

Obesity E668, E669 

aDescription of the ICD codes are provided in SI Table 4. 

 

Characterization of Interrelations between Wearable-Derived Features, Genetic Risk and 

Lifestyle Markers 

In order to understand the wearable time series features further, we investigated their 

associations with biological and environmental factors. As probing these associations 

requires handling diverse multidimensional data types with potentially complex non-linear 

relationships, we used a machine learning framework (similar to the one described earlier) 

to construct models of these relationships. We then employed model performance measures 

to infer the degree of information overlap between the wearable features on the one hand, 

and (i) genetic risk targets or (ii) lifestyle related targets on the other. For these analyses, 

we considered the wearable-derived summary statistic features; and the high resolution 

wearable features with the highest predictive value for the clinical risk markers. We now 

describe the derivation of the genomic and lifestyle targets, and the setup of the association 

analyses in each case. 

Genetic Risk Scoring for Cardiometabolic Diseases 

We categorized genetic susceptibility to cardiometabolic diseases using polygenic scores 

(PGS). As the computation of PGS does not depend on the availability of wearable 

recording data, we applied the computations to all subjects in our study cohort. The 

polygenic score catalog [51] is a database of polygenic scores obtained from published 

scientific studies. As with the NHGRI-EBI GWAS Catalog, the traits corresponding to 

polygenic scores are grouped by mapped traits [52,53]. To define genetic risk levels for 

lipid abnormalities, blood pressure abnormalities and obesity, we obtained polygenic 

scores with less than 20,000 variants from the PGS Catalog based on the mapped trait 

ontology corresponding to the three targets respectively. For each eligible PGS, we 

compared the proportion of true cases (based on the laboratory measurements) in the 

subjects with scores below the 5th percentile and also the subjects with scores above the 

95th percentile, and determined the “direction” of the score based on the two proportions. 

We retained those PGS whose ratio of proportions was >=1.5. This yielded fourteen PGS 

for lipid abnormalities (PGS000060, PGS000061, PGS000062, PGS000063, PGS000065, 

PGS000115, PGS000192, PGS000309, PGS000310, PGS000311, PGS000340, 

PGS000677, PGS000688, PGS000699), two for blood pressure abnormalities 

(PGS000301, PGS000302) and one for obesity (PGS000298). We detail the scores and 

mapped trait ontology in SI-3. 
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For each of the selected PGS, we assigned subjects to high PGS risk and low PGS risk 

groups if the scores were either larger than the 90th percentile, or smaller than the 10th 

percentile, depending on the direction of the PGS with respect to the mapped trait 

propensity. Then, we considered all relevant PGS for a given target (e.g., set of 14 PGS for 

lipid abnormalities), and labelled subjects with high risk scores for any of the PGS for that 

trait as having high genetic risk for that trait. For instance, the high genetic risk group for 

lipid abnormalities would include members with high risk scores for one or more of the 

fourteen lipid related PGS. The above process provides three binary genetic risk targets – 

corresponding to high or low genetic risk for lipid abnormalities, blood pressure 

abnormalities and obesity respectively. In order to evaluate the sensitivity to the chosen 

percentile cut-offs for genetic risk scores, we repeated analyses for two additional sets of 

cut-offs: the 80th/20th percentile, and 85th/15th percentile. We detail the number of subjects 

for each of the three genetic risk targets under the different cut-offs in SI-4. 

We analysed associations between the high-resolution wearable-based physiological 

features and genetic risk targets. We studied whether the associations with high-resolution 

features are greater than those with baselines based on gender, resting heart rate, and other 

summary statistics using model comparison metrics.   

Lifestyle Habits and Health Perceptions (LH and HP) 

We considered a variety of lifestyle habits (LH) and health perceptions (HP) from the LH 

and HP surveys in our dataset. To choose specific LH and HP targets, we tried to balance 

data sparsity and diversity as follows. We considered the proportion of subjects who 

answered the associated questions in the LH and HP surveys, and the diversity in their 

responses for meaningful analysis. Specifically, we selected only those targets associated 

with questions that elicited affirmative answers from more than twenty subjects. This 

resulted in a set of three LH questions, and four HP questions, for a total of seven targets. 

The targets of the three LH questions focused on (i) consumption of caffeinated drinks, (ii) 

consumption of alcohol, (iii) adoption of relaxation therapies. The targets of the four HP 

questions focused on (a) pain/discomfort, (b) anxiety/depression, (c) stress level and (d) 

health state [4]. We now describe processing choices made to define these targets, and the 

associated modelling approaches. 

For the lifestyle choices, we defined the target Relaxation.Therapies based on the subject’s 

answer to whether they had engaged in any form of relaxation therapies, and the target 

alcohol consumption based on whether or not the subject had taken any alcoholic drink 

within the prior three months to answering the survey. To quantify caffeine intake, we 

converted the reported weekly consumption of caffeinated beverages into a heuristic score. 

The beverages taken into consideration were coffee, English tea, Chinese tea and Green 

tea, and the self-reported levels were “never/rarely”, “less than one cup a week”, “more 

than or equal to one cup a week, but less than one cup a day”, and “others”. We assigned, 
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for each beverage, scores of 0, 0.5, 2 and 5 respectively for the four levels, and computed 

the caffeine intake score as the sum of scores for each of the four beverages. We binarized 

this score and considered a subject as having high caffeine intake if their score was greater 

than 1.  

For the health perception survey, we defined positive and negative classes as follows. For 

pain/discomfort, we defined the positive class as a choice of “I have moderate pain or 

discomfort”, and the negative class as a choice of “I have no pain or discomfort”. For 

anxiety/depression, we defined positive class as a choice of either “I am moderately 

anxious or depressed” or “I am extremely anxious or depressed”, and the negative class as 

a choice of “I am not anxious or depressed”. For stress level, as the survey presented 

subjects with an integer scale of 1 to 10, we divided the answers into three levels: “Low” 

for scores less than or equal to 3, “Moderate” for scores between 4 and 6 inclusive, and 

“High” for scores greater than or equal to 7. For Health state, as the survey presented 

subjects with a continuous scale from 0 to 100, we divided answers into three levels: “Low” 

for scores less than or equal to 30, “Moderate” for scores greater than 30 but less than or 

equal to 70, and “High” for scores greater than 70. 

We used the same modelling framework as before to assess associations between the 

wearable-based physiological features and targets relating to lifestyle habits and health 

perceptions. We studied whether the associations with high-resolution features are greater 

than those with baselines based on gender and age, resting heart rate, and other summary 

statistics using model comparison metrics. To choose the subjects for these analyses, we 

attempted to maximize use of available data and diversity of responses. As responses to 

the lifestyle questionnaire exhibited higher data sparsity, we chose subjects independently 

for each modelling target (rather than selecting one fixed set of subjects across all targets).  

For instance, all models trained to predict alcohol consumption used data from the same 

set of subjects, regardless of the feature set under consideration. Similarly, all models 

trained to predict caffeine intake used data from another set of subjects independent of 

whether the set chosen was identical or intersected with the set used for alcohol 

consumption. We detail the number of subjects within each target and class in SI-4.  

As some of the LH and HP targets contain more than two classes, and sometimes have 

ordinal values (e.g. low, medium, high), we evaluated the trained models with the more 

general Ranked Probability Skill Score (RPSS) [54–56] in lieu of the Brier Skill Score. 

Again, for model M and baseline model B, 

RankedProbabilityScore(𝑀) =  
1

𝑁(𝑅 − 1)
∑ ∑ (∑ 𝑝𝑛,𝑖

𝑟

𝑖=1

− ∑ 𝑜𝑛,𝑖

𝑟

𝑖=1

)

2𝑅

𝑟=1

𝑁

𝑛=1

, (1) 

 RankedProbabilitySkillScore(𝑀) = 1 − 
RankedProbabilityScore(𝑀)

RankedProbabilityScore(𝐵)
, (2) 
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where 𝑝𝑛,𝑖 is the predicted cumulative probability of observation n for the i-th class, 𝑜𝑛,𝑖 is 

the actual cumulative probability for the observation in class i-th, N is the total number of 

subjects included in the modelling and R is the maximum number of classes in the target 

parameter.  

 

Results 

Characteristics of Wearable-Derived High Resolution Heart Rate Features  

Unlike summary statistics such as RestingHR which average heart rate measurements 

across multiple days, our high resolution feature sets constitute a more granular resolution 

of the heart rate time series dynamics for different physical activity levels. We 

characterized the different wearable-derived heart rate feature sets by (1) visualizing them 

as a function of time, and (2) evaluating how they relate to other heart rate features. 

First, we examined how the high resolution wearable-derived heart rate features from sleep, 

active and sedentary segments are distributed across subjects in the study. Figure 2 

illustrates the empirical distributions for exemplar features drawn from segments 

corresponding to each of the three physical activity levels.  To examine the variability 

across subjects, we also visualized representative time series at the 2.5th, 25th, 50th, 75th and 

97.5th percentile of the density.  

We observe that some features (e.g., the time reversibility statistic 〈(𝑥𝑡+1 − 𝑥𝑡)3〉𝑡 in 

Figure 2a-c) relate to the degree of spikiness/regularity in the wearable based heart rate 

time series, while other features quantify the degree of non-normality of the time series 

values (e.g. DN_HistogramMode_5 in Figures 2d-f, which corresponds to the mode of the 

z-transformed values).  
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Figure 2. Illustration of Wearable-Derived High-Resolution Heart Rate Features. The 

distributions of six high-resolution features from the study subjects, based on two Catch22 

features obtained from time series recordings in each of the three activity levels. The 

selected subjects are at the 2.5th, 25th, 50th, 75th and 97.5th percentiles of each distribution, 

and the time series for the subject is plotted in the corresponding colour. (a-c) 

CO_trev1_num is the time-reversibility statistic; higher values tend to correspond to more 

“spiky” and/or irregular time series. (d-f) DN_HistogramMode_5 takes a time series and 

groups the values across the period into 5 bins, and reports the mode of that graph.  
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Second, we studied relationships between the different high resolution heart rate features. 

For any given feature, we considered vectors of feature values for each physical activity 

level across the population (e.g. CO_trev1_num.active, CO_trev1_num.sedentary), and 

calculated the angular distance (Figure 3, bottom-right) between feature vectors for each 

pairing of activity levels. Although the Catch22 algorithm was identically applied to each 

of the three activity segments, we observed that the angular distances between features 

generated from the three segments (i.e., for active, sleep, and sedentary states) are generally 

large (Figure 3A). In some cases, the feature vectors are almost orthogonal to each other 

(e.g. CO_trev_1_num). We also compared the distributions of Catch 22 feature values 

across the three different activity levels, and found differences in the distributions (SI-5). 

These findings suggest that the same feature may contain distinct information about heart 

rate dynamics in different activity states. 

Finally, we evaluated inter-relations between the different feature sets, namely the high 

resolution wearable features, RestingHR, wearable summary statistics, and the clinical 

gold standard ECG features (PR, QRS, QT, ECG.HR and QTc). Specifically, to evaluate 

the degree of overlap between information from the different feature sets, we computed the 

subspace angle between the feature matrices of interest (Figure 3B). For this pairwise 

computation between feature sets, we selected a common set of 315 subjects who had valid 

(i.e., non-null) records for all the features under consideration. Intuitively, two feature sets 

with independent information content would be orthogonal (90°) to each other, whereas 

two collinear feature sets would have subspace angle of 0°; the smaller the subspace angles 

between two feature sets, the more overlap in the information content. Overall, the different 

heart rate features exhibit substantive overlap (θ < 6°). However, the high resolution and 

summary statistic features derived from the wearables are most distinct from RestingHR 

(θ = 4.75° and 5.35° respectively).  Further, the clinical gold standard features obtained via 

laboratory ECG measurements are most distinct from wearable-based RestingHR (θ = 

4.52°), but have good overlap with both the wearable-derived high-resolution features and 

wearable summary statistics (θ = 2.22° and 2.24° respectively). These findings suggest that 

clinically informative features could be obtained with consumer devices in home or 

community settings.  
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Figure 3. Relationship Between Different Heart-Rate Features. Angular distance, θ (°), 

was used to assess similarity between features. (A) Angles between high resolution feature 

from the three different activity periods. White colour is used where the angle was 

undefined. (B) Subspace angles between the three wearable feature sets and the laboratory 

ECG measurements.  
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Predictive Value of Different Wearable-Derived Feature Sets for Clinical Targets 

Having gained some intuition about the information contained within the wearable-derived 

feature sets, we considered their predictive value for the clinical markers of 

cardiometabolic disease risk. Specifically, we trained random forest models to use the 

different wearable-derived feature sets for classification of each of the four cardiometabolic 

disease risk targets. We performed two sets of comparative analyses to evaluate predictive 

value of the wearable-derived feature sets for classification of different cardiometabolic 

disease risk targets, and detail findings below. 

Association with Clinical Risk Markers 

First, we compared the out-of-bag performance of models trained using different feature 

sets for each clinical risk marker target (Figure 4). For each target, the best performance 

model was based on one of the high resolution wearable feature sets (HighRes.ActiveSeg, 

HighRes.SedenSeg or HighRes.SleepSeg). This finding highlights the predictive value of 

the high resolution information within wearable-derived heart rate time series recordings.  

Second, we observe that heart rate dynamics extracted from different activity level 

segments have differential predictive potential for the various targets, evidenced by the 

statistically significant differences between Brier skill scores of the HighRes.ActiveSeg, 

HighRes.SedenSeg and HighRes.SleepSeg models (Figure 4). Of the three model types, 

HighRes.SedenSeg performs best for lipid abnormalities, obesity and anyRISKoutof9; 

while HighRes.ActiveSeg performs best for blood pressure abnormalities.   

Third, to comparatively evaluate contributions from individual wearable-derived features, 

we trained models that utilize all features available to predict each cardiometabolic disease 

risk target, and ranked the variable importance in each case. Figure 5 shows the variable 

importance plots, averaged across 200 independent simulations, based on the combined set 

of top ten ranking features for each of the four cardiometabolic disease risk targets. It is 

immediately clear that different features drive the performance of the models for each of 

the four targets. For instance, age and gender are the top two drivers of model performance 

for the anyRISKoutof9 target, but are not even within the top ten for both lipids_abnormal 

and obesity. Similarly, the set of features that primarily drives the performance for 

lipids_abnormal includes many that are detrimental to performance for the anyRISKoutof9 

target. Further, our findings show that heart rate dynamics from different activity states 

contain distinct information on cardiometabolic disease risk. For example, the 

DN_HistogramMode_5 feature from the sedentary and active segments is important for 

predicting the cardiometabolic disease risk markers (Figure 5), but the 

DN_HistogramMode_5 feature from the sleep segment is not.  

Fourth, we observe that the top ten features for each of the four targets included features 

from all six feature types (age/gender, RHR, wearable summary statistics, and the three 
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sets of high resolution features from Table 1). This suggests that risk prediction models 

using wearable-derived features may not exclusively rely on only one of the different 

feature sets, or any one feature drawn from these feature sets for that matter. Rather, a 

collection of different wearable-derived high resolution heart rate features from distinct 

activity states is essential to accurately predict a multiplicity of cardiometabolic disease 

risk targets. 

 

Figure 4. Model Performance on Cardiometabolic Risk Targets. Model performance 

for each of the five model types computed for the four targets. A higher Brier Skill Score 

indicates better performing model. The baseline model on which the Brier Skill Score is 

based on only has age and gender as features; feature sets used in each model type are 

detailed in Table 1. Comparisons of Skill Scores from the different models against those 

from the HighRes.SedenSeg model (using t-tests) indicate significant differences, with 

BH-adjusted P values all being <.001 (represented by ‘****’).  
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Figure 5. Random Forest Variable Importance.  The variable importance of each feature 

for prediction of the four cardiometabolic disease risk targets. We averaged each 

importance value across 200 simulations, and used the results to rank the top ten features 

to retain for each cardiometabolic disease risk target. This resulted in a total of 26 features 

across all four targets, as shown.  
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Illustrative Case Studies for Clinical Events 

Finally, we examined relations between the most predictive wearable-derived feature set 

(i.e., Catch22 (Sedentary)) and actualized clinical events. Of the 692 subjects in our study, 

we filtered those who actualized clinical events for cardiometabolic conditions during the 

longitudinal monitoring period after initial data collection. Through this process, we 

identified a total of 11 subjects who developed relevant cardiometabolic conditions: 

cardiovascular disease (CVD; five subjects), dyslipidemia (four subjects) and hypertension 

(two subjects).  None of the subjects had actualized obesity related events. Of these 11 

subjects, we further selected those subjects who did not overlap with the set of 321 subjects 

whose data were used to train predictive models for clinical risk markers. This yielded a 

set of four subjects: one subject had ICD codes for all three conditions, two subjects only 

had codes for dyslipidemia, and one subject only had codes for cardiovascular disease. 

Amongst these four, we selected the two subjects with cardiovascular disease for further 

profiling: one with CVD, dyslipidemia and hypertension (Subject A) and one with CVD 

only (Subject B).  

For these two subjects, we visualized the 22 wearable-derived high resolution features 

using two clockplots (see SI Table 3 for the feature names corresponding to the numeric 

IDs). First, for a given subject, we plotted the percentile value of each feature in relation to 

the associated distribution in the training dataset (321 subjects). We term this the feature 

value percentile clockplot. Any feature exhibiting extreme percentile values stands out in 

relation to its typical distribution across individuals in our training set. Second, for each 

feature, we considered a cluster of the 10 training set members that are most similar (based 

on feature value proximity) to the subject of interest; and plotted the percentage of the 

cluster members who have positive anyRiskoutof9 labels. The percentage of positive labels 

in this cluster suggests the degree to which this individual feature value is indicative of 

risk. We term this the positive label proportion clockplot.  

We present the profiles and some illustrative findings for subject A and B in Figures 6A 

and 6B, respectively.  

Subject A was a 51-55 year-old male who was assessed at the start of the study to have 

very high BMI, higher than average wearable-derived resting heart rate of 72.8 bpm, and 

abnormal blood pressure and sugar levels. Amongst the wearable-derived high resolution 

features from the sedentary period, features 1, 11 and 20 (DN_HistogramMode_5, 

CO_Embed2_Dist_tau_d_expfit_meandiff and 

SC_FluctAnal_2_dfa_50_1_2_logi_prop_r1 respectively) stand out for having extreme 

percentile values (feature value percentile clockplot) that are more typical of training 

subjects with positive labels for anyRISKoutof9 (positive label proportion clockplot). We 

note that the feature 1 and 11 are the most important high resolution features in the 

corresponding HighRes.SedenSeg model for anyRISKoutof9 (See SI-7).  
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In contrast, subject B was a 56-60 year-old male with a seemingly healthier profile, having 

lower BMI and lower than average resting heart rate of 58.2 bpm. Accordingly, subject B 

only had abnormal lipids levels and no other risk markers at the start of the study. However, 

the high resolution features characterizing this subject depict a richer picture. Eight out of 

22 features exhibited values either below the 25th percentile or above the 75th percentile of 

their corresponding training set distributions (feature value percentile clockplot). Of these, 

features 6, 14 and 17 (CO_trev_1_num, DN_OutlierInclude_p_001_mdrmd and 

SB_BinaryStats_diff_longstretch0, respectively) had values at the 5.9th, 0th and 98.8th 

percentile of their corresponding training set distributions, respectively. We note that 

features 6, 14 and 17 are amongst the top ten most important features for the corresponding 

HighRes.SedenSeg model for anyRISKoutof9 (See SI-7).  

As neither Subject A nor Subject B were part of the training set used to develop the models, 

the above observations are consistent with the hypothesis that there are true associations 

between some of the high resolution features and the cardiometabolic disease risk targets. 

Although extreme feature values, in and of themselves, may not always determine the 

eventuality of a cardiovascular disease event, the above comparisons illustrate the 

discriminative potential of the high resolution wearable-derived heart rate features over 

and above evident BMI and heart rate measures. These illustrative case studies also 

highlight that the specific subset of wearable features taking on extreme values may be 

different for different individuals. This suggests the need for a diverse set of high resolution 

heart rate features, and a model that allows interactions between these features, in order to 

better explain potential risks. We finally note that the lifestyle and genomic markers for 

these subjects, detailed in SI-8, are largely similar and differences that do exist may reflect 

in the heart rate and BMI profiles we considered above. The above observations 

collectively suggest that the wearable-derived high resolution heart rate features could 

contain additional physiological information beyond typical self-reported health and 

wellness metrics and/or common summary statistics used to assess cardiometabolic disease 

risk. 

 

 

Figure 6. Illustrative Profiles of Two Subjects with Actualized Cardiometabolic 

Disease events. Subjects A and B with associated ranges of BMI, RestingHR and 

laboratory ECG heart rate measurements. The heart rate time series corresponds to the 1-

hour sedentary period used to generate the high resolution features. The two clockplots 

present the 22 high-resolution features obtained for the subject; the left plot depicts the 

percentile value of each feature in relation to the associated training set distribution, while 

the right plot shows the local likelihood that a given feature value would be seen in 

individuals who are positive for anyRISKoutof9. For both clockplots, red diamonds are 

used to indicate features with values exceeding the 75th percentile or 75% proportion, and 
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blue diamonds for features with values below the 25th percentile or 25% proportion. The 

complete list of feature names corresponding to the numerical IDs in the clockplots can be 

found in SI Table 3. 

 

 

 

Associations between Wearable-Derived Features, Genetic and Lifestyle Markers 

To further interpret the information contained within the wearable-derived features, we 

sought to understand how they relate to genetic predispositions for cardiometabolic 

disease, lifestyle habits and health perceptions. In particular, we focused these analyses on 

the commonly used RestingHR feature, the wearable-derived summary statistics feature 

set, as well as the high resolution feature set with most predictive value for all the clinical 

risk markers combined, i.e., Catch22 (Sedentary) (see Figure 4: anyRISKoutof9 panel); the 

corresponding models were RHR, SummaryStats and HighRes.SedenSeg respectively 

(Table 1). 

 

Associations with Genetic Risk Scores 

We examined the degree of information overlap between the different wearable-derived 

features (Table 1) and the genetic risk for cardiometabolic conditions. For each pairing 
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between the three wearable-derived feature sets and the three genetic risk targets, we 

trained random forest models, and used the Brier Skill Scores of the different feature sets 

(against a baseline model that only included gender as a covariate) as indirect measures of 

strength of the associations. 

The results are in Figure 7. For each of the three abnormality types, we observe that the 

high resolution wearable features were more strongly associated with genetic risk levels 

than RestingHR. Further, for genetic predisposition to lipid abnormalities and obesity, the 

high resolution wearable-derived heart rate feature set had stronger associations than the 

summary statistics feature set. However, for genetic predisposition to high blood pressure, 

the summary statistics features had a slightly stronger association than the high resolution 

wearable-derived features (yet with small 0.025 margin in Brier Skill Score between 

HighRes.SedenSeg and SummaryStats models). We highlight that these trends are 

relatively insensitive to the polygenic risk score threshold used for defining high vs. low 

genetic risk (SI-6). These results suggest that the wearable recordings may capture 

physiological dynamics related to genetic risk for cardiometabolic disease.   

   

Figure 7. Degree of Association with Genetic Risk Targets. Out-of-bag (OOB) 

performance for each of the five model types computed for the three targets. A higher Brier 

Skill Score indicates better performing model; negative scores indicate that the model 

performs worse than the comparative baseline model. The baseline model used for the Brier 

Skill Score computations has gender as the only covariate. RHR: Baseline + RestingHR; 

SummaryStats: Baseline + Summary Statistics; HighRes.SedenSeg: Baseline + Catch22 

(Sedentary). 
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Association with Lifestyle Habits and Health Perceptions 

Next, we studied overlap between the different wearable-derived feature sets, and general 

lifestyle habits (LH) and health perceptions (HP). For each combination of the three 

wearable-derived feature sets and the seven LP and HP targets, we trained random forest 

models, and used the Ranked Probability Skill Scores of the different feature sets (against 

a baseline model with gender and age as covariates) as indirect measures of strength of the 

associations. 

We first examine the results for health perceptions (Figure 8A-D). For all these cases, the 

wearable-derived summary statistics and high resolution features have stronger 

associations than resting heart rate alone. In particular, the wearable-derived summary 

statistics are highly correlated with states pertaining to stress, anxiety and depression. This 

is intuitive as these states affect many aspects of a subject’s activity and sleep-wake 

patterns.  Intriguingly, however, we find that the wearable-derived high resolution heart 
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rate features are highly associated with pain and discomfort, as well as with the overall 

perceived health state. This suggests that heart rate dynamics contain indicative 

information on overall pain levels, and health and wellness perceptions. Hence, wearable 

heart rate recordings may serve as objective measures for these often very subjective and 

difficult to assess perceptions.   

Next, we turn to the results for lifestyle habits (Figure 8E-G). We observe that RestingHR 

is most strongly associated with engaging in relaxation therapies. This suggests that the 

overall (average) heart rate may have more information on relaxation than higher resolution 

heart rate dynamics. On the other hand, for the consumption patterns of alcohol and 

caffeinated drinks, the higher resolution feature sets have stronger associations than 

RestingHR alone. In particular, wearable-derived summary statistics are most associated 

with alcohol consumption habits while wearable-derived high resolution features are most 

associated with caffeine consumption. Contrary to expectations, resting heart rate has 

weaker associations with caffeine consumption than higher resolution features derived 

from sedentary segments. This suggests that dynamics (e.g., irregularity or “spikiness”) of 

the heart rate time series even while a subject is sedentary may be associated with caffeine 

consumption habits. While the size of our data and data collection process do not enable 

assessments of causality of the above relationships, the above results provide interesting 

insights into how physiological dynamics that manifest in wearable recordings may be 

correlated with lifestyle habits.  
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Figure 8. Model Performance on Lifestyle Habits and Health Perception Targets. Out-

of-bag (OOB) performance for each of the three model types computed for the seven 

targets. A higher Brier Skill Score indicates better performing model. The baseline model 

used for computing the Ranked Probability Skill Score uses age and gender as covariates. 

RHR: Baseline + RestingHR; SummaryStats: Baseline + Summary Statistics; 

HighRes.SedenSeg: Baseline + Catch22 (Sedentary). 
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Discussion  

Consumer wearables enable recording of rich high resolution physiological dynamics in 

free-living conditions, but how these data relate to health and disease is not fully 

understood. We introduced a principled framework to derive high resolution heart rate 

features from consumer wearable recordings. We applied our approach on a dataset 

containing multidimensional cardiometabolic health parameters from healthy volunteers, 

and demonstrated the utility of high resolution wearable features in understanding 

cardiometabolic disease risk. Our results highlight the additional value of these high 

resolution features over typical summary statistics, and show that wearable data recorded 

on an ongoing basis are associated with genetic predispositions and lifestyle habits alike. 

Therefore, we posit that high resolution digital phenotypes from consumer wearables could 

find potential use in longitudinal monitoring of cardiometabolic health. 

Our framework is customized to address key challenges in mining wearable data recorded 

in free-living conditions. Unlike clean data from controlled experimental settings, real-

world wearable recordings tend to be irregular, contain missing stretches [29], lack clean 

context annotations, and have variable lengths. As such, analyses based on naïve 

application of general-purpose time series feature extraction methods [37,40,57] may not 

have ecological validity [58]. To address this gap and derive meaningful physiological 

dynamics from wearable time series recordings, our feature extraction framework 

standardizes handling of data irregularities, and encodes contextual information about 

underlying activity level and physiological state (Figure 1-3). This conceptual framework, 

although demonstrated here with the Catch22 method [40], is agnostic to choice of time 

series featurization methods [37,38]. Further, in contrast to black-box feature learning 

methods based on large labelled datasets [31], our approach yields more interpretable time 

series features with smaller unlabelled datasets.  

Our framework enables many possibilities for gaining new insights with wearable 

recordings. To illustrate this, we analysed multimodal wearable, genomic, lifestyle and 

clinical data from healthy volunteers and highlight two of these possibilities.  

First, our results reveal new relations between high resolution heart rate dynamics from 

wearables and risk of cardiometabolic disease. Most previous studies correlate clinically 

obtained measures of heart rate dynamics, such as heart rate variability, exercise capacity, 

and heart rate recovery, with disease risk or outcomes [59–61]. In contrast, our results 

reveal that heart rate dynamics recorded by consumer wearables, when processed 

appropriately, are also predictive of cardiometabolic disease risk (Figures 4 and 6). Further, 

we find that heart rate dynamics from different activity states contain distinct information 

about specific cardiometabolic conditions (Figures 2-5). For example, heart rate patterns 

from sedentary states are more related to lipid abnormalities and obesity, whereas those 

from active states may be more related to blood pressure abnormalities (Figure 4). These 
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findings highlight the value-add of assessing physiology in free-living activity states 

(beyond controlled clinical settings) for disease risk monitoring [62].  

Second, our work provides new perspectives on interfaces between wearable recordings, 

genetic predispositions and lifestyle factors in cardiometabolic disease. Although there has 

been longstanding interest in probing gene-lifestyle interactions and their additive effects 

on cardiovascular disease [63–65], such studies have had limited visibility into physiology 

in free-living conditions. We found surprising connections (Figure 7) between our 

wearable-derived features and genetic predispositions for cardiometabolic disease. As 

these associations did not appear to depend on the presence or absence of manifest clinical 

risk markers, we posit that high resolution phenotypes from wearables may capture subtle 

subclinical physiological changes stemming from latent predispositions to disease. 

Moreover, while wearables are known to capture intimate details on daily life patterns 

[66,67], our results suggest that high resolution features in wearable records could serve as 

objective indicators of subjective perceptions of stress, anxiety, pain and overall health 

state (Figure 8). Collectively, these findings suggest that high resolution digital phenotypes 

from wearables could provide a means to passively but objectively assess physiological 

changes relating to a host of nature and nurture factors.  

While the uniquely multimodal nature of our data enables us to uncover many novel 

insights on high-resolution wearable phenotypes, limitations of dataset size and cohort 

design present some challenges. For instance, it was infeasible to conduct full-scale gene-

environment interaction studies [68–70]; analyse relevant lifestyle factors such as smoking 

(as only 9 smokers had wearable records of sufficient durations); or train state-of-the-art 

machine learning models with large feature sets. Further, as the study exclusively enrolled 

healthy subjects, only 11 subjects subsequently presented with actualized cardiometabolic 

events in the longitudinal monitoring period, limiting our clinical outcome evaluations. 

Future work based on larger cohorts [71] with more longitudinal follow-up could address 

some of these limitations. Such efforts would also enable cross-cohort validation of our 

current findings; expansion of our findings to even higher resolution digital phenotypes 

that can be extracted from recordings with newer generations of wearable devices [72,73]; 

and targeted evaluations of value for precision screening, health monitoring and disease 

management applications. 
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