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Abstract

Background:

Consumer-grade wearable devices enable detailed recordings of heart rate and step counts
in free-living conditions. Recent studies have shown that summary statistics from these
wearable recordings have potential uses for longitudinal monitoring of health and disease
states. However, the relationship between higher resolution physiological dynamics from
wearables and known markers of health and disease remains largely uncharacterized.

Objective:

We aimed to (i) derive high resolution digital phenotypes from observational wearable
recordings, (ii) characterize their ability to predict modifiable markers of cardiometabolic
disease, and (iii) study their connections with genetic predispositions for cardiometabolic
disease and with lifestyle factors.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
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Methods:

We introduce a principled framework to extract interpretable high resolution phenotypes
from wearable data recorded in free-living conditions. The proposed framework
standardizes handling of data irregularities, encodes contextual information about
underlying physiological state at any given time, and generates a set of 66 minimally
redundant features across active, sedentary and sleep states. We applied our approach on a
multimodal dataset, from the SingHEART study (NCT02791152), that comprises of heart
rate and step count time series from wearables, clinical screening profiles, whole genome
sequences and lifestyle survey responses from 692 healthy volunteers. We employed
machine learning to model non-linear relationships between the high resolution phenotypes
and clinical risk markers for blood pressure, lipid and weight abnormalities. For each risk
type, we performed model comparisons based on Brier Skill Scores (BSS) to assess
predictive value of the high resolution features over and beyond typical baselines. We then
examined associations between the wearable-derived features, polygenic risk for
cardiometabolic disease, and lifestyle habits and health perceptions.

Results:

Compared to typical summary statistic measures like resting heart rate, we find that the
high-resolution features collectively have greater predictive value for modifiable clinical
markers associated with cardiometabolic disease risk (average improvement in Brier Skill
Score=52.3%, P<.001). Further, we show that heart rate dynamics from different activity
states contain distinct information about type of cardiometabolic risk, with dynamics in
sedentary states being most predictive of lipid abnormalities and patterns in active states
being most predictive of blood pressure abnormalities (P<.001). Finally, our results reveal
that subtle heart rate dynamics in wearable recordings serve as physiological correlates of
genetic predisposition for cardiometabolic disease, lifestyle habits and health perceptions.

Conclusions:

High resolution digital phenotypes recorded by consumer wearables in free-living states
have the potential to enhance prediction of cardiometabolic disease risk, and could enable
more proactive and personalized health management.

Trial Registration:
ClinicalTrials.gov NCT02791152; https://clinicaltrials.gov/ct2/show/NCT02791152

Keywords: Wearable device, heart rate, cardiometabolic disease, risk prediction, digital
phenotypes, polygenic risk scores, time series analysis, machine learning, free-living
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The adoption of consumer-grade wearable activity trackers into routine use has been
increasing rapidly in recent years, with approximately one in five U.S. adults reported to
regularly use wrist-worn smartwatches and fitness trackers in 2019 [1]. This phenomenon
has generated an unprecedented scale of consumer health data, and led to many studies on
the wider health uses of such data. These studies are increasingly generating evidence to
reveal relations between recordings from wearable activity trackers and the risk for
conditions ranging from mental health and infectious disease [2,3] to cardiovascular and
metabolic (“cardiometabolic”) diseases [4-7]. Amongst these, due to apparent links
between activity levels and cardiometabolic health, the evidence for broader health uses of
wearables is most established in the cardiometabolic domain [4,8-11].

Previous studies in the cardiometabolic domain have focused on the utility of wearable-
derived summary statistics, and fall into one of two categories. First, electrocardiogram
signals from wearables have been studied in relation to the development of cardiometabolic
conditions such as atrial fibrillation [12-14], hyperkalaemia [15,16] and heart failure [17—
19]. As many of these conditions are amenable to early intervention via dietary changes or
increased physical activity, there is also interest in using wearables to promote self-
awareness and regulation [20] and to enhance screening [11]. Second, wearable-derived
measures, such as circadian measures, sleep patterns/quality [11,21], step counts [4],
wearable-derived resting heart rate [4,8,10,21,22] and heart rate variability (HRV) [23-27]
have been found to correlate with outcomes in cardiometabolic disease. As such, there is
increasing recognition in the clinical community to incorporate wearable-derived measures
into practical cardiometabolic disease management [6,28].

At the same time, consumer wearable technology is developing rapidly and enabling better,
richer, and more granular measurements. In particular, advanced sensors in present day
consumer wearable and mobile health devices enable recording and extraction of step
counts, activity patterns, heart rate, and sleep states at fine temporal resolutions [6,29,30].
Therefore, the logical evolution of research in this area would be to extract higher-
resolution features, beyond traditional summary statistics and standard wearable-derived
measurements, from these time series recordings, and to assess their utility in relation to
cardiometabolic health states. A few recent studies have employed black-box deep neural
networks to relate high-resolution heart rate and step count time series recorded using
wearables to the risk of developing atrial fibrillation, sleep apnoea and hypertension
[31,32]. However, as their primary goal focused on risk target classification, the nature of
the intermediate predictive time series features and their connection with other known
biological and lifestyle-related markers of cardiometabolic disease remains unresolved.

In this paper, we introduce a framework to derive interpretable high resolution features
from heart rate and step count time series recorded by consumer wearables. We applied
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our approach on multidimensional data from normal volunteers in the SingHEART study
[33] to examine associations of high resolution wearable-based phenotypes with diverse
indicators of cardiometabolic health and disease. We found that high resolution digital
phenotypes from wearables had higher predictive value for modifiable risk markers of
cardiometabolic disease than established summary statistic measures like resting heart rate.
In order to better understand the wearable-derived features, we investigated how they relate
to genetic predispositions for cardiometabolic disease and to lifestyle habits. We
discovered that subtle high resolution patterns in wearable recordings may reflect
subclinical physiological changes associated with both genetic risk markers and lifestyle
factors. Our findings have implications for use of digital phenotypes from consumer
wearables as objective and quantitative indicators of cardiometabolic health and disease.

We sourced data from the SingHEART study (NCT02791152) as of October 8, 2019. This
study [33,34] was established at the National Heart Center Singapore (NHCS), a tertiary
specialty hospital in Singapore, and approved by the SingHealth Centralized Institutional
Review Board (CIRB Ref: 2015/2601 and 2018/3081). Enrolment targeted healthy
volunteers who provided written informed consent to use data (including electronic health
records) for research. Subjects were required to fulfil the following inclusion criteria: (i)
21-69 ylo, (ii) no personal medical history of prior cardiovascular disease (myocardial
infarction (MI), coronary artery disease (CAD), peripheral arterial disease (PAD), stroke),
cancer, autoimmune/genetic disease, endocrine disease, diabetes mellitus, psychiatric
illness, asthma, chronic lung disease or chronic infective disease, and (iii) no family
medical history of cardiomyopathies.

At the point of enrolment, each subject was profiled using a range of health assessment
modalities. The resulting dataset includes (a) heart rate and step count time series
recordings over 3-5 days from consumer wearable devices (Fitbit® Charge HR), together
with the associated sleep logs generated by Fitbit®, (b) self-reported answers to a lifestyle
and quality-of-life questionnaire [4], (c) genotypic data from whole genome sequencing
(WGS) using the IHlumina HiSeq X platform, and (d) laboratory measurements for nine
clinically-relevant markers (systolic and diastolic blood pressure; blood levels of
triglycerides, total cholesterol, high density lipoprotein (HDL) and low density lipoprotein
(LDL); fasting blood glucose level; waist circumference and body mass index (BMI)). As
of October 8, 2019, the full study cohort contained 1,101 subjects, amongst whom 692
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subjects had complete wearable recordings. A full description of the data is provided in
Supplementary Information (SI) Table 1.

While all health assessments above were performed at the point of enrolment into the study,
we also longitudinally tracked each subject for occurrence of any actual clinical events. In
particular, we extracted all ICD-10 codes pertaining to any acute care utilization events in
the regional health system associated with the NHCS until January 2021 to characterize
links between data features, risk markers and actual clinical events.

We now describe steps to derive resting heart rate, summary statistics on activity and sleep
patterns, and high resolution features from the wearable heart rate and step count time
series recordings. As all these physiologic features are derived from the same recordings,
they are internally consistent and can be meaningfully used for downstream comparative
analyses.

We used the wearable heart rate time series recordings to derive resting heart rate
(RestingHR) [4]. Specifically, we defined RestingHR as the average of heart rate values
across all time points that had a valid heart rate record and a step count of <=100. We note
that there are similarities between wearable-derived resting heart rate and the clinical gold
standard, ECG-derived heart rate [4,35].

We extracted the wearable time series recordings for each subject, and utilized only days
with at least 20 hours of step count and/or heart rate data as per Lim et al [4]. This procedure
yielded 642 subjects. Heart rate recordings were available either at regular one-minute
intervals, or as irregular bursts of recordings over 5, 10 or 15-second intervals. Step count
recordings were sampled at either 15-minute or one-minute intervals. We resampled all
heart rate and step count consumer wearable records to one-minute intervals, and then
annotated the time series to reflect data availability and physical activity levels (Figure
1A). We assigned a “null” value for heart rate at time points where it was missing. Then,
we annotated time points with available data for both heart rate and step count as “sleep”,
“active” or “sedentary”. Specifically, we applied the “sleep” annotation to all time points
captured by the Fitbit sleep log, the “sedentary” annotation to any time points with zero
step count value, and denoted the remaining time points as “active”. On average, the 642
subjects in our study had 3.72 days of valid heart rate data, and the average missing heart
rate periods in a day were 94.9 minutes long. The median lengths of the longest
uninterrupted time series for the “active”, “sedentary” and “sleep” periods were 3 1mins,
105mins, and 465mins respectively.
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Figure 1. Wearable Data Processing Pipeline. (A) Construction of low-resolution
features based on summary statistics. (B) Construction of high-resolution features based
on Catch22 algorithm. (C) UpSet plot of the 692 subjects with features from the various
categories. Only non-empty set intersections are presented. Intersection size indicates the
number of subjects found within the intersections of given sets. Of the largest intersection
with 328 subjects, 321 also had laboratory measurement recordings.
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For each subject, we processed the heart rate and step count time series recordings from
the consumer wearable devices to yield a range of summary and high-resolution features,
as detailed below.

We employed a three-step procedure to derive a range of wearable summary statistics
(Figure 1A). First, we used our physical activity annotations to compute mean daily
durations for the different activity levels. Second, we used device logs to obtain statistics
relating to sleep-wake patterns. Third, we converted the wake and sleep time into a 24-hr
format, and averaged the resulting values over all days where a given subject had wearable
data recordings. To account for the cyclical nature of sleep/wake patterns, we transformed
the average wake and sleep times using sinusoidal functions. Overall, this process yields
10 summary features for each subject. All the summary statistics included are listed in Sl
Table 2.

We further developed a data processing pipeline to extract high resolution time series
features from the wearable device heart rate recordings (Figure 1B). Reasoning that heart
rate and step count patterns under different physiological states or activity levels could
provide distinct insights into cardiovascular health, we sought to derive time series features
that encode contextual information about the physiological state or activity level.
Specifically, we processed heart rate time series recordings for each of the three physical
activity levels (sleep, sedentary, active) separately, as follows.

For each subject, we chose the longest uninterrupted time period of the heart rate time
series recordings for each physical activity level. Because the data exhibits significant
variability in the lengths of these time periods across subjects, we defined pre-specified
lengths to extract standardized sleep, sedentary and active segments. Specifically, we
extracted the first twenty minutes for active segments, the first one hour for sedentary
segments and the first five hours for sleep segments. If the recordings available for a subject
did not fulfil the aforementioned length criteria even with the longest segment for a given
activity level, we did not consider that particular activity level for high-resolution analyses.
This process yields up to three heart rate time series segments for each subject.

We then processed each of these extracted heart rate time series segments to obtain high
resolution features. Given a time series segment, it is possible to employ computational
packages such as the highly comparative time series analysis [36,37] and TSFRESH
[38,39] to generate thousands of high resolution features. However, such approaches can
generate many redundant features and the process of selecting a concise but effective
representation is often not straightforward. Recent work [40] introduced a minimally
redundant and interpretable set of 22 features, termed Catch-22 features, that have high
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predictive value across 93 diverse time series classification datasets. For any given time-
series segment, the Catch22 feature set captures several important dynamical properties,
including autocorrelations (both linear and non-linear), value distributions and fluctuation
analysis. We applied the Catch22 methodology [40] to obtain 22 high resolution features
for each available heart rate time series segment. Collectively, our pipeline results in up to
three sets of 22 high resolution features per subject, namely Catch22 (Sleep), Catch22
(Active), and Catch22 (Sedentary). All the Catch22 features included are listed in SI Table
3.

As our study did not prescribe controlled experimental settings for the wearable recordings,
the resulting time series segments often exhibit significant noise and irregularities. Hence,
we considered the reliability of our featurization approach in these real-world settings. In
particular, we assessed stability and sensitivity of the Catch22 features to the length
specifications across activity levels (SI-1). The results suggest that the features are
relatively robust within the intervals considered, and provide confidence for downstream
use of these high resolution features.

Figure 1C illustrates the overlaps amongst subjects with the different wearable derived
features, using UpSet plots [41,42]. For example, 41 individuals had features for active and
sedentary segments, but did not have sleep segments or summary statistics (due to lack of
sufficiently long continuous sleep recordings). We note that all the different types of
wearable features are available for a total of 328 subjects, of which 321 had laboratory
measurements as well. We considered this set of 321 subjects for ensuing risk modelling
and analysis.

We describe the overall approach to characterize predictive value of the different wearable-
derived features with respect to a variety of clinical risk markers. Specifically, we
considered model types based on six different feature sets (Table 1). We then defined four
target clinical risk markers based on whether the nine laboratory measurements exceeded
thresholds in Table 2: (a) abnormal blood pressure (“bp_abnormal”) for either I or II, (b)
abnormal lipid levels (“lipids_abnormal”) for at least one of III-VI, (c) obese (“obesity”)
for either VIII or IX, and (d) an omnibus category for lipid, blood sugar, obesity and/or
sugar abnormalities (“anyRISKoutof9”) for any of I to IX.
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Table 1: Description of the Different Model Types

Model Name Features Included Number of
Features

Baseline [4] Age + Gender 2

RHR Baseline features + RestingHR 3
SummaryStats Baseline features + Wearable Summary Stats 12
HighRes.ActiveSeg Baseline features + Catch22 (active) 24
HighRes.SedenSeg Baseline features + Catch22 (sedentary) 24
HighRes.SleepSeg Baseline features + Catch22 (sleep) 24

Table 2: Lab Measurements and Corresponding Thresholds

Lab Measurement Threshold to be considered at risk
I Systolic Blood Pressure More than 140 mmHg
] Diastolic Blood Pressure More than 90 mmHg
Il | Triglycerides More than 2.3 mmol/I
IV | Total Cholesterol More than 6.2 mmol/I
\Y/ HDL Less than 1 mmol/Il
VI | LDL More than 4.1 mmol/I
VIl | Fasting Blood Glucose Level More than 6 mmol/Il
VIII | Waist Circumference More than 100 cm (males)/ 90 cm (females)
IX | Body Mass Index More than 27.5

All the 321 subjects who had a complete set of wearable-derived features also had complete
data for the nine laboratory measurements. We considered this set of 321 subjects as our
training set to model clinical risk targets. Of these 321 subjects, 149 were not positive for
any of the four risk markers, while 172 were positive for at least one risk marker (see SI-
2). We note that a given subject can be positive for more than one of the four labels, but
the majority of subjects exhibiting positive risk markers were exclusively labelled by a
single risk marker. Specifically, out of the 172 positive subjects, 69% were positive for one
clinical risk marker, 23% were positive for two risk markers, and only 8% were positive
for three or more risk markers.

We employed machine learning to model the complex non-linear relationships between a
given feature set and target pairing using two separate approaches. First, for any given
target, we analysed comparative value of the different feature sets (Table 1) by using a
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model comparison approach. Specifically, we consider the degree to which the wearable-
derived features (RestingHR, wearable summary statistics, different high resolution
wearable features) augment the predictive value of the baseline demographic feature set,
and also compared the performance of the high resolution wearable features against that of
the lower resolution features. For appropriate comparison of value-add over the baseline
features, all feature sets based on wearable data also include the corresponding baseline
feature. Second, for each prediction target, we also compared the importance of the
individual feature variables. So as to have a common basis for these variable importance
calculations, we developed a unified model with all features included, and used this model
to compare variable importance for the different features.

We trained a series of models to estimate the probability that a subject exhibits clinical risk
markers for common cardiometabolic disease abnormalities. Specifically, we used random
forest classifiers [43] to model the four targets of interest as they are general purpose non-
linear classifiers that perform well in diverse settings. We trained the random forest models
in R using the randomForest package [44]. To handle the imbalanced nature of the
prediction tasks at hand, we set the number of minority class samples chosen for each tree
at 80% of the total minority class size. We then downsampled the majority class to match
the number of minority class samples used [45]. This was implemented via the strata and
sampsize parameters. For each of the four prediction targets, we constructed 200 such
random forests with different starting random seeds, and for each random forest trained,
we recorded the out-of-bag (OOB) prediction errors.

To obtain statistically meaningful estimates of variable importance, for a given prediction
target, we averaged the mean decrease in accuracy (MDA) for each feature across the 200
random forests. We then ranked the features by their average MDA to obtain the list of top
ten ranked features for the target of interest. For analysis of variable importance, we
considered the union of the top ten ranking features for the four cardiometabolic disease
risk targets.

As our goal is to comparatively characterize predictive value of the different wearable-
derived feature sets over and beyond the baseline features, we chose to evaluate relative
gains in prediction accuracy. Specifically, as the prediction task is inherently probabilistic,
we evaluated the accuracy of probabilistic predictions with the commonly used Brier Skill
Score [46,47].

For a given target, we considered the 200 baseline models constructed, computed the Brier
Scores for each model (see equation 1), and selected the best performing model with the
lowest Brier Score. We denote this selected model as B. Then, for each of the other
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wearable-based model types (Table 1) for the same target, we obtained the corresponding
Brier Skill Score as shown in equation 2.

N
1
BrierScore(M) = NE(pi —0;)?, €Y
i=1
BrierScore(M)

BrierSkillScore(M) = 1 — BrierScore(B) (2)

where M is the wearable-based model under consideration, p; is the prediction probability
of observing target i using the model under evaluation, o; is the actual observed target or
label (binary: 0/1), and N is the total number of subjects included for modeling. The Brier
Skill Score ranges from negative infinity to 1; a positive Brier Skill Score indicates that
model M performs better than the comparative baseline model B, while a negative score
indicates model M performs worse than the comparative baseline model B. If M has the
exact same performance as B, the Brier skill score is zero.

In total, the above process yields 200 Brier Skill Scores for each pairing of prediction target
and wearable-derived feature set (model) type. We note that the Skill Scores are based on
out-of-bag estimates [43,48], which provides close approximation to an independent test
set. We conducted comparisons of Skill Scores between model types via two-sided t-tests,
with the P values adjusted using the Benjamini-Hochberg procedure (BH-adjusted P
values) [49,50].

Beyond the quantitative characterizations detailed above, we also examined how the high
resolution wearable recordings may connect to clinically relevant cardiometabolic disease
outcomes. For this, we selected subjects who actualized clinical events with primary ICD10
diagnosis codes for cardiometabolic disease during our longitudinal monitoring period
(Table 3). Amongst these subjects, we only considered those not included in the training
set for the clinical risk target models. Then, for the selected subjects, we profiled the
wearable-derived features alongside other cross-sectional information (demographics,
BMI and ECG heart rate).

Table 3: ICD Codes Used for Profiling?
Clinical Diagnosis ICD Codes

Cardiovascular Disease (CVD) 1200, 1208, 1211, 1214, 12511, 1258, 1259,
1420, 148, R000, RO01, 1471, 1440, 1447,
1451, 1458, 1493, 1495, 1498

Dyslipidemia E780, E781, E782, E783, E784, E785,
E786
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Hypertension 110, 111, 112, 113
Obesity E668, E669
aDescription of the ICD codes are provided in SI Table 4.

In order to understand the wearable time series features further, we investigated their
associations with biological and environmental factors. As probing these associations
requires handling diverse multidimensional data types with potentially complex non-linear
relationships, we used a machine learning framework (similar to the one described earlier)
to construct models of these relationships. We then employed model performance measures
to infer the degree of information overlap between the wearable features on the one hand,
and (i) genetic risk targets or (ii) lifestyle related targets on the other. For these analyses,
we considered the wearable-derived summary statistic features; and the high resolution
wearable features with the highest predictive value for the clinical risk markers. We now
describe the derivation of the genomic and lifestyle targets, and the setup of the association
analyses in each case.

We categorized genetic susceptibility to cardiometabolic diseases using polygenic scores
(PGS). As the computation of PGS does not depend on the availability of wearable
recording data, we applied the computations to all subjects in our study cohort. The
polygenic score catalog [51] is a database of polygenic scores obtained from published
scientific studies. As with the NHGRI-EBI GWAS Catalog, the traits corresponding to
polygenic scores are grouped by mapped traits [52,53]. To define genetic risk levels for
lipid abnormalities, blood pressure abnormalities and obesity, we obtained polygenic
scores with less than 20,000 variants from the PGS Catalog based on the mapped trait
ontology corresponding to the three targets respectively. For each eligible PGS, we
compared the proportion of true cases (based on the laboratory measurements) in the
subjects with scores below the 5™ percentile and also the subjects with scores above the
95" percentile, and determined the “direction” of the score based on the two proportions.
We retained those PGS whose ratio of proportions was >=1.5. This yielded fourteen PGS
for lipid abnormalities (PGS000060, PGS000061, PGS000062, PGS000063, PGS000065,
PGS000115, PGS000192, PGS000309, PGS000310, PGS000311, PGS000340,
PGS000677, PGS000688, PGS000699), two for blood pressure abnormalities
(PGS000301, PGS000302) and one for obesity (PGS000298). We detail the scores and
mapped trait ontology in SI-3.
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For each of the selected PGS, we assigned subjects to high PGS risk and low PGS risk
groups if the scores were either larger than the 90" percentile, or smaller than the 10™
percentile, depending on the direction of the PGS with respect to the mapped trait
propensity. Then, we considered all relevant PGS for a given target (e.g., set of 14 PGS for
lipid abnormalities), and labelled subjects with high risk scores for any of the PGS for that
trait as having high genetic risk for that trait. For instance, the high genetic risk group for
lipid abnormalities would include members with high risk scores for one or more of the
fourteen lipid related PGS. The above process provides three binary genetic risk targets —
corresponding to high or low genetic risk for lipid abnormalities, blood pressure
abnormalities and obesity respectively. In order to evaluate the sensitivity to the chosen
percentile cut-offs for genetic risk scores, we repeated analyses for two additional sets of
cut-offs: the 80™/20™ percentile, and 85"/15™" percentile. We detail the number of subjects
for each of the three genetic risk targets under the different cut-offs in SI-4.

We analysed associations between the high-resolution wearable-based physiological
features and genetic risk targets. We studied whether the associations with high-resolution
features are greater than those with baselines based on gender, resting heart rate, and other
summary statistics using model comparison metrics.

We considered a variety of lifestyle habits (LH) and health perceptions (HP) from the LH
and HP surveys in our dataset. To choose specific LH and HP targets, we tried to balance
data sparsity and diversity as follows. We considered the proportion of subjects who
answered the associated questions in the LH and HP surveys, and the diversity in their
responses for meaningful analysis. Specifically, we selected only those targets associated
with questions that elicited affirmative answers from more than twenty subjects. This
resulted in a set of three LH questions, and four HP questions, for a total of seven targets.
The targets of the three LH questions focused on (i) consumption of caffeinated drinks, (ii)
consumption of alcohol, (iii) adoption of relaxation therapies. The targets of the four HP
questions focused on (a) pain/discomfort, (b) anxiety/depression, (c) stress level and (d)
health state [4]. We now describe processing choices made to define these targets, and the
associated modelling approaches.

For the lifestyle choices, we defined the target Relaxation. Therapies based on the subject’s
answer to whether they had engaged in any form of relaxation therapies, and the target
alcohol consumption based on whether or not the subject had taken any alcoholic drink
within the prior three months to answering the survey. To quantify caffeine intake, we
converted the reported weekly consumption of caffeinated beverages into a heuristic score.
The beverages taken into consideration were coffee, English tea, Chinese tea and Green
tea, and the self-reported levels were “never/rarely”, “less than one cup a week”, “more
than or equal to one cup a week, but less than one cup a day”, and “others”. We assigned,
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for each beverage, scores of 0, 0.5, 2 and 5 respectively for the four levels, and computed
the caffeine intake score as the sum of scores for each of the four beverages. We binarized
this score and considered a subject as having high caffeine intake if their score was greater
than 1.

For the health perception survey, we defined positive and negative classes as follows. For
pain/discomfort, we defined the positive class as a choice of “I have moderate pain or
discomfort”, and the negative class as a choice of “I have no pain or discomfort”. For
anxiety/depression, we defined positive class as a choice of either “I am moderately
anxious or depressed” or “I am extremely anxious or depressed”, and the negative class as
a choice of “I am not anxious or depressed”. For stress level, as the survey presented
subjects with an integer scale of 1 to 10, we divided the answers into three levels: “Low”
for scores less than or equal to 3, “Moderate” for scores between 4 and 6 inclusive, and
“High” for scores greater than or equal to 7. For Health state, as the survey presented
subjects with a continuous scale from 0 to 100, we divided answers into three levels: “Low”
for scores less than or equal to 30, “Moderate” for scores greater than 30 but less than or
equal to 70, and “High” for scores greater than 70.

We used the same modelling framework as before to assess associations between the
wearable-based physiological features and targets relating to lifestyle habits and health
perceptions. We studied whether the associations with high-resolution features are greater
than those with baselines based on gender and age, resting heart rate, and other summary
statistics using model comparison metrics. To choose the subjects for these analyses, we
attempted to maximize use of available data and diversity of responses. As responses to
the lifestyle questionnaire exhibited higher data sparsity, we chose subjects independently
for each modelling target (rather than selecting one fixed set of subjects across all targets).
For instance, all models trained to predict alcohol consumption used data from the same
set of subjects, regardless of the feature set under consideration. Similarly, all models
trained to predict caffeine intake used data from another set of subjects independent of
whether the set chosen was identical or intersected with the set used for alcohol
consumption. We detail the number of subjects within each target and class in SI-4.

As some of the LH and HP targets contain more than two classes, and sometimes have
ordinal values (e.g. low, medium, high), we evaluated the trained models with the more
general Ranked Probability Skill Score (RPSS) [54-56] in lieu of the Brier Skill Score.

Again, for model M and baseline model B,
Tr 2

N R r
oq . 1
RankedProbabilityScore(M) = m Z Z (Z Pni— Z 0n,i> , (D
l:

n=1r=1 i=1
RankedProbabilityScore (M)
RankedProbabilityScore(B) ’

RankedProbabilitySkillScore(M) = 1 — (2)
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where p,, ; is the predicted cumulative probability of observation n for the i-th class, o, ; is
the actual cumulative probability for the observation in class i-th, N is the total number of
subjects included in the modelling and R is the maximum number of classes in the target
parameter.

Unlike summary statistics such as RestingHR which average heart rate measurements
across multiple days, our high resolution feature sets constitute a more granular resolution
of the heart rate time series dynamics for different physical activity levels. We
characterized the different wearable-derived heart rate feature sets by (1) visualizing them
as a function of time, and (2) evaluating how they relate to other heart rate features.

First, we examined how the high resolution wearable-derived heart rate features from sleep,
active and sedentary segments are distributed across subjects in the study. Figure 2
illustrates the empirical distributions for exemplar features drawn from segments
corresponding to each of the three physical activity levels. To examine the variability
across subjects, we also visualized representative time series at the 2.5, 251 50, 75" and
97.5™ percentile of the density.

We observe that some features (e.g., the time reversibility statistic ((x..; — x¢)3); in
Figure 2a-c) relate to the degree of spikiness/regularity in the wearable based heart rate
time series, while other features quantify the degree of non-normality of the time series
values (e.g. DN_HistogramMode_5 in Figures 2d-f, which corresponds to the mode of the
z-transformed values).
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Figure 2. lllustration of Wearable-Derived High-Resolution Heart Rate Features. The
distributions of six high-resolution features from the study subjects, based on two Catch22
features obtained from time series recordings in each of the three activity levels. The
selected subjects are at the 2.5%, 251, 50", 75" and 97.5" percentiles of each distribution,
and the time series for the subject is plotted in the corresponding colour. (a-c)
CO_trevl_num is the time-reversibility statistic; higher values tend to correspond to more
“spiky” and/or irregular time series. (d-f) DN_HistogramMode_5 takes a time series and
groups the values across the period into 5 bins, and reports the mode of that graph.
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Second, we studied relationships between the different high resolution heart rate features.
For any given feature, we considered vectors of feature values for each physical activity
level across the population (e.g. CO_trevl num.active, CO_trevl num.sedentary), and
calculated the angular distance (Figure 3, bottom-right) between feature vectors for each
pairing of activity levels. Although the Catch22 algorithm was identically applied to each
of the three activity segments, we observed that the angular distances between features
generated from the three segments (i.e., for active, sleep, and sedentary states) are generally
large (Figure 3A). In some cases, the feature vectors are almost orthogonal to each other
(e.g. CO_trev_1 num). We also compared the distributions of Catch 22 feature values
across the three different activity levels, and found differences in the distributions (SI-5).
These findings suggest that the same feature may contain distinct information about heart
rate dynamics in different activity states.

Finally, we evaluated inter-relations between the different feature sets, namely the high
resolution wearable features, RestingHR, wearable summary statistics, and the clinical
gold standard ECG features (PR, QRS, QT, ECG.HR and QTc). Specifically, to evaluate
the degree of overlap between information from the different feature sets, we computed the
subspace angle between the feature matrices of interest (Figure 3B). For this pairwise
computation between feature sets, we selected a common set of 315 subjects who had valid
(i.e., non-null) records for all the features under consideration. Intuitively, two feature sets
with independent information content would be orthogonal (90°) to each other, whereas
two collinear feature sets would have subspace angle of 0°; the smaller the subspace angles
between two feature sets, the more overlap in the information content. Overall, the different
heart rate features exhibit substantive overlap (6 < 6°). However, the high resolution and
summary statistic features derived from the wearables are most distinct from RestingHR
(6 =4.75° and 5.35° respectively). Further, the clinical gold standard features obtained via
laboratory ECG measurements are most distinct from wearable-based RestingHR (6 =
4.52°), but have good overlap with both the wearable-derived high-resolution features and
wearable summary statistics (6 = 2.22° and 2.24° respectively). These findings suggest that
clinically informative features could be obtained with consumer devices in home or
community settings.
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Figure 3. Relationship Between Different Heart-Rate Features. Angular distance, 6 (°),
was used to assess similarity between features. (A) Angles between high resolution feature
from the three different activity periods. White colour is used where the angle was
undefined. (B) Subspace angles between the three wearable feature sets and the laboratory
ECG measurements.
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Having gained some intuition about the information contained within the wearable-derived
feature sets, we considered their predictive value for the clinical markers of
cardiometabolic disease risk. Specifically, we trained random forest models to use the
different wearable-derived feature sets for classification of each of the four cardiometabolic
disease risk targets. We performed two sets of comparative analyses to evaluate predictive
value of the wearable-derived feature sets for classification of different cardiometabolic
disease risk targets, and detail findings below.

First, we compared the out-of-bag performance of models trained using different feature
sets for each clinical risk marker target (Figure 4). For each target, the best performance
model was based on one of the high resolution wearable feature sets (HighRes.ActiveSeg,
HighRes.SedenSeg or HighRes.SleepSeg). This finding highlights the predictive value of
the high resolution information within wearable-derived heart rate time series recordings.

Second, we observe that heart rate dynamics extracted from different activity level
segments have differential predictive potential for the various targets, evidenced by the
statistically significant differences between Brier skill scores of the HighRes.ActiveSeg,
HighRes.SedenSeg and HighRes.SleepSeg models (Figure 4). Of the three model types,
HighRes.SedenSeg performs best for lipid abnormalities, obesity and anyRISKoutof9;
while HighRes.ActiveSeg performs best for blood pressure abnormalities.

Third, to comparatively evaluate contributions from individual wearable-derived features,
we trained models that utilize all features available to predict each cardiometabolic disease
risk target, and ranked the variable importance in each case. Figure 5 shows the variable
importance plots, averaged across 200 independent simulations, based on the combined set
of top ten ranking features for each of the four cardiometabolic disease risk targets. It is
immediately clear that different features drive the performance of the models for each of
the four targets. For instance, age and gender are the top two drivers of model performance
for the anyRISKoutof9 target, but are not even within the top ten for both lipids_abnormal
and obesity. Similarly, the set of features that primarily drives the performance for
lipids_abnormal includes many that are detrimental to performance for the anyRISKoutof9
target. Further, our findings show that heart rate dynamics from different activity states
contain distinct information on cardiometabolic disease risk. For example, the
DN_HistogramMode_5 feature from the sedentary and active segments is important for
predicting the cardiometabolic disease risk markers (Figure 5), but the
DN_HistogramMode_5 feature from the sleep segment is not.

Fourth, we observe that the top ten features for each of the four targets included features
from all six feature types (age/gender, RHR, wearable summary statistics, and the three
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sets of high resolution features from Table 1). This suggests that risk prediction models
using wearable-derived features may not exclusively rely on only one of the different
feature sets, or any one feature drawn from these feature sets for that matter. Rather, a
collection of different wearable-derived high resolution heart rate features from distinct
activity states is essential to accurately predict a multiplicity of cardiometabolic disease
risk targets.

Figure 4. Model Performance on Cardiometabolic Risk Targets. Model performance
for each of the five model types computed for the four targets. A higher Brier Skill Score
indicates better performing model. The baseline model on which the Brier Skill Score is
based on only has age and gender as features; feature sets used in each model type are
detailed in Table 1. Comparisons of Skill Scores from the different models against those
from the HighRes.SedenSeg model (using t-tests) indicate significant differences, with
BH-adjusted P values all being <.001 (represented by “****”),
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Figure 5. Random Forest Variable Importance. The variable importance of each feature
for prediction of the four cardiometabolic disease risk targets. We averaged each
importance value across 200 simulations, and used the results to rank the top ten features
to retain for each cardiometabolic disease risk target. This resulted in a total of 26 features
across all four targets, as shown.
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Finally, we examined relations between the most predictive wearable-derived feature set
(i.e., Catch22 (Sedentary)) and actualized clinical events. Of the 692 subjects in our study,
we filtered those who actualized clinical events for cardiometabolic conditions during the
longitudinal monitoring period after initial data collection. Through this process, we
identified a total of 11 subjects who developed relevant cardiometabolic conditions:
cardiovascular disease (CVD; five subjects), dyslipidemia (four subjects) and hypertension
(two subjects). None of the subjects had actualized obesity related events. Of these 11
subjects, we further selected those subjects who did not overlap with the set of 321 subjects
whose data were used to train predictive models for clinical risk markers. This yielded a
set of four subjects: one subject had ICD codes for all three conditions, two subjects only
had codes for dyslipidemia, and one subject only had codes for cardiovascular disease.
Amongst these four, we selected the two subjects with cardiovascular disease for further
profiling: one with CVD, dyslipidemia and hypertension (Subject A) and one with CVD
only (Subject B).

For these two subjects, we visualized the 22 wearable-derived high resolution features
using two clockplots (see SI Table 3 for the feature names corresponding to the numeric
IDs). First, for a given subject, we plotted the percentile value of each feature in relation to
the associated distribution in the training dataset (321 subjects). We term this the feature
value percentile clockplot. Any feature exhibiting extreme percentile values stands out in
relation to its typical distribution across individuals in our training set. Second, for each
feature, we considered a cluster of the 10 training set members that are most similar (based
on feature value proximity) to the subject of interest; and plotted the percentage of the
cluster members who have positive anyRiskoutof9 labels. The percentage of positive labels
in this cluster suggests the degree to which this individual feature value is indicative of
risk. We term this the positive label proportion clockplot.

We present the profiles and some illustrative findings for subject A and B in Figures 6A
and 6B, respectively.

Subject A was a 51-55 year-old male who was assessed at the start of the study to have
very high BMI, higher than average wearable-derived resting heart rate of 72.8 bpm, and
abnormal blood pressure and sugar levels. Amongst the wearable-derived high resolution
features from the sedentary period, features 1, 11 and 20 (DN_HistogramMode 5,
CO_Embed2_Dist_tau_d_expfit_meandiff and
SC_FluctAnal_2 dfa 50 1 2 logi_prop_rl respectively) stand out for having extreme
percentile values (feature value percentile clockplot) that are more typical of training
subjects with positive labels for anyRISKoutof9 (positive label proportion clockplot). We
note that the feature 1 and 11 are the most important high resolution features in the
corresponding HighRes.SedenSeg model for anyRISKoutof9 (See SI-7).
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In contrast, subject B was a 56-60 year-old male with a seemingly healthier profile, having
lower BMI and lower than average resting heart rate of 58.2 bpm. Accordingly, subject B
only had abnormal lipids levels and no other risk markers at the start of the study. However,
the high resolution features characterizing this subject depict a richer picture. Eight out of
22 features exhibited values either below the 25" percentile or above the 75" percentile of
their corresponding training set distributions (feature value percentile clockplot). Of these,
features 6, 14 and 17 (CO_trev_1 num, DN_Outlierinclude_p 001 _mdrmd and
SB_BinaryStats_diff_longstretch0, respectively) had values at the 5.9 0" and 98.8"
percentile of their corresponding training set distributions, respectively. We note that
features 6, 14 and 17 are amongst the top ten most important features for the corresponding
HighRes.SedenSeg model for anyRISKoutof9 (See SI-7).

As neither Subject A nor Subject B were part of the training set used to develop the models,
the above observations are consistent with the hypothesis that there are true associations
between some of the high resolution features and the cardiometabolic disease risk targets.
Although extreme feature values, in and of themselves, may not always determine the
eventuality of a cardiovascular disease event, the above comparisons illustrate the
discriminative potential of the high resolution wearable-derived heart rate features over
and above evident BMI and heart rate measures. These illustrative case studies also
highlight that the specific subset of wearable features taking on extreme values may be
different for different individuals. This suggests the need for a diverse set of high resolution
heart rate features, and a model that allows interactions between these features, in order to
better explain potential risks. We finally note that the lifestyle and genomic markers for
these subjects, detailed in SI-8, are largely similar and differences that do exist may reflect
in the heart rate and BMI profiles we considered above. The above observations
collectively suggest that the wearable-derived high resolution heart rate features could
contain additional physiological information beyond typical self-reported health and
wellness metrics and/or common summary statistics used to assess cardiometabolic disease
risk.

Figure 6. lllustrative Profiles of Two Subjects with Actualized Cardiometabolic
Disease events. Subjects A and B with associated ranges of BMI, RestingHR and
laboratory ECG heart rate measurements. The heart rate time series corresponds to the 1-
hour sedentary period used to generate the high resolution features. The two clockplots
present the 22 high-resolution features obtained for the subject; the left plot depicts the
percentile value of each feature in relation to the associated training set distribution, while
the right plot shows the local likelihood that a given feature value would be seen in
individuals who are positive for anyRISKoutof9. For both clockplots, red diamonds are
used to indicate features with values exceeding the 75" percentile or 75% proportion, and


https://doi.org/10.1101/2021.10.29.21265547

medRxiv preprint doi: https://doi.org/10.1101/2021.10.29.21265547; this version posted November 1, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

blue diamonds for features with values below the 25" percentile or 25% proportion. The
complete list of feature names corresponding to the numerical IDs in the clockplots can be
found in Sl Table 3.
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Associations between Wearable-Derived Features, Genetic and Lifestyle Markers

To further interpret the information contained within the wearable-derived features, we
sought to understand how they relate to genetic predispositions for cardiometabolic
disease, lifestyle habits and health perceptions. In particular, we focused these analyses on
the commonly used RestingHR feature, the wearable-derived summary statistics feature
set, as well as the high resolution feature set with most predictive value for all the clinical
risk markers combined, i.e., Catch22 (Sedentary) (see Figure 4: anyRISKoutof9 panel); the
corresponding models were RHR, SummaryStats and HighRes.SedenSeg respectively
(Table 1).

Associations with Genetic Risk Scores

We examined the degree of information overlap between the different wearable-derived
features (Table 1) and the genetic risk for cardiometabolic conditions. For each pairing
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between the three wearable-derived feature sets and the three genetic risk targets, we
trained random forest models, and used the Brier Skill Scores of the different feature sets
(against a baseline model that only included gender as a covariate) as indirect measures of
strength of the associations.

The results are in Figure 7. For each of the three abnormality types, we observe that the
high resolution wearable features were more strongly associated with genetic risk levels
than RestingHR. Further, for genetic predisposition to lipid abnormalities and obesity, the
high resolution wearable-derived heart rate feature set had stronger associations than the
summary statistics feature set. However, for genetic predisposition to high blood pressure,
the summary statistics features had a slightly stronger association than the high resolution
wearable-derived features (yet with small 0.025 margin in Brier Skill Score between
HighRes.SedenSeg and SummaryStats models). We highlight that these trends are
relatively insensitive to the polygenic risk score threshold used for defining high vs. low
genetic risk (SI-6). These results suggest that the wearable recordings may capture
physiological dynamics related to genetic risk for cardiometabolic disease.

Figure 7. Degree of Association with Genetic Risk Targets. Out-of-bag (OOB)
performance for each of the five model types computed for the three targets. A higher Brier
Skill Score indicates better performing model; negative scores indicate that the model
performs worse than the comparative baseline model. The baseline model used for the Brier
Skill Score computations has gender as the only covariate. RHR: Baseline + RestingHR;
SummaryStats: Baseline + Summary Statistics; HighRes.SedenSeg: Baseline + Catch22
(Sedentary).
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Association with Lifestyle Habits and Health Perceptions

Next, we studied overlap between the different wearable-derived feature sets, and general
lifestyle habits (LH) and health perceptions (HP). For each combination of the three
wearable-derived feature sets and the seven LP and HP targets, we trained random forest
models, and used the Ranked Probability Skill Scores of the different feature sets (against
a baseline model with gender and age as covariates) as indirect measures of strength of the
associations.

We first examine the results for health perceptions (Figure 8A-D). For all these cases, the
wearable-derived summary statistics and high resolution features have stronger
associations than resting heart rate alone. In particular, the wearable-derived summary
statistics are highly correlated with states pertaining to stress, anxiety and depression. This
IS intuitive as these states affect many aspects of a subject’s activity and sleep-wake
patterns. Intriguingly, however, we find that the wearable-derived high resolution heart
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rate features are highly associated with pain and discomfort, as well as with the overall
perceived health state. This suggests that heart rate dynamics contain indicative
information on overall pain levels, and health and wellness perceptions. Hence, wearable
heart rate recordings may serve as objective measures for these often very subjective and
difficult to assess perceptions.

Next, we turn to the results for lifestyle habits (Figure 8E-G). We observe that RestingHR
IS most strongly associated with engaging in relaxation therapies. This suggests that the
overall (average) heart rate may have more information on relaxation than higher resolution
heart rate dynamics. On the other hand, for the consumption patterns of alcohol and
caffeinated drinks, the higher resolution feature sets have stronger associations than
RestingHR alone. In particular, wearable-derived summary statistics are most associated
with alcohol consumption habits while wearable-derived high resolution features are most
associated with caffeine consumption. Contrary to expectations, resting heart rate has
weaker associations with caffeine consumption than higher resolution features derived
from sedentary segments. This suggests that dynamics (e.g., irregularity or “spikiness”) of
the heart rate time series even while a subject is sedentary may be associated with caffeine
consumption habits. While the size of our data and data collection process do not enable
assessments of causality of the above relationships, the above results provide interesting
insights into how physiological dynamics that manifest in wearable recordings may be
correlated with lifestyle habits.
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Figure 8. Model Performance on Lifestyle Habits and Health Perception Targets. Out-
of-bag (OOB) performance for each of the three model types computed for the seven
targets. A higher Brier Skill Score indicates better performing model. The baseline model
used for computing the Ranked Probability Skill Score uses age and gender as covariates.
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Consumer wearables enable recording of rich high resolution physiological dynamics in
free-living conditions, but how these data relate to health and disease is not fully
understood. We introduced a principled framework to derive high resolution heart rate
features from consumer wearable recordings. We applied our approach on a dataset
containing multidimensional cardiometabolic health parameters from healthy volunteers,
and demonstrated the utility of high resolution wearable features in understanding
cardiometabolic disease risk. Our results highlight the additional value of these high
resolution features over typical summary statistics, and show that wearable data recorded
on an ongoing basis are associated with genetic predispositions and lifestyle habits alike.
Therefore, we posit that high resolution digital phenotypes from consumer wearables could
find potential use in longitudinal monitoring of cardiometabolic health.

Our framework is customized to address key challenges in mining wearable data recorded
in free-living conditions. Unlike clean data from controlled experimental settings, real-
world wearable recordings tend to be irregular, contain missing stretches [29], lack clean
context annotations, and have variable lengths. As such, analyses based on naive
application of general-purpose time series feature extraction methods [37,40,57] may not
have ecological validity [58]. To address this gap and derive meaningful physiological
dynamics from wearable time series recordings, our feature extraction framework
standardizes handling of data irregularities, and encodes contextual information about
underlying activity level and physiological state (Figure 1-3). This conceptual framework,
although demonstrated here with the Catch22 method [40], is agnostic to choice of time
series featurization methods [37,38]. Further, in contrast to black-box feature learning
methods based on large labelled datasets [31], our approach yields more interpretable time
series features with smaller unlabelled datasets.

Our framework enables many possibilities for gaining new insights with wearable
recordings. To illustrate this, we analysed multimodal wearable, genomic, lifestyle and
clinical data from healthy volunteers and highlight two of these possibilities.

First, our results reveal new relations between high resolution heart rate dynamics from
wearables and risk of cardiometabolic disease. Most previous studies correlate clinically
obtained measures of heart rate dynamics, such as heart rate variability, exercise capacity,
and heart rate recovery, with disease risk or outcomes [59-61]. In contrast, our results
reveal that heart rate dynamics recorded by consumer wearables, when processed
appropriately, are also predictive of cardiometabolic disease risk (Figures 4 and 6). Further,
we find that heart rate dynamics from different activity states contain distinct information
about specific cardiometabolic conditions (Figures 2-5). For example, heart rate patterns
from sedentary states are more related to lipid abnormalities and obesity, whereas those
from active states may be more related to blood pressure abnormalities (Figure 4). These
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findings highlight the value-add of assessing physiology in free-living activity states
(beyond controlled clinical settings) for disease risk monitoring [62].

Second, our work provides new perspectives on interfaces between wearable recordings,
genetic predispositions and lifestyle factors in cardiometabolic disease. Although there has
been longstanding interest in probing gene-lifestyle interactions and their additive effects
on cardiovascular disease [63-65], such studies have had limited visibility into physiology
in free-living conditions. We found surprising connections (Figure 7) between our
wearable-derived features and genetic predispositions for cardiometabolic disease. As
these associations did not appear to depend on the presence or absence of manifest clinical
risk markers, we posit that high resolution phenotypes from wearables may capture subtle
subclinical physiological changes stemming from latent predispositions to disease.
Moreover, while wearables are known to capture intimate details on daily life patterns
[66,67], our results suggest that high resolution features in wearable records could serve as
objective indicators of subjective perceptions of stress, anxiety, pain and overall health
state (Figure 8). Collectively, these findings suggest that high resolution digital phenotypes
from wearables could provide a means to passively but objectively assess physiological
changes relating to a host of nature and nurture factors.

While the uniquely multimodal nature of our data enables us to uncover many novel
insights on high-resolution wearable phenotypes, limitations of dataset size and cohort
design present some challenges. For instance, it was infeasible to conduct full-scale gene-
environment interaction studies [68—70]; analyse relevant lifestyle factors such as smoking
(as only 9 smokers had wearable records of sufficient durations); or train state-of-the-art
machine learning models with large feature sets. Further, as the study exclusively enrolled
healthy subjects, only 11 subjects subsequently presented with actualized cardiometabolic
events in the longitudinal monitoring period, limiting our clinical outcome evaluations.
Future work based on larger cohorts [71] with more longitudinal follow-up could address
some of these limitations. Such efforts would also enable cross-cohort validation of our
current findings; expansion of our findings to even higher resolution digital phenotypes
that can be extracted from recordings with newer generations of wearable devices [72,73];
and targeted evaluations of value for precision screening, health monitoring and disease
management applications.
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