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ABSTRACT 
The growing recognition of algorithmic bias has spurred discussions about fairness in artificial 
intelligence (AI) / machine learning (ML) algorithms. The increasing translation of predictive 
models into clinical practice brings an increased risk of direct harm from algorithmic bias; 
however, bias remains incompletely measured in many medical AI applications. Using data from 
over 56 thousand Mass General Brigham (MGB) patients with confirmed severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2), we evaluate unrecognized bias in four AI 
models developed during the early months of the pandemic in Boston, Massachusetts that predict 
risks of hospital admission, ICU admission, mechanical ventilation, and death after a SARS-
CoV-2 infection purely based on their pre-infection longitudinal medical records.  
We discuss that while a model can be biased against certain protected groups (i.e., perform 
worse) in certain tasks, it can be at the same time biased towards another protected group (i.e., 
perform better). As such, current bias evaluation studies may lack a full depiction of the variable 
effects of a model on its subpopulations.  
If the goal is to make a change in a positive way, the underlying roots of bias need to be fully 
explored in medical AI. Only a holistic evaluation, a diligent search for unrecognized bias, can 
provide enough information for an unbiased judgment of AI bias that can invigorate follow-up 
investigations on identifying the underlying roots of bias and ultimately make a change.  
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Introduction 
The healthcare research and industry have been increasingly progressive on the translation and 
implementation of artificial intelligence (AI)/machine learning (ML) to improve outcomes and 
lower costs. Diligently identifying and addressing biases in AI/ML algorithms (hereafter, 
referred to as “algorithms”) have garnered widespread public attention as pressing ethical and 
technical challenges.1–5 For instance, there is growing concern that algorithms may import and/or 
exacerbate ethno-racial and gender disparities/inequities through the data used to train them, due 
to their math, or the people who develop them.6,7  
The costs of deploying algorithms in healthcare carelessly could exacerbate the very health 
inequalities society is working to address.8,9 The Algorithmic Accountability Act of 201910 
requires businesses to evaluate risks associated with algorithm fairness and bias.11 Nevertheless, 
regulating algorithm biases in healthcare remains a difficult task. Eminent cases of algorithm 
bias have been documented, for example, in facial recognition and natural language processing 
(NLP) algorithms. Facial recognition systems, for instance, that are being increasingly utilized in 
law enforcement often perform poorly in recognizing faces of women and Black individuals.12–14 
In NLP, language is often encoded in gendered formats.15–17  
These issues are relevant in the healthcare domain, with different caveats at the bench and at the 
bedside. The demographics (e.g., ethnic, racial) of the patients used to train algorithms is often 
unknown for external evaluation.8 As a result, algorithms have been observed to produce inferior 
performance in detecting melanoma and health risk estimation in disadvantaged poorer African-
American populations.7,18,19 Such biases in healthcare may be caused by missing data (e.g., 
higher rates of missingness in minority populations due to decreased access to healthcare or 
lower healthcare utilization), observational error, misapplication, and overfitting due to small 
sample sizes or limited population and practice heterogeneity. 5,20–22  
In general, algorithm biases can be categorized under statistical and social. Statistical bias, which 
is common in predictive algorithms, refers to algorithmic inaccuracies in producing estimates 
that significantly differ from the underlying truth. Social bias embodies systemic inequities in 
care delivery leading to suboptimal health outcomes for certain populations. 23  Social bias can 
underly statistical bias. In healthcare, we could have a third category of “latent” biases, which 
refers to increases in social or statistical biases over time due to the complexities of the 
healthcare processes.5  
Despite the eminent work in other fields, bias often remains unmeasured or partially measured in 
healthcare domains. Most published research articles only provide information about very few 
performance metrics -- mostly through measures of algorithm’s discrimination power, such as 
the Area Under the Receiving Operating Characteristics Curve (AUROC). The few studies that 
officially aim at addressing bias, usually utilize single measures (e.g., model calibration7) that do 
not portray a holistic picture of the story on bias. Proper evaluation of bias in medical AI requires 
a holistic evaluation with a diligent search for unrecognized bias, which can invigorate follow-up 
investigations to identify the underlying roots of bias.   
The COVID-19 pandemic resulted in the generation of new data and data infrastructures related 
to both pandemic illness and healthcare more broadly. In this paper, we evaluate unrecognized 
statistical and latent biases from multiple perspectives using a set of AI prediction models 
developed and validated retrospectively during the first six months of the COVID-19 pandemic. 
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These models predict risks of mortality, hospitalization, ICU admission, and ventilation due to 
COVID-19 infection.24 We characterize the evaluation of bias into model-level metrics and 
propose a new approach for evaluating bias from an individual level. We argue that proper 
evaluation of bias in medical AI requires a holistic approach that can invigorate follow-up 
investigations for identifying the underlying roots of bias, rather than providing a partial 
perspective that may not lead to constructive improvement.  

Methods 
We study unrecognized bias in four validated prediction models of COVID-19 outcomes to 
investigate whether a) the models were biased when developed (we refer to this as a 
retrospective evaluation) and b) the bias changed over time when applying the models on new 
COVID-19 patients who were infected after the models were trained (we refer to this as a 
prospective evaluation). 
We recently developed an AI pipeline, MLHO, for predicting risks of hospital admission, ICU 
admission, invasive ventilation, and death in patients who were infected with COVID-19, only 
using the data from prior to the COVID-19 infection.24,25 MLHO models were developed on data 
from the first six months of the pandemic in Boston -- i.e., between March and October of 2020. 
MLHO produces and evaluates several models using different classification algorithms and train-
test sampling iterations -- for more details see 24. For each outcome, MLHO developed several 
models using different classification algorithms and/or train-test sampling. To evaluate bias, we 
first select the top 10 models for each outcome based on their retrospective AUROC -- i.e., the 
discrimination metric obtained on the test set when the models were tested retrospectively. Then 
we apply the models to data from the retrospective cohort (who were infected with COVID-19 
after the models were trained) to evaluate retrospective bias as a baseline. In addition to 
retrospective evaluations, we also perform prospective bias evaluations by applying these models 
to patient data from the subsequent 10 months to evaluate temporal changes in discrimination, 
accuracy, and reliability metrics (Figure 1). We evaluate bias by race, ethnicity, gender, and 
across time, by comparing the multiple bias metrics against the overall models, which were 
trained on all patients.  

 
* The dot plot is a schematic of the COVID-19 patient population over time. MLHO was applied to EHR data from 
the retrospective cohort to develop predictive models and produce bias metrics. Prospective bias metrics were 
generated by applying the retrospective predictive models to prospective cohorts. 
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Figure 1. Generating bias metrics from MLHO models using EHR data from retrospective and 
prospective COVID-19 cohorts. 

Data 
Data from 56,590 Mass General Brigham (MGB) patients, with a positive reverse transcription-
polymerase chain reaction (RT-PCR) test for SARS-CoV-2 between March 2020 and September 
2021 were analyzed (Table 1S). Features utilized in MLHO models included transitive sequential 
patterns,26,27 where we mined sequences of EHR diagnoses, procedures, and medications extracted 
from these patients’ electronic health records from between 2016 and 14 days before their positive 
reverse transcription-polymerase chain reaction (RT-PCR) test.  

Measuring bias 
To measure bias, we adapt the definitions in 28–30 where an unbiased algorithm reflects the same 
likelihood of the outcome, irrespective of the individual’s group membership, 𝑅. That is, for any 
predicted probability score 𝑦#, people in all groups 𝑅 must have equal probability of correctly 
belonging to the positive class -- for example, 𝑃(𝑌 = 1|𝑌* = 𝑦#, 𝑅 = 𝑏𝑙𝑎𝑐𝑘) 	= 𝑃(𝑌 = 1|𝑌* =
𝑦#, 𝑅 = 𝑤ℎ𝑖𝑡𝑒).  

MLHO’s performance metrics 
MLHO is equipped with functionality to provide a comprehensive evaluation of model 
performance from different standpoints, including both model-level and individual-level bias. 

Model-level metrics 
The model-level performance metrics in MLHO provide an overall description of the model’s 
performance, including standard metrics for discrimination, accuracy, and reliability (a.k.a., 
calibration). For discrimination, in this study, we use the widely used AUROC. Several model-
level metrics are also available to evaluate the model’s accuracy such as the Brier score,31 which 
is the mean squared error between the observed outcome and the estimated probabilities for the 
outcome, including components of both discrimination and calibration.32 We break down the 
AUC and Brier metrics retrospectively in aggregate, and prospectively by month. To compare 
model-level metrics, we apply the Wilcoxon rank-sum test with Benjamini, Hochberg, and 
Yekutieli p-value correction.33 
Reliability is a key factor in AI/ML models’ utility in clinical care, which is also known as 
calibration. Reliability refers to the extent to which the observed value of an outcome 𝑌 matches 
the risk score 𝑅 produced by a predictive model.7,29 Several measures have been recommended 
for measuring model calibration in binary classifiers. For a review of the available techniques, 
see Huang et al. (2020).34 However, many medical AI/ML models developed in healthcare 
settings ignore reliability and only report discrimination power although the AUROC, also 
known as the concordance statistic or c-statistic.35 MLHO’s performance report provides the 
ability to assess the models’ reliability for clinical interpretation using diagnostic reliability 
diagrams. The diagnostic reliability diagrams are produced from the raw predicted probabilities 
computed by each algorithm (X-axis) against the true probabilities of patients falling under 
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probability bins (Y-axis). In a reliable model, the reliability diagrams appear along the main 
diagonal—the closer to the line, the more reliable. To evaluate diagnostic reliability diagrams, 
we compare the retrospective performance with aggregated prospective performance -- i.e., we 
do not break down this measure by month prospectively. 

Individual-level metric 
In contrast to model-level metrics that provide an overall description of the model’s 
performance, MLHO also provides the capability for evaluating model performance at an 
individual level, when the variable of interest is continuous. This is important when assessing 
whether a model is biased against an individual, for example, an older patient or a sicker patient 
(i.e. having more medical encounters). To do that, MLHO computes and records the Mean 
Absolute Error (MAE) for each patient that can be visualized to illustrate changes across 
continuous indices of interest. MAE is the absolute distance between the computed probability of 
the outcome to the actual outcome. 

𝑀𝑒𝑎𝑛	𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒	𝐸𝑟𝑟𝑜𝑟	(𝑀𝐴𝐸) 	= 	
∑!"#$ A𝑌*" − 𝑌"A

𝑀  

Where 𝑀 is the number of models (10 models here), 𝑌%C is the predicted probability for patient 𝑖 
and 𝑌"is the observed outcome for patient 𝑖. 
To visualize the MAE patterns, we plot the continuous variables (in this study, age) on the X-
axis and the MAE on the Y-axis and fit a generalized additive model (GAM) with integrated 
smoothness36 from R package 37.  

Results 
Data from 56,590 patients with a positive COVID test were analyzed. Over 15,000 of these 
patients constituted the retrospective cohort -- i.e., whose data was used to train and test the 
retrospective models. More than 41,000 of the patients were infected between November 2020 
and August 2021, who composed our prospective cohort. Figure 1S and Table 1S provide a 
demographic breakdown of the patient population over time.  

Model-level evaluations 
Figures 2 and 3 illustrate temporal changes in the AUROC and Brier scores across the models. 
The models’ performance metrics remained stable until June 2021. That is, the models that were 
developed with data from March to September 2020 were still able to perform similarly up until 
May-June 2021. Starting June 2021, both AUROC and Brier scores exhibit variabilities, in 
general providing better discrimination power for Hispanic and female COVID-19 patients 
compared with male patients. In other words, the models did not demonstrate temporal bias until 
June 2021, when applied prospectively.  
The models that were developed with data from March to September 2020, provided relatively 
stable predictive performance prospectively up until May-June 2021. Despite the increased 
variability, the prospective modeling performance remained high for predicting hospitalization 
and the need for mechanical ventilators. 
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* The top-10 models for each outcome are broken down by race, ethnicity, gender, and over 
time. 
Figure 2. Changes in the 2 model-level metrics for discrimination (AUROC -- left panels) and 
error (Brier score -- right panel) by group and over time. 

 
To facilitate understanding Figure 2, we provide Figure 3 in which we compare model-level 
performance metrics using the Wilcoxon rank-sum test. The figure combines an illustration of 
statistical significance and sign for comparing a given metric for a demographic group to the 
overall model at a point in time. For example, +++ under AUROC for the female patients in 
November 2020 means that the AUROC was higher for females compared with the overall 
model and the difference was statistically significant at p< 0.001.   
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* A color-coded cell means some type of bias compared to the overall model. 

-- and - represent significantly smaller than the overall model (at p<0.001 and p<0.01, respectively).  

++ and + represent significantly larger than the overall model (at p<0.001 and p<0.01, respectively).  

** discrimination power and error are opposing measures -- better discrimination means smaller error.  

Figure 3. Comparing model-level performance metrics using the Wilcoxon rank-sum test 
Figure 4 presents diagnostic reliability diagrams, broken down by demographic group and 
temporal direction of the evaluation (retrospective vs. prospective). Any divergence from the 
diagonal line in the diagnostic reliability diagrams means lower reliability. The diagrams show 
that, retrospectively, models’ predicted probabilities were similar across groups for predicting 
mortality, hospitalization, and ventilation. Prospectively, between-group variability in models 
fared similarly, although the uncalibrated predicted probabilities were less reliable for mortality 
prediction, specifically, among hispanic, black, and female patients.  
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Figure 4. The diagnostic reliability (calibration) diagrams for each outcome broken by group and 
temporal direction. 

 
Compared to the overall population, retrospectively and prospectively across time, the models 
marginally performed worse for male patients and better for Hispanic and female patients, as 
measured by AUROC and higher Brier scores. We use the term “marginal” as the range of delta 
between performance metrics within demographics groups and the overall model was relatively 
small. For the rest of the demographic groups, the performances were more mixed. From the 
diagnostic reliability diagrams, the divergence from the diagonal line is present in three of the four 
prediction tasks, but there are variabilities across groups in both with no consistent pattern. The 
only exception in this regard was diminished reliability in prospectively predicted probabilities of 
COVID-19 mortality among hispanic, female, and black patients.  

Individual-level evaluation 
For the individual-level evaluation of the bias, we looked at the mean absolute error across age 
(Figure 5). We evaluated whether the models’ average error rates (i.e., the absolute difference 
between the actual outcome and the predicted probabilities) changes as patients’ age increases. An 
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MAE smaller than 0.5 would indicate that the model predicted probability was not far off from the 
actual outcome. For example, the patient could actually have the outcome and the computed 
probability would be above 50% and therefore the MAE would be smaller than 0.5. To visualize 
the trends, we fit a smoothed trendline using generalized additive models. For all outcomes, 
modeling error seemed to increase as the patients became older, and the patterns were almost 
identical retrospectively and prospectively. None of the trend lines passed the 0.5 threshold, which 
means despite the higher error rates for the older patients, the models provide acceptable errors for 
the majority of the patients. The lowest error rates were observed in predicting ventilation. In the 
case of predicting mortality and hospitalization, the error rates increasingly escalated by age, 
whereas in predicting ICU admission and need for mechanical ventilator, error rates peaked at 
around 75 years and then diminished for older patients. 
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Discussion 
From a model-level perspective, we did not find consistent biased behaviors in predictive models 
against all minority groups.  From the individual-level, we found consistent bias in increasing 
error rates for older patients. It is known that a predictive model’s reliability (calibration) and 
discrimination cannot both be maximized simultaneously.35 That is, for example, improving 
reliability may not meaningfully improve discrimination.39 Yet, there are ad hoc calibration 
methodologies to scale predicted probabilities for better clinical interpretation. We argue that 
proper evaluation of bias in medical AI requires a holistic approach that can invigorate follow-up 
investigations for identifying the underlying roots of bias, rather than providing a partial 
perspective that may not lead to constructive improvements.   

To an AI algorithm, bias can happen due to the signal strength (or lack thereof) in one or more of 
the features (i.e., variables, covariates, predictors). That is, the model which has been trained on a 
certain predictor may not predict well for a certain protected group because the important 
predictors are not available or are noisy in that population. This, in turn, could have multiple 
underlying causes, such as healthcare disparities that can influence access to care, systematic 
inequalities, data quality issues, biological factors, and/or socio-economic and environmental 
determinants. Some of this bias can be addressed by post-processing techniques, depending on 
which aspect of bias one aims to address. We concluded that medical AI bias is multi-faceted and 
requires multiple perspectives to be practically addressed. Nevertheless, the first step for 
addressing the bias in medical AI is to identify bias in a way that can be traced back to its root. 

Compared to the overall population, retrospectively and prospectively across time, the models 
marginally performed worse for male patients and better for Hispanic and female patients, as 
measured by AUROC and Brier scores. The range of delta between these performance metrics 
within demographics groups and the overall model was relatively small. For the rest of the 
demographic groups, the performances were more mixed. The models’ performance metrics 
remained stable until June 2021. That is, the models that were developed with data from March 
to September 2020, provided relatively stable predictive performance prospectively up until 
May-June 2021. Despite the increased variability, the prospective modeling performance 
remained high for predicting hospitalization and the need for mechanical ventilators.  
COVID-19 vaccinations became widely available in the spring of 2021. It is possible that the 
widespread use of vaccinations throughout Massachusetts, along with the incorporation of other 
proven therapies including dexamethasone40 and Remdesivir, 41 changed outcomes for patients. 
Also, the case rate in Massachusetts was very low in July,42 which may have resulted in 
increased capacity compared to the outset of the pandemic when the healthcare system was 
stressed. Additionally, the Delta variant was expected to be the dominant strain of Coronavirus in 
Massachusetts.43 The mutations to the virus itself could potentially change outcomes for patients. 
While we do not know exactly what led to the decreased performance of the model in July, 
future studies should consider characterizing whether the model overestimates or underestimates 
an outcome in certain populations, which could give further insight into how these changes are 
cumulatively having a favorable or adverse impact on patient care.  
From the reliability/calibration perspective, except in the case of prospective evaluation of 
hospitalization predictions among Hispanic, female, and black patients, the diagnostic reliability 
diagrams did not show consistent bias towards or against a certain group.  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 30, 2021. ; https://doi.org/10.1101/2021.10.28.21265629doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.28.21265629


 

In terms of the mean absolute error between the actual outcome and the estimated probabilities, 
we did see error rates increase over age, but the error rates were not critical in that one could still 
assign the patients to the correct group based on the produced probabilities. More continuous 
metrics need to be evaluated at the patient level for a comprehensive view of changes in AI bias 
against or towards certain patients. 
We evaluated raw predicted scores. There is a large body of work on calibrating prediction scores 
for improving the reliability of prediction models in clinical settings.44–47 Calibration methods are 
useful ad hoc solutions for increasing the reliability of the prediction models. We show in Figure 
3S that isotonic calibration,48 for instance, can provide more reliable predictive scores and may 
reduce bias. However, unless calibration methods are embedded into a predictive modeling 
pipeline, their impact on improving or aggravating bias in medical AI needs to be fully evaluated 
as a post-processing step.  
Given that we face systemic bias in our country's core institutions, we need technologies that will 
reduce these disparities and not exacerbate them.38 There are efforts from the larger AI 
community, such as AI Fairness 36049 and Failearn,50 to develop open-source software systems 
for measuring and mitigating bias. These programs are often ad hoc or work as standalone post 
processing solutions. We plan to compare these model independent methods and add relevant 
functionalities to our domain specific approach.   
The premise for evaluating these predictive models was to create a framework for discovering 
and quantifying the various types of biases towards different subgroups that were encoded 
unintentionally. We have incorporated the presented bias measurement framework within the 
MLHO pipeline,24 which is specifically designed for modeling clinical data. We believe that 
providing means to evaluate and address unrecognized bias within a data-centric pipeline will 
enable the generation of medical AI that takes into account various biases while in production.   
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