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Abstract 
 
Objective: Human traits are heritable, and some of these including metabolic and lipid 

phenotypes show preferential parental transmissions, or parent-of-origin effects. These have 

been mostly studied in populations comprising adults. We aimed to investigate heritability and 

parent-of-origin effects on cardiometabolic and anthropometric traits in a birth-cohort with 

serial measurements to assess if these effects manifested at an early age. 

Research design and methods: We investigated heritability and parent-of-origin effects on 

cardiometabolic and anthropometric traits in the Pune Maternal Nutrition Study (PMNS) 

wherein offspring and parents were studied from birth and followed-up for 18 years. 

Heritability was estimated by calculating association between mid-parental phenotypes and 

offspring. Maternal and paternal effects on offspring phenotype were modelled by regression 

after adjusting for age, sex and BMI. Parent-of-origin effects were calculated by the difference 

between maternal and paternal effects.  

Results: Anthropomorphic traits and cardiometabolic traits were robustly heritable. Parent-of-

origin effects were observed for glycemic traits at both 6- and 12-years, with a paternal effect 

at 6-years which transitioned to a maternal effect at 12-years. For insulin and HOMA-S, a 

negative maternal effect transitioned to a positive one at 12-years. For HOMA-B, a paternal 

effect at 6- years transitioned to a maternal one at 12-years. Lipid traits consistently showed 

stronger maternal influence while anthropometric traits did not show any parental biases. 

Conclusions: Our study highlights that parental programming of cardiometabolic traits is 

evident from early childhood and can transition during puberty. Further studies are needed to 

determine the mechanisms of underlying such effects.  
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Introduction 

Human traits and diseases are a consequence of a complex interplay between genetics and 

environment. Assessment of heritability provides information on the contribution of the genetic 

component to the total phenotypic variation in a population. Anthropometric and metabolic 

traits have thus far been shown to be heritable to varying degrees (1; 2). Genetic association 

studies have identified a number of variants associated with these traits, however, the 

proportion of heritability attributed to these variants was rather limited (3; 4).  

In a classic Mendelian pattern of transmission, a trait can be contributed by both the parents 

equally; it is also possible that these may be inherited preferentially from one of the parents 

while the contribution of the other parent can be low, neutral or even opposite. Such effects 

whereby the expression of the phenotype in the offspring depends upon which parent they are 

inherited from, are termed as parent-of-origin effects. These can be attributed to genetic 

imprinting, intrauterine effects, or maternally inherited mitochondrial genes (5). The 

significance of such effects in aetiology of type 2 diabetes and obesity has been emphasized 

previously (6). Type 2 diabetes shows a preferential maternal transmission (2; 7), and a 

substantial component may originate in the intrauterine period. Several studies have 

demonstrated that early life exposures can influence developmental programming and increase 

risk to cardiometabolic disorders in later life (8-10). 

Parent-of-origin as well as sex-specific parental effects were observed for anthropometric 

measures, insulin secretion and all cholesterol levels (1; 2; 11). For instance, sons of diabetic 

mothers had lower insulin concentrations compared to those of diabetic fathers, while 

daughters of diabetic mothers had the lowest high-density lipoprotein (HDL) levels (2).  

These studies were of cross-sectional design in adult offspring; however, given the role of early 

life programming in risk of cardiometabolic disorders in later life, it is possible that these 

parental effects manifest at an early age. The Pune Maternal Nutrition Study (PMNS), a well-

characterised prospective birth cohort provides a unique opportunity to study heritability and 

parent-of-origin effects in parent-offspring trios in a life-course model. In this study, we 

investigated the heritability and parent-of-origin effects of anthropometric, glycemic and 

insulin related traits and lipid traits in the PMNS birth cohort with follow-up from birth through 

puberty till adulthood. Parent-offspring associations and transitions of parental specific effects 

across childhood was assessed.  
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Methods 

Cohort characteristics 

The Pune Maternal Nutrition Study (PMNS) (Figure 1) was established in 1993 in six villages 

near Pune, to prospectively study associations of maternal nutritional status with fetal growth 

and later diabetes risk in the offspring. Married, non-pregnant women (N=2,466) were followed 

up. Between 1994 and 1996, those who became pregnant (F0 generation) were recruited into 

the study. The children’s (F1 generation) growth was measured in utero, at birth and 6 monthly 

thereafter, and body composition and glucose-insulin indices were measured 6-yearly (Table 

1, Supplementary Table 1). Ethical permission and informed consent were obtained for the 

study. The study was approved by village leaders and the KEM Hospital Research Centre 

Ethics Committee. Parents gave written consent; children under 18 years of age gave written 

assent, and written consent after reaching 18 years. 

 

Anthropometric and clinical measurements in parents and offspring 

Newborn anthropometry including weight, length, abdominal circumference and skinfolds was 

carried out within 72 hours of birth.  

Comprehensive assessments of body composition and glucose and insulin concentrations were 

made at 6, 12 and 18 years. Participants arrived at the Diabetes Unit (KEM Hospital, Pune) the 

evening before, had a standardized dinner, and fasted overnight. In the morning, a fasting blood 

sample was collected. At 6 years, an oral glucose tolerance test (OGTT) was performed, using 

1.75g/kg of anhydrous glucose, followed by further samples at 30 and 120 minutes. At 12 

years, only a fasting sample was collected. At 18 years a full OGTT (75g anhydrous glucose) 

was repeated.  

Glucose was measured by the glucose oxidase/peroxidase method, and specific insulin by 

ELISA (Supplementary Table 2). Homeostatic model assessment for insulin sensitivity 

(HOMA-S), beta-cell function (HOMA-ß) and insulin resistance (HOMA-R) were calculated 

using data from the fasting samples and the iHOMA2 website 

((https://www.phc.ox.ac.uk/research/technology-outputs/ihoma2) (12). Disposition index (β 

cell function adjusted for insulin sensitivity) was calculated as HOMA-S*HOMA-β.  

Total fat and lean mass and body fat% were measured by Dual Energy X-ray Absorptiometry 

scanner. (Lunar DPX-IQ 240 pencil beam machine, Lunar Corporation, Madison, WI, USA).  

Body size (anthropometry) and glucose tolerance (75 g OGTT) were measured in both parents 

at the time of initial visit and at 6 year follow up. Body size and only a fasting blood test was 
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available at 12-year follow-up. BMI was calculated using standard formula [weight (kg)/square 

of height (m)] and WHR was calculated as waist circumference (cm) / hip circumference (cm). 

 

Statistical analysis 

Heritability and parent-of-origin effects were assessed between F0 and F1 generation across 

different time points (Pre-pregnancy, At birth, 6yrs, 12yrs, 18yrs) in PMNS cohort for 

anthropometric and glycemic traits. For this, the skewed variables were log transformed, and 

all variables were standardized (mean zero, standard deviation unity) adjusted for age and 

gender to facilitate the comparison between variables. Heritability was estimated using 

regression models adjusted for age and gender expressed in ß and p-value. Parent-of-origin 

effects were tested by computing the difference in maternal and paternal regression coefficients 

using the formula [(b1-b2) / sqrt (seb1**2 + seb2**2 – cov(b1*b2))] expressed in Z and 

corresponding p value. 

Results  

Heritability of anthropometric and metabolic traits 

 To investigate the proportion of offspring phenotypic trait attributable to parent phenotype 

variation, we calculated heritability estimates of anthropometric and metabolic traits measured 

in ~700 parent-offspring trios in the PMNS cohort at birth, 6, 12 and 18 years of age (Table 1).  

Offspring’s weight, height and BMI were significantly associated with corresponding mid-

parental measures with coefficients ranging between 0.13 to 0.24 at birth. Moreover, there was 

an upward trend in effect size across timepoints increasing to 0.36 to 0.51 at 6-years, 0.44 to 

0.52 at 12-years, and 0.41 to 0.60 at 18-years (Supplementary Table 3). Offspring 

measurements of waist and hip circumference, WHR, fat and lean mass (DXA) at 6-years also 

showed significant association with mid-parental measures. These measurements were 

available in parents only at 6y (Supplementary Table 3). These heritability estimates were 

similar for sons and daughters (Supplementary Table 3). 

Offspring concentrations of fasting glucose and insulin, as well as HOMA 2B showed a 

significant association with corresponding mid-parental measures at 6 years (ranging from 0.10 

to 0.41). At 12-years, similar associations were observed for the aforementioned measures with 

addition of HOMA2S (ranging from 0.19 to 0.31). This trend was consistent for sons and 

daughters (Supplementary Table 4). 
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Triglyceride, total cholesterol and HDL levels were significantly heritable at 6 and 12 years. 

Considered separately, similar associations were observed in both sons and daughters with an 

exception of HDL levels at 12 years in daughters (Supplementary Table 4).  

 

Parent-of-origin and sex-specific parental effects on cardiometabolic traits 

We next examined if there was a stronger association between the trait of the offspring and the 

trait of each of the parents specifically. If offspring showed a stronger association with the 

mother’s traits compared to the father’s, this would indicate a maternal effect and likewise for 

the paternal effect. If there were a significant difference between the maternal and paternal 

effects, this is indicative of the parent-of-origin effect.  

 

Anthropometry: While offspring anthropometry was significantly associated with that of each 

of the parents, no significant parent-of-origin effects were observed either in all offspring or 

for sons and daughters separately (Table 2, Supplementary Table 5). 

 

Glucose and insulin indices: Fasting glucose concentrations in the offspring were positively 

associated with that of the mother’s as well as the father’s glucose concentrations both at 6- 

and 12-years. The maternal effect was stronger than the paternal with a significant parent-of-

origin effect at 12-years (Table 3). The parent-of-origin effect were seen at 6- and 12-years 

only in sons but not daughters. 

A contrasting shift from 6 years to 12 years was observed for the differences between paternal 

and maternal effects in relation to insulin and its indices. Maternal associations were negative 

at 6-years and became strongly positive at 12-years, reflecting in a change of the direction of 

parent-of-origin effect. For fasting insulin and HOMA S, there was a significant negative 

maternal association at 6-years which shifted to a significant positive one at 12-years. For 

HOMA B, there was a stronger paternal positive effect at 6-years which changed to stronger 

positive maternal effect at 12 years (Table 3).  

Fasting glucose showed a significant parent-of-origin effect at 6- and 12-years in sons but not 

daughters. For insulin and its indices, sons showed a significant negative maternal association 

at 6-years which shifted to a positive one at 12-years, however the parent-of-origin effects were 

significant only at 6-years. In the daughters, no parental associations were seen at 6-years, 

whereas, positive maternal associations and significant parent-of-origin effects were seen at 

12-years (Table 3). 
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Lipid levels: Total and HDL cholesterol levels in the offspring showed significantly stronger 

positive associations with mother compared to father at 6 and 12 years in all offspring as well 

as when analysed separately for sons. However, the parental differences were not significant 

in daughters at either 6 or 12-years. For triglyceride levels, sons showed strong positive 

maternal associations at both 6- and 12-years, however parent-of-origin effects were significant 

only at 6-years. In contrast, daughters showed significantly stronger paternal associations 

compared to maternal only at 12-years (Table 3).  

Discussion 

By harnessing the potential of a birth cohort, we observed strong parent-of-origin effects on 

metabolic but not anthropometric traits starting from early life. Availability of serial 

measurements revealed changing parental influences on glucose and insulin concentrations, 

insulin secretion and sensitivity in the offspring. For insulin secretion, there was a transition 

from a predominantly paternal association in early childhood to a maternal one at pubertal age, 

whereas, for insulin sensitivity, a significant negative maternal association transitioned to a 

significantly positive one. Thus, both insulin secretion and action at pubertal age were 

predominantly associated with maternal phenotype. The maternal effects on lipid traits 

remained consistent from childhood to adolescence.  

Mendelian genetics stipulates an equal contribution from each of the parents to human traits. 

However, parental specific influences on metabolic traits have been previously described 

including on beta cell response to oral glucose, insulin action in target tissues as well as lipid 

levels (1; 2; 11). These have been described in families of patients with type 2 diabetes and 

cardiovascular diseases from the Botnia and Framingham Heart Study respectively. It is of 

note, that both these studies investigated the POE in offspring of adult age. Since these 

descriptions, the developmental origins of these disorders are well established and the strongest 

window for ‘programming’ is thought to be periconceptional and in pregnancy (13) his 

suggests that parental influences should be obvious from early life. To this end, we determined 

the heritability and parent-of-origin effects on metabolic traits in a birth cohort that was 

followed up at regular intervals into young adulthood. As previously reported, these traits were 

robustly heritable from early childhood as when studied in adults (3; 14-16). Concordant with 

previous findings in support of the underlying heritable component (1; 4; 17-19), mid-parental 

phenotype values were significantly associated with corresponding offspring anthropometric 

and metabolic traits from childhood and remained so till early adulthood.  
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Significant parent-of-origin effects were observed for glucose, insulin and indices of insulin 

secretion and insulin sensitivity as well as lipid levels in the blood. Though previous studies 

hinted at such effects for glucose and insulin levels and their indices  (1; 2; 11), our results 

robustly confirm these parental specific associations.  

Our results of maternal effects for total and HDL cholesterol levels support the well-established 

previous findings (2; 11), and suggest that they manifest from childhood, albeit with some 

differences. A stronger correlation was reported between mother’s and daughter’s TG levels in 

previous studies (1; 11), however, a significant maternal effect was seen in sons at 6 years 

whereas a significant paternal effect was seen for daughters at 12 years in the PMNS. 

Several theories have been proposed to explain the evolutionary origins of parent-of-origin 

effects which are a consequence of genomic imprinting. Haig and colleagues proposed the 

kinship theory which stipulates that imprinting is a mechanism to alter gene dosage, since there 

is a different effect of gene dosage on the fitness of matrilineal and patrilineal relatives (20; 

21). Day and Bonduriansky put forth the sexual antagonism and offspring co-adaptation theory 

which states that imprinting is a mechanism to modify the resemblance of the offspring to its 

two parents (22; 23). Wolf and Hager’s maternal offspring coadaptation theory suggests that 

this kind of programming evolved to increase the probability of expressing the fitter of the two 

alleles at a given locus (24). The common feature of these hypotheses highlights that some 

processes create a selective asymmetry between the maternally and paternally inherited allele 

copies at a specific locus, and this causes selection to favour the differential expression of the 

alleles of the same locus (25). The mechanism by which this selective expression of alleles and 

consequent impact on the phenotype / trait is mediated by epigenetic mechanisms which are 

programmed in early life. Epigenetics is a link between the genes and the environment that 

facilitates a particular trait (26; 27); this kind of programming superimposed on top of the 

genetic material is by means of chemical moieties (eg DNA methylation) which can alter the 

way the DNA is read and expressed. Early life exposures can bring about such epigenetic 

reprogramming and alter development and function of organs which, in later life, can increase 

susceptibility to cardiometabolic disorders (27).  

 

It has been suggested that ‘maternal constraint’ masks the paternal (genetic) influences on fetal 

growth (especially weight and soft tissues but not skeleton) (28; 29). Findings in the PMNS 

neonates hint of such an effect. Maternal phenotype significantly associated with weight and 
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height, while, paternal association was significant only for height. For daughters, this paternal 

association also extended for weight. During postnatal life, maternal and paternal associations 

with offspring anthropometry were similar. 

 

For insulin secretion, paternal effect in early childhood (6 years) gives way to a maternal one 

at 12-years. For fasting insulin and insulin sensitivity, a negative maternal effect at 6-years 

changed to a positive one at 12-years. The timing of the transition seemingly spans pubertal 

age. Metabolism and puberty are strongly interlinked; the link between nutrition and pubertal 

development requires the maintenance of a minimum positive energy balance, especially in 

females, (30-33) and undernutrition as well as overnutrition can have a significant impact on 

timing and progress of pubertal development and indeed fertility (30; 34). It can therefore be 

speculated that POE accompany pubertal changes given the increased developmental plasticity 

at this time period (35). Nevertheless, it remains to be seen if the shift in parental programming 

is a cause, consequence, or by-product linked to pubertal processes. 

 

It is interesting to note that anthropometric measures do not show a parental specific association 

unlike that seen for metabolic traits. As with human traits, anthropometry is a consequence of 

genetics and environment, with heritability estimates increasing over time which can be 

partially attributed to environmental influences. We therefore suggest that this provides indirect 

evidence that the change in metabolic programming around pubertal age is a consequence of 

both genetic and epigenetic re-programming. 

 

Our study has several limitations. The findings are observational wherein associations between 

parental and offspring phenotypes across trajectories of early childhood are examined and are 

therefore not causal. Furthermore, this study involving a single cohort and validation will be 

required in other similar as well as diverse populations to substantiate the findings. 

Nevertheless, our study is based on a large cohort with robust study power and extensive 

follow-up and therefore has the potential to answer novel questions in a birth cohort, as well as 

provide a context to findings in adult offspring from different populations. Genetic and 

epigenetic studies in family cohorts as well as target tissues will be very interesting to unravel 

mechanisms underlying these parental biases and the evolution of parental programming states.  
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Figure 1. STROBE flow diagram of the Pune Maternal Nutrition Study.  
 

 
 
* Maximum numbers available are mentioned. Not all data may be available on the 
mentioned numbers. 
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Table 1. Description ofoffspring and parents of the Pune Maternal Nutrition Study (PMNS) for visits at offspring ages 6-, 12- and 18- years. 
 

Offspring age 6- years 12- years 18- years 

 All Sons Daughters All Sons Daughters All Sons Daughters 

  N=707 N=369 N=338 N=690 N=359 N=331 N=663 N=356 N=307 

  mean ±SD mean ±SD mean ±SD mean ±SD mean ±SD mean ±SD mean ±SD mean ±SD mean ±SD 

Age (yrs) 6.2 ±0.2 6.2 ±0.2 6.2 ±0.2 11.6 ±0.9 11.5 ±0.9 11.6 ±0.8 17.9 ±0.59 18.2 ±0.48 17.7 ±0.59 

Weight (kg) 16.2 ±1.9 16.5 ±1.9 15.8 ±1.8 29.3 ±6.7 28.9 ±5.9 29.7 ±7.3 51.7 ±10.8 56.71 ±10.69 46.08 ±7.75 

Height (cm) 109.8 ±4.6 110.3 ±4.8 109.3 ±4.4 139.5 ±8.4 138.7 ±8.7 140.4 ±8.3 163.7 ±8.9 169.5 ±6.6 156.8 ±5.7 

BMI (kg/m2) 13.4 ±0.9 13.5 ±0.8 13.2 ±0.9 14.9 ±2.0 14.9 ±1.7 14.9 ±2.3 19.2 ±3.2 19.6 ±3.2 18.7 ±3.0 
Waist circumference 

(cm) 50.3 ±2.7 50.4 ±2.6 50.1 ±2.7 57.4 ±5.5 58.2 ±5.4 56.6 ±5.6 70.7 ±8.5 72.8 ±9.1 68.1 ±6.7 

Hip circumference 
(cm) 53.9 ±3.6 53.9 ±3.7 53.9 ±3.5 69.2 ±6.9 68.3 ±6.2 70.1 ±7.5 87 ±8.7 87.6 ±8.8 86.2 ±8.5 

WHR 0.93 ±0.05 0.93 ±0.05 0.93 ±0.05 0.86 ±0.52 0.86 ±0.21 0.85 ±0.72 0.82 ±0.2 0.83 ±0.18 0.8 ±0.22 
Sum of skinfolds 

(mm) 21 ±4.3 19.8 ±3.6 22.4 ±4.6 26.3 ±13.1 24.3 ±11.9 28.4 ±13.9 51 ±27.6 41.9 ±26.1 61.5 ±25.5 

Total fat mass (kg) 3.1 ±1.0 2.9 ±1.0 3.6 ±1.0 5.1 ±3.2 4.5 ±2.8 5.8 ±3.5 11.13 ±6.4 9.42 ±6.9 13.1 ±5.2 

Total fat% 18.8 ±5.03 17.2 ±4.7 20.5 ±4.8 16.9 ±6.7 15.1 ±6.2 18.9 ±6.6 21.3 ±9.3 15.5 ±8.2 28 ±6.7 

Total lean mass (kg) 12.8 ±1.7 13.4 ±1.8 12.2 ±1.3 22.4 ±4.2 22.6 ±6.9 22.2 ±4.5 38 ±8.3 44.5 ±5.4 30.5 ±3.5 

Total lean % 77.3 ±5.0 78.8 ±4.7 75.6 ±4.6 78.7 ±6.5 80.6 ±6.1 76.8 ±6.5 74.5 ±9.6 80.3 ±8.0 67.7 ±6.5 
Fasting glucose 

(mg/dl) 88.9 ±9.3 90.4 ±9.3 87.3 ±9.0 87 ±7.2 88.2 ±6.8 85.7 ±7.4 95.4 ±10.5 97.1 ±6.2 93.4 ±13.7 

2h glucose (mg/dl) 99.2 ±20.4 97.2 ±20.5 101.6 ±19.9         112.5 ±22.7 110.9 ±22.5 114.7 ±22.9 
Fasting insulin 

(mIU/L) 3.6 ±2.6 3.4 ±2.4 3.9 ±2.7 5.8 ±3.3 5.1 ±2.9 6.5 ±3.6 10.8 ±5.5 10.5 ±6.3 11.2 ±4.4 

2h insulin (mIU/L) 11.7 ±8.8 10.2 ±7.9 13.4 ±9.5         69.1 ±58.8 60.7 ±57.1 80.2 ±59.4 

HOMA B 63 ±32.3 57.9 ±28.1 68.6 ±35.5 89.8 ±35.8 80.3 ±31.7 99.9 ±37.2 77.1 ±39.1 81.5 ±42.3 71.7 ±34.9 

HOMA S 304.3 ±229.6 326.4 ±246.5 280.2 ±207.4 170.9 ±146.6 194.8 ±164.6 145.5 ±119.4 115.1 ±38.4 107.3 ±40.7 124.5 ±33.0 
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HOMA IR 0.53 ±0.38 0.49 ±0.35 0.57 ±0.39 0.84 ±0.47 0.75 ±0.42 0.94 ±0.51 1.6 ±0.85 1.6 ±1.0 1.6 ±0.6 

HOMA DI 146.1 ±73.2 146.6 ±70.0 145.6 ±76.7 120.4 ±39.2 121.5 ±40.3 119.2 ±38.0 80.5 ±18.5 77.9 ±18.3 83.5 ±18.1 

 
  Mother Father 

  Pre-
pregnancy 
(N=804) 

28-week 
(N=728) 

6yr follow-up 12yr follow-up Initial visit 
(N=761) 

6yr follow-up 12yr follow-up 

  

  mean ±SD mean ±SD mean ±SD mean ±SD mean ±SD mean ±SD mean ±SD 

Age (yrs) 20.9 ±3.5 21.6 ±3.5 27.9 ±3.5 33.3 ±3.6 28.4 ±4.3 34.4 ±4.2 39.8 ±4.3 

Weight (kg) 41.6 ±5.0 47.2 ±5.1 44.5 ±7.0 47.5 ±8.3 52.7 ±7.8 57.1 ±9.7 60.1 ±11.3 

Height (cm) 152 ±5.0 152 ±5.0 153 ±5.1 153 ±5.1 165 ±6.1 166 ±5.7 166 ±5.9 

BMI (kg/m2) 18 ±1.9 20.4 ±1.8 19 ±2.7 20.2 ±3.3 19.4 ±2.5 20.7 ±3.2 21.9 ±3.6 

Waist circumference (cm) 60.7 ±5.7 71.4 ±5.4 65.9 ±7.3 
  

70.9 ±8.1 80.2 ±9.7 
 

  

Hip circumference (cm) 81.4 ±4.9 86.5 ±4.8 85.7 ±7.14 
  

84.3 ±6.1 88.5 ±6.8 
 

  

WHR 0.75 ±0.06 0.83 ±0.06 0.77 ±0.06 
  

0.84 ±0.07 0.9 ±0.06 
 

  

Sum of skinfolds (mm) 34.3 ±12.8 
  

38 ±18.8 
  

  
 

39.3 ±19.5 
 

  

Total fat mass (kg)   
   

11.7 ±5.5 
  

  
 

10.7 ±6.6 
 

  

Total fat%   
   

25.6 ±8.1 
  

  
 

17.7 ±8.4 
 

  

Total lean mass (kg)   
   

30.4 ±2.8 
  

  
 

43.8 ±4.8 
 

  

Total lean %   
   

70 ±7.8 
  

  
 

77.9 ±8.0 
 

  

Fasting glucose (mg/dl)   
 

71.6 ±11.7 94 ±16.0 89.9 ±13.2 89.9 ±14.5 95.6 ±19.5 94.6 ±29.5 

2h glucose (mg/dl)   
   

99 ±29.4 
  

  
 

94.9 ±34.7 
 

  

Fasting insulin (mIU/L)   
 

24 ±42.3 5 ±4.5 5.9 ±3.6 28 ±28.3 5.4 ±4.1 6.2 ±4.8 

2h insulin (mIU/L)   
   

28.1 ±22.1 
  

  
 

28.5 ±30.6 
 

  

HOMA B   
   

267 ±843.1 172 ±234.6   
 

227 ±284.3 190 ±319.4 

HOMA S   
   

70.3 ±36.9 85.8 ±33.4   
 

71.6 ±36.5 81.8 ±38.4 

HOMA IR   
   

0.75 ±0.63 0.9 ±0.5   
 

0.83 ±0.64 0.9 ±0.7 
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HOMA DI         112 ±43.2 114 ±41.5     109 ±49.5 112 ±50.9 

Values are mean (SD) 
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Table 2. Parent-of-origin test for offspring anthropometry. Association between offspring 
anthropometry measures with that of each of the parents are presented as beta values and se. 
Differences between maternal and paternal effects are presented as Z scores and p-values. 
 

  At birth 

All offspring MC (N=745) 
beta (SE) 

P-value FC (N=705) 
beta (SE) 

P-value Z (P) 

Weight (kg) 0.157 (0.044) 0.0001* 0.081 (0.043) 0.065 1.24 (0.22) 

Height (cm) 0.176 (0.042) 0.0001* 0.149 (0.043) 0.0001* 0.45 (0.65) 

BMI (kg/m2) 0.103 (0.045) 0.019 0.093 (0.044) 0.035 0.16 (0.87) 

    
Sons MC (N=386)   FC (N=370)   Z (P) 

Weight (kg) 0.131 (0.058) 0.033 0.059 (0.056) 0.337 1.32 (0.19) 

Height (cm) 0.165 (0.058) 0.005* 0.138 (0.056) 0.017 0.33 (0.74) 

BMI (kg/m2) 0.109 (0.061) 0.074 0.06 (0.060) 0.322 0.57 (0.57) 

    
Daughters MC (N=353)   FC (N=342)   Z (P) 

Weight (kg) 0.196 (0.069) 0.002* 0.115 (0.068) 0.068 0.52 (0.61) 

Height (cm) 0.188 (0.063) 0.002* 0.166 (0.068) 0.007 0.24 (0.84) 

BMI (kg/m2) 0.102 (0.069) 0.112 0.128 (0.066) 0.046 -0.27 (0.78) 
      

  6-year 

All offspring MC (N=690) 
beta (SE) 

P-value FC (N=655) 
beta (SE) 

P-value Z (P) 

Weight (kg) 0.277 (0.037) 0.0001* 0.301 (0.037) 0.0001* -0.46 (0.65) 

Height (cm) 0.349 (0.034) 0.0001* 0.316 (0.035) 0.0001* 0.68 (0.50) 

BMI (kg/m2) 0.213 (0.038) 0.0001* 0.254 (0.038) 0.0001* -0.76 (0.44) 

    
Sons MC (N=363)   FC (N=342)   Z (P) 

Weight (kg) 0.276 (0.048) 0.0001* 0.319 (0.049) 0.0001* 0.45 (0.65) 

Height (cm) 0.373 (0.049) 0.0001* 0.299 (0.048) 0.0001* 1.08 (0.28) 

BMI (kg/m2) 0.208 (0.052) 0.0001* 0.230 (0.053) 0.0001* -0.30 (0.77) 

    
Daughters MC (N=327)   FC (N=313)   Z (P) 

Weight (kg) 0.280 (0.058) 0.0001* 0.282 (0.058) 0.0001* -0.51 (0.61) 

Height (cm) 0.322 (0.051) 0.0001* 0.339 (0.055) 0.0001* -1.81 (0.07) 

BMI (kg/m2) 0.220 (0.056) 0.0001* 0.277 (0.055) 0.0001* -0.73 (0.47) 
      

  12-year 

All offspring MC (N=658) 
beta (SE) 

P-value FC (N=597) 
beta (SE) 

P-value Z (P) 
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Weight (kg) 0.298 (0.038) 0.0001* 0.343 (0.038) 0.0001* -0.84 (0.40) 

Height (cm) 0.320 (0.036) 0.0001* 0.352 (0.037) 0.0001* -0.52 (0.63) 

BMI (kg/m2) 0.270 (0.040) 0.0001* 0.289 (0.040) 0.0001* -0.34 (0.74) 

    
Sons MC (N=342)   FC (N=314)   Z (P) 

Weight (kg) 0.289 (0.050) 0.0001* 0.377 (0.049) 0.0001* -1.26 (0.21) 

Height (cm) 0.394 (0.047) 0.0001* 0.322 (0.047) 0.0001* 1.08 (0.23) 

BMI (kg/m2) 0.229 (0.056) 0.0001* 0.316 (0.055) 0.0001* -1.11 (0.27) 

    
Daughters MC (N=316)   FC (N=283)   Z (P) 

Weight (kg) 0.309 (0.058) 0.0001* 0.309 (0.060) 0.0001* 0 (1) 

Height (cm) 0.246 (0.056) 0.0001* 0.378 (0.058) 0.0001* -1.64 (0.10) 

BMI (kg/m2) 0.317 (0.056) 0.0001* 0.265 (0.057) 0.0001* 0.64 (0.52) 
      

  18-year$ 

All offspring MC (N=626) 
beta (SE) 

P-value FC (N=568) 
beta (SE) 

P-value Z (P) 

Weight (kg) 0.264 (0.040) 0.0001* 0.305 (0.040) 0.0001* -0.72 (0.47) 

Height (cm) 0.387 (0.032) 0.0001* 0.409 (0.033) 0.0001* -0.48 (0.63) 

BMI (kg/m2) 0.260 (0.042) 0.0001* 0.256 (0.041) 0.0001* 0.07 (0.95) 

    
Sons MC (N=333)   FC (N=307)   Z (P) 

Weight (kg) 0.252 (0.052) 0.0001* 0.355 (0.051) 0.0001* -1.41 (0.16) 

Height (cm) 0.391 (0.046) 0.0001* 0.382 (0.047) 0.0001* 0.14 (0.89) 

BMI (kg/m2) 0.245 (0.056) 0.0001* 0.291 (0.056) 0.0001* -0.58 (0.56) 

    
Daughters MC (N=293)   FC (N=261)   Z (P) 

Weight (kg) 0.278 (0.062) 0.0001* 0.247 (0.063) 0.0001* 0.35 (0.73) 

Height (cm) 0.388 (0.045) 0.0001* 0.444 (0.048) 0.0001* -0.76 (0.45) 

BMI (kg/m2) 0.278 (0.063) 0.0001* 0.219 (0.062) 0.0001* 0.67 (0.50) 

 
Values are presented as ß coefficients. $ Parents information was considered from 12-year 
follow-up. Z value shows the difference between regression coefficients. z = (b1-b2) / sqrt 
(seb1**2 + seb2**2 – cov(b1*b2)); p = 1 - cdf.chisq(z*z,1). MC: Mother-Child, FC: Father-
Child. Adjusted for age, and sex. 
 
*significant after correcting for multiple comparisons 
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Table 3: Parent-of-origin effects of cardiometabolic traits. Association between offspring measures with that of each of the parents are presented 
as beta values and se. Differences between maternal and paternal effects are presented as Z scores and p-values.  
 

  6-year 12-year 

All offspring MC (N=690) 
beta (SE) P-value FC (N=655) 

beta (SE) P-value Z (P) MC (N=658) 
beta (SE) P-value FC (N=597) 

beta (SE) P-value Z (P) 

Fasting glucose 
(mg/dl) 

0.321 
(0.038) 0.0001* 0.231 

(0.040) 0.0001* 1.63 (0.10) 0.281 
(0.043) 0.0001* 0.161 

(0.040) 0.0001* 2.04 (0.04) 

Fasting Insulin 
(mIU/L) 

-0.104 
(0.043) 0.016 0.072 

(0.046) 0.111 -2.80 (0.005) * 0.168 
(0.044) 0.0001* 0.010 

(0.045) 0.829 2.51 (0.01) 

HOMA2B -0.035 
(0.043) 0.414 0.144 

(0.045) 0.001* -2.88 (0.004) * 0.192 
(0.042) 0.0001* 0.093 

(0.042) 0.03 1.67 (0.09) 

HOMA2S -0.093 
(0.043) 0.034 0.068 

(0.046) 0.137 -2.56 (0.01) 0.165 
(0.044) 0.0001* 0.007 

(0.046) 0.883 2.48 (0.01) 

Triglycerides 0.270 
(0.043) 0.0001* 0.196 

(0.041) 0.0001* 1.25 (0.21) 0.276 
(0.043) 0.0001* 0.310 

(0.044) 0.0001* -0.55 (0.58) 

Cholesterol 0.320 
(0.038) 0.0001* 0.169 

(0.040) 0.0001* 2.72 (0.006) * 0.427 
(0.039) 0.0001* 0.254 

(0.039) 0.0001* 3.14 (0.002) * 

HDL 0.140 
(0.041) 0.001* -0.006 

(0.041) 0.887 2.52 (0.01) 0.191 
(0.045) 0.0001* 0.044 

(0.045) 0.333 2.31 (0.02) 
    

  
      

Sons 6-year 12-year 

  MC (N=363)   FC (N=342)   Z (P) MC (N=342)   FC (N=314)   Z (P) 

Fasting glucose 
(mg/dl) 

0.331 
(0.048) 0.0001* 0.220 

(0.044) 0.0001 1.70 (0.08) 0.230 
(0.055) 0.0001* 0.075 

(0.049) 0.203 2.10 (0.03) 

Fasting Insulin 
(mIU/L) 

-0.172 
(0.061) 0.005* 0.078 

(0.066) 0.213 -2.78 (0.005) * 0.183 
(0.068) 0.008* 0.060 

(0.070) 0.371 1.26 (0.20) 

HOMA2B -0.067 
(0.058) 0.266 0.157 

(0.062) 0.01 -2.64(0.008) * 0.191 
(0.063) 0.002 0.075 

(0.060) 0.216 1.33 (0.18) 

HOMA2S -0.172 
(0.063) 0.006* 0.069 

(0.066) 0.274 -2.64 (0.008) * 0.178 
(0.069) 0.011 0.058 

(0.072) 0.394 1.20 (0.23) 
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Triglycerides 0.322 
(0.057) 0.0001* 0.097 

(0.060) 0.094 2.75 (0.006) * 0.354 
(0.058) 0.0001* 0.233 

(0.060) 0.0001* 1.45 (0.15) 

Cholesterol 0.353 
(0.054) 0.0001* 0.117 

(0.054) 0.031 3.09 (0.002) * 0.464 
(0.053) 0.0001* 0.233 

(0.053) 0.0001* 3.08 (0.002) * 

HDL 0.153 
(0.056) 0.007* -0.015 

(0.057) 0.792 2.10 (0.04) 0.236 
(0.062) 0.0001* -0.016 

(0.060) 0.796 2.92 (0.004) * 
    

  
      

Daughters 6-year 12-year 

  MC (N=327)   FC (N=313)   Z (P) MC (N=316)   FC (N=283)   Z (P) 

Fasting glucose 
(mg/dl) 

0.287 
(0.073) 0.0001* 0.261 

(0.075) 0.0001* 0.25 (0.80) 0.364 
(0.073) 0.0001 0.317 

(0.068) 0.0001 0.47 (0.63) 

Fasting Insulin 
(mIU/L) 

-0.035 
(0.061) 0.563 0.050 

(0.065) 0.449 -0.95 (0.31) 0.168 
(0.059) 0.004 -0.047 

(0.059) 0.461 2.62 (0.008) * 

HOMA2B 0.005 
(0.065) 0.942 0.123 

(0.065) 0.062 -1.39 (0.16) 0.202 
(0.056) 0.001 0.11 (0.059) 0.073 1.01 (0.31) 

HOMA2S -0.016 
(0.061) 0.794 0.048 

(0.066) 0.469 -71 (0.48) 0.163 
(0.058) 0.006 -0.049 

(0.060) 0.445 2.54 (0.01) 

Triglycerides 0.208 
(0.059) 0.0001* 0.323 

(0.062) 0.0001* -1.11 (0.27) 0.166 
(0.064) 0.009 0.404 

(0.063) 0.0001 -2.65 (0.008) * 

Cholesterol 0.287 
(0.054) 0.0001* 0.231 

(0.061) 0.0001* 0.69 (0.49) 0.379 
(0.058) 0.0001 0.279 

(0.057) 0.0001 1.23 (0.22) 

HDL 0.133 
(0.060) 0.027 0.008 

(0.060) 0.896 1.47 (0.14) 0.151 
(0.065) 0.021 0.127 

(0.067) 0.06 0.26 (0.80) 

 
Values are presented as ß coefficients. Z value shows the difference between regression coefficients. z = (b1-b2) / sqrt (seb1**2 + seb2**2 – 
cov(b1*b2)); p = 1 - cdf.chisq(z*z,1). MC: Mother-Child, FC: Father-Child. Adjusted for age, sex and BMI. 
 
 
*significant after correcting for multiple comparisons
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Supplementary Table 1. Additional description of offspring of the Pune Maternal Nutrition Study (PMNS) at birth. 
 

At birth N=745  N=388 N=357 
         

Birth weight (kg) 2.7 ±0.3 2.8 ±0.3 2.7 ±0.3 
Length (cm) 47.3 ±2.3 47.7 ±2.5 47.1 ±2.2 

Abdominal circumference (cm) 28.5 ±2.1 28.5 ±2.1 28.4 ±2.0 
Sum of skinfolds (mm) 8.4 ±1.7 8.3 ±1.6 8.3 ±1.7 

 
 
Values are mean ± SD
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Supplementary Table 2: Quality assessments for glucose and insulin measurements in the 
Pune Maternal Nutrition Study (1993- 2013). 
 

  1994-97 Feb-00 Aug-06 2013-14 

Glucose measurement 

Method GOD-POD GOD-POD GOD-POD GOD-POD 

Equipment Spectrum; Abbott, 
Irving, TX 

Spectrum; Abbott, 
Irving, TX 

Alcyon;  Abbott, 
Irving, TX 

Hitachi 902, Roche 
Diagnostics GmbH, 
Germany 

Centrifugation 
temperature Room temperature Room temperature  4°C 4°C 

Processed on Same day Same day Same day Same day 

Internal QC Yes Yes Yes  Yes 

Internal CV (%) <3 <3 <3 <3 

External QC NA NA BioRad EQAS BioRad EQAS 

EQAS CV (%) NA NA 3.4 2.7 

Insulin measurements 

Method 

1-step 
chemiluminescent 
immunoenzymatic 
assay* 

2 site 
fluoroimmunometric 
assay 

2 site 
fluoroimmunometric 
assay 

ELISA 

Equipment 

Access 
Immunoassay 
System (Sanofi 
Pasteur 
Diagnostics, 
Chaska, Minn) 

Delfia technique Delfia technique Mercodia AB, SE-754 
50 Uppsala, Sweden 

Centrifugation 
temperature Room temperature Room temperature  4°C 4°C 

Sensitivity 2.3 pM/L 3 pM/L 3 pM/L 6 pM/L 

Calibrated 
against 

WHO 1st IRP 
(66/304) 

WHO 1st IRP 
(66/304) 

WHO 1st IRP 
(66/304) WHO 1st IRP (66/304) 

Internal QC Yes Yes Yes Yes 

Internal CV  NA NA 7.7%. 6.70% 

External QC No UKEQAS  UKEQAS UKEQAS 

External CV NA <20 pM/L:    8.9%     
45-90 pM/L: 6.8%    

<20 pM/L:    8.2%  
20-45 pM/L: 6.9% 
>45 pM/L:    8.6%    

 <20 pM/L:    6.4%   20-
45 pM/L:  7.6% >45 
pM/L:     5.5%   
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Supplementary Table 3. Heritability estimates for anthropometric traits. Heritability is tested 
between mid-parental phenotype (predictor) and off-spring phenotype (outcome) using linear 
model and expressed as ß and corresponding p-values. 
 

  All offspring 

  Pre-pregnancy - At 
birth (N=745) 

6-year (N=638) 12-year (N=667) 12-year – 18-year 
(N=633) 

  ß (SE) P-value ß P-value ß P-value ß P-value 

Weight (kg) 0.187 
(0.038) 

<0.000* 0.462 
(0.036) 

<0.000* 0.524 
(0.035) 

<0.000* 0.467 
(0.037) 

<0.000* 

Height (cm) 0.240 
(0.037) 

<0.000 0.509 
(0.034) 

<0.000* 0.514 
(0.035) 

<0.000* 0.599 
(0.033) 

<0.000* 

BMI 
(kg/m2) 

0.134 
(0.043) 

0.002* 0.364 
(0.037) 

<0.000* 0.440 
(0.037) 

<0.000* 0.410 
(0.039) 

<0.000* 

Waist ʘ 
(cm) 

  
 

0.239 
(0.038) 

<0.000* 
   

  

Hip ʘ (cm)   
 

0.364 
(0.036) 

<0.000* 
   

  

WHR   
 

0.106 
(0.039) 

<0.000* 
   

  

Sum of 
skinfolds 
(mm) 

  
 

0.253 
(0.038) 

<0.000* 
   

  

Total fat 
mass (kg) 

  
 

0.246 
(0.038) 

<0.000* 
   

  

Total lean 
mass (kg) 

    0.339 
(0.037) 

<0.000*         

  Sons 

  Pre-pregnancy- At 
birth (N=388) 

6-year (N=336) 12-year (N=346) 12-year – 18-year 
(N=339) 

  ß P-value ß P-value ß P-value ß P-value 

Weight (kg) 0.138 
(0.049) 

0.01 0.480 
(0.046) 

<0.000* 0.549 
(0.045) 

<0.000* 0.509 
(0.047) 

<0.000* 

Height (cm) 0.225 
(0.049) 

<0.000* 0.513 
(0.045) 

<0.000* 0.556 
(0.045) 

<0.000* 0.613 
(0.045) 

<0.000* 

BMI 
(kg/m2) 

0.099 
(0.055) 

0.087 0.347 
(0.050) 

<0.000* 0.426 
(0.051) 

<0.000* 0.425 
(0.051) 

<0.000* 

Waist ʘ 
(cm) 

  
 

0.236 
(0.049) 

<0.000* 
   

  

Hip ʘ (cm)   
 

0.437 
(0.050) 

<0.000* 
   

  

WHR   
 

0.060 
(0.053) 

0.262 
   

  

Sum of 
skinfolds 
(mm) 

  
 

0.190 
(0.053) 

<0.000* 
   

  

Total fat 
mass (kg) 

  
 

0.225 
(0.050) 

<0.000* 
   

  

Total lean 
mass (kg) 

    0.314 
(0.049) 

<0.000*         

  Daughters 

  Pre-pregnancy- At 
birth (N=357) 

6-year (N=302) 12-year (N=321) 12-year – 18-year 
(N=294) 

  ß P-value ß P-value ß P-value ß P-value 

Weight (kg) 0.253 
(0.059) 

<0.000* 0.441 
(0.056) 

<0.000* 0.500 
(0.056) 

<0.000* 0.415 
(0.059) 

<0.000* 
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Height (cm) 0.260 
(0.056) 

<0.000* 0.505 
(0.052) 

<0.000* 0.466 
(0.057) 

<0.000* 0.579 
(0.048) 

<0.000* 

BMI 
(kg/m2) 

0.178 
(0.068) 

0.005 0.380 
(0.055) 

<0.000* 0.461 
(0.055) 

<0.000* 0.398 
(0.059) 

<0.000* 

Waist ʘ 
(cm) 

  
 

0.244 
(0.059) 

<0.000* 
   

  

Hip ʘ (cm)   
 

0.291 
(0.053) 

<0.000* 
   

  

WHR   
 

0.158 
(0.056) 

0.005* 
   

  

Sum of 
skinfolds 
(mm) 

  
 

0.323 
(0.054) 

<0.000* 
   

  

Total fat 
mass (kg) 

  
 

0.271 
(0.057) 

<0.000* 
   

  

Total lean 
mass (kg) 

    0.371 
(0.051) 

<0.000*         
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Supplementary Table 4: Heritability estimate for glycemic traits. Heritability is tested 
between mid-parental phenotype (predictor) and off-spring phenotype (outcome) using linear 
model and expressed as ß and corresponding p-values.  
 

  All offspring 

  6-year (N=638) 12-year (N=667) 

  ß P-value ß P-value 

Fasting glucose (mg/dl) 0.409 (0.036) <0.000* 0.307 (0.040) <0.000* 

Fasting Insulin (mIU/L) 0.026 (0.039) 0.503 0.198 (0.041) <0.000* 

HOMA2B 0.104 (0.039) 0.008* 0.241 (0.040) <0.000* 

HOMA2S -0.005 (0.039) 0.906 0.202 (0.041) <0.000* 

Triglycerides 0.301 (0.037) <0.000* 0.378 (0.039) <0.000* 

Cholesterol 0.373 (0.036) <0.000* 0.449 (0.037) <0.000* 

HDL 0.108 (0.039) 0.006* 0.169 (0.041) <0.000* 

  Sons 

  6-year (N=336) 12-year (N=346) 

  ß P-value ß P-value 

Fasting glucose (mg/dl) 0.383 (0.044) <0.000* 0.188 (0.048) 0.001* 

Fasting Insulin (mIU/L) 0.004 (0.056) 0.938 0.179 (0.056) 0.002* 

HOMA2B 0.110 (0.055) 0.043 0.206 (0.055) <0.000* 

HOMA2S -0.045 (0.057) 0.409 0.201 (0.060) <0.000* 

Triglycerides 0.249 (0.053) <0.000* 0.339 (0.054) <0.000* 

Cholesterol 0.338 (0.055) <0.000* 0.419 (0.052) <0.000* 

HDL 0.114 (0.053) 0.034 0.182 (0.056) 0.001* 

  Daughters 

  6-year (N=302) 12-year (N=321) 

  ß P-value ß P-value 

Fasting glucose (mg/dl) 0.464 (0.062) <0.000* 0.536 (0.067) <0.000* 

Fasting Insulin (mIU/L) 0.049 (0.055) 0.384 0.224 (0.060) <0.000* 

HOMA2B 0.100 (0.056) 0.077 0.285 (0.058) <0.000* 

HOMA2S 0.037 (0.055) 0.502 0.207 (0.057) 0.001* 

Triglycerides 0.359 (0.053) <0.000* 0.423 (0.055) <0.000* 

Cholesterol 0.411 (0.052) <0.000* 0.482 (0.054) <0.000* 

HDL 0.101 (0.057) 0.074 0.155 (0.060) 0.01 
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Supplementary Table 5. Parent-of-origin test for offspring anthropometry for additional 
phenotypes at 6-years of age. Association between offspring anthropometry measures with 
that of each of the parents are presented as beta values and se. Differences between maternal 
and paternal effects are presented as Z scores and p-values. 
 

  All offspring 

  MC (N=690) P-value FC (N=655) P-value Z (P) 

Waist ʘ (cm) 0.192 (0.039) 0.0001 0.142 (0.039 0.0001 0.91 (0.36) 

Hip ʘ (cm) 0.258 (0.040) 0.0001 0.261 (0.038) 0.0001 -0.05 (0.96) 

WHR 0.139 (0.040) 0.0001 0.037 (0.040) 0.348 1.80 (0.07) 

Sum of skinfolds (mm) 0.123  (0.039) 0.002 0.211 (0.040) 0.0001 -1.58 (0.12) 

Total fat mass (kg) 0.130 (0.040) 0.001 0.187 (0.040) 0.0001 -1.01 (0.31) 

Total lean mass (kg) 0.251 (0.037) 0.0001 0.262 (0.038) 0.0001 -0.21 (0.84) 

      
  Sons 

  MC (N=363) P-value FC (N=342) P-value Z (P) 

Waist ʘ (cm) 0.190 (0.051) 0.001 0.144 (0.052) 0.009 0.63 (0.53) 

Hip ʘ (cm) 0.271 (0.048) 0.0001 0.273 (0.051) 0.0001 -0.03 (0.98) 

WHR 0.099 (0.052) 0.073 0.041 (0.053) 0.454 0.78 (0.43) 

Sum of skinfolds (mm) 0.123 (0.054) 0.028 0.139 (0.056) 0.014 -0.21 (0.84) 

Total fat mass (kg) 0.082 (0.054) 0.154 0.184 (0.057) 0.001 -1.30 (0.19) 

Total lean mass (kg) 0.229 (0.050) 0.0001 0.264 (0.049) 0.0001 -0.50 (0.62) 

      
  Daughters 

  MC (N=327) P-value FC (N=313) P-value Z (P) 

Waist ʘ (cm) 0.197 (0.061) 0.001 0.139 (0.060 0.015 0.68 (0.50) 

Hip ʘ (cm) 0.246 (0.069) 0.0001 0.245 (0.058) 0.0001 -0.01 (0.99) 

WHR 0.196 (0.066) 0.001 0.035 (0.060) 0.536 1.81 (0.07) 

Sum of skinfolds (mm) 0.127 (0.057) 0.024 0.292 (0.057) 0.0001 -2.05 (0.04) 

Total fat mass (kg) 0.185 (0.060) 0.001 0.201 (0.058) 0.0001 -0.19 (0.85) 

Total lean mass (kg) 0.276 (0.056) 0.0001 0.260 (0.059) 0.0001 0.20 (0.84) 

 
Values are presented as ß coefficients. Z value shows the difference between regression 
coefficients. z = (b1-b2) / sqrt (seb1**2 + seb2**2 – cov(b1*b2)); p = 1 - cdf.chisq(z*z,1). 
MC: Mother-Child, FC: Father-Child. Adjusted for age, sex and BMI. 
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