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The COVID-19 pandemic caused by severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) is a global crisis with unprecedented 

challenges for public health. Vaccinations against SARS-CoV-2 have 

slowed the incidence of new infections and reduced disease severity. As 

the time-of-day of vaccination has been reported to influence host 

immune responses to multiple pathogens, we quantified the influence 

of SARS-CoV-2 vaccination time, vaccine type, age, sex, and days post-

vaccination on anti-Spike antibody responses in healthcare workers. 

The magnitude of the anti-Spike antibody response associated with the 

time-of-day of vaccination, vaccine type, participant age, sex, and days 

post vaccination. These results may be relevant for optimizing SARS-

CoV-2 vaccine efficacy. 

The circadian clock is an endogenous 24 hour clock that regulates many aspects 

of physiology, including the response to infectious disease and vaccination 

(Allada and Bass, 2021). A recent report demonstrated significant daytime 

variation in multiple immune parameters in >300,000 participants in the UK 

Biobank, highlighting the diurnal nature of innate and adaptive immune 

responses (Wyse et al., 2021). Human lung diseases frequently show time-of-

day variation in symptom severity and respiratory function and the circadian 

transcriptional activator BMAL1 has been shown to regulate respiratory 

inflammation (Ehlers et al., 2018; Ince et al., 2019). Influenza A virus infection 

of circadian-arrhythmic mice is associated with elevated inflammatory responses 

and a higher viral burden (Edgar et al., 2016; Sengupta et al., 2019). The time-

of-day of influenza vaccination in elderly men affected antibody responses with 

higher titres noted in the morning (Phillips et al., 2008; Long et al., 2016). An 

additional influenza vaccination study reported that the time of sample collection 

rather than vaccination had a more significant effect on antibody responses 
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(Kurupati et al., 2017). We and others have proposed a role for circadian 

signalling in regulating SARS-CoV-2 host immune responses and COVID-19 

severity (Ray and Reddy, 2020; Maidstone et al., 2021; Sengupta et al., 2021). 

Clearly, it is important to assess whether the time of SARS-CoV-2 vaccination 

impacts host antibody responses. 

In the UK, healthcare workers were identified as a priority group to receive 

SARS-CoV-2 vaccine starting in December 2020. At this time, the Alpha B.1.1.7 

variant was the dominant circulating strain. As part of this initiative, data were 

collected on all asymptomatic staff members (Eyre et al., 2021; Lumley et al., 

2021) in keeping with enhanced hospital infection prevention and 

control guidelines issued by the UK Department of Health and Social 

Care. Anonymised data were obtained from the Infections in Oxfordshire 

Research Database which has approvals from the National Research Ethics 

Service Committee South Central – Oxford C Research Ethics Committee 

(19/SC/0403), the Health Research Authority and the national Confidentiality 

Advisory Group (19/CAG/0144). Peripheral blood samples were collected during 

Dec 2020-Feb 2021 and were tested for anti-Spike (Abbott IgG assay) 

(Ainsworth et al., 2020) and anti-nucleocapsid (Abbott SARS-CoV-2 IgG anti-

nucleocapsid assay) antibody levels. We analysed anti-Spike responses during 

the 2-10 weeks after vaccination. In this data set, 2190 people contributed one 

blood sample, 549 contributed two samples and 45 three or more samples (total 

of 3425 samples). Participants with evidence of prior SARS-CoV-2 infection (PCR 

for viral RNA or anti-nucleocapsid antibody), samples with anti-Spike responses 

<50 AU, and samples obtained after second vaccination were excluded. 
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Data from 2784 participants (Table 1A) were analyzed using linear mixed 

modelling to investigate the effects of time of vaccination on anti-Spike antibody 

levels. Variation between participants was modelled with fixed factors of time-

of-day of vaccination (Time 1, 07:00-10:59; Time 2, 11:00-14:59; Time 3, 

15:00-21:59) (Supplemental Figure 1), vaccine type (Pfizer, mRNA bnt162b2 or 

AstraZeneca, Adenoviral AZD1222), age group (16-29, 30-39, 40-49 or 50-74 

years), sex, and the number of days post-vaccination. A B-spline transformation 

of days post-vaccination was used to model the non-linear pattern of anti-Spike 

responses (log10 transformed) (Supplemental Figure 2). This analysis allowed us 

to estimate the average anti-Spike levels in each participant group at 2 and 6 

weeks post-vaccination (Figure 1). 

Using a linear mixed-model approach, we found that anti-Spike responses were 

higher in those who were vaccinated later in the day (p=0.013), in those who 

received the Pfizer mRNA vaccine (p<0.0001), in women (p=0.013) and in 

younger participants (p<0.0001) (Table 1B). We observed significant 

interactions between days post-vaccination and vaccine type (p<0.0001) and 

age (p=0.032), but not with vaccine time (p=0.238). Analysing the data using 

two time intervals (before or after 1 pm) gave similar results. We did not observe 

a significant effect of time of day of sample collection (using the same time 

intervals as for vaccination times) (p=0.097), and this parameter was not 

included in the final model; results from the model including sample times are 

shown in Supplemental Table 1. Sixty seven samples gave values beneath the 

cut-off (<50) in the anti-Spike assay and were classified as “non-responders”, 
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we found no significant association with the time-of-day of vaccination for these 

samples (linear mixed-effects logistic regression, p=0.23). 

Our analysis of 2784 healthcare workers reveals a significant effect of the time 

of vaccination on anti-Spike antibody levels following the administration of two 

alternative SARS-CoV-2 vaccines (mRNA or Adenovirus based). A recent report 

studying a small cohort of healthcare workers immunised with an inactivated 

SARS-CoV-2 vaccine in the morning (09:00 -11:00,n=33) or afternoon (15:00 -

17:00, n=30) showed increased B-cell responses and anti-Spike antibodies in 

participants vaccinated in the morning (Zhang et al., 2021). This contrasts with 

our observations and may reflect the use of an inactivated whole virus 

immunogen that will likely induce polytypic responses to a range of SARS-CoV-

2 encoded proteins. Our observation contrasts with earlier studies in elderly men 

that reported higher anti-influenza titers in the morning (Phillips et al., 2008; 

Long et al., 2016). This may reflect differences between the cohorts studied, 

particularly with regard to immune status; we studied seronegative participants 

whereas responses to influenza vaccination will involve the stimulation of 

memory responses. Sample collection time in this study showed no significant 

association with anti-Spike levels, in contrast to previous reports (Kurupati et 

al., 2017; McNaughton et al., 2021). These data highlight the importance of 

recording the time of vaccination in clinical and research studies, and highlight 

the importance of considering time-of-day factors in future study designs that 

may reduce inter-individual variance and the number of participants needed to 

obtain statistical significance. 
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Additional studies are warranted to evaluate the circadian regulation of natural 

and vaccine-induced SARS-CoV-2 immunity. McNaughton and colleagues 

reported a diurnal variation in SARS-CoV-2 PCR test results, showing a 2-fold 

variation in Ct values implying higher viral RNA levels in the afternoon 

(McNaughton et al., 2021). These data are consistent with our recent study 

showing a role for the circadian component BMAL1 in regulating SARS-CoV-2 

replication (Zhuang et al., 2021) that could influence the induction of host innate 

and adaptive responses. 

It is worth noting that, despite the significant differences in anti-Spike levels 

detected in participants receiving Pfizer mRNA or AstraZeneca Adenoviral 

vaccines, both show comparable efficacies highlighting the robust nature of the 

host antibody response. Limitations of this retrospective observational study 

include: (i) relatively few participants had more than one anti-Spike antibody 

measurement, limiting our ability to study both longitudinal immune responses 

and the effect of time-of-day of sample collection; (ii) the health profiles of our 

healthcare workers may differ from the general population and no information 

was available on their medical or medication history, except that they had no 

prior infection with SARS-CoV-2 and were seronegative; (iii) there was limited 

serological sampling following second vaccination, precluding the analysis of 

time-of-day effects following a two-dose schedule; (iv) the extent to which anti-

Spike levels are a correlate of clinical efficacy is not known; (v) the sleep and 

shift-work patterns of the participants, that are known to influence vaccine 

responses (Spiegel et al., 2002; Lange et al., 2003; Prather et al., 2021), were not 

available; and (vi) our cohort does not include children or high-risk groups, such 
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as the elderly or immunocompromised. We recommend future studies address 

these limitations when documenting natural and vaccine-induced SARS-CoV-2 

immune responses. 
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Figure 1 : Estimated Anti-Spike antibody levels at 2 and 6 weeks after first SARS-
CoV-2 vaccination, partitioned by age, sex, and time-of-day of vaccination (Time 
1, 07:00-10:59; Time 2, 11:00-14:59; Time 3, 15:00-21:59). Mean value 
(symbol) with 95% confidence values (vertical line). 
† Three confidence intervals extend beyond the Y-axis limits (*4275; +5995; & 

4028). 
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Table 1A. Participant numbers 

 Pfizer mRNA 
(Time 1/Time 2/Time 3) 

AstraZeneca Adenoviral 
(Time 1/Time 2/ Time 3) 

Age (years) Female Male Female Male 
16-29 90/143/163 18/26/26 39/54/53 11/12/10 
30-39 100/146/149 30/46/40 38/44/34 10/7/8 
40-49 120/160/170 17/36/42 43/56/43 8/11/8 
50-74 127/152/199 24/26/38 68/52/59 7/4/7 

 

Table 1B. Type III tests of fixed effects from mixed effects model  

Effect Num DF F 
Value† 

Probability 

Main Effects    

Vaccination Time 
(Time 2, Time 3 vs. Time 1) ‡ 2 4.33 0.0133 

Vaccine type 
(AstraZeneca vs. Pfizer) 1 148.31 <0.0001 

Age 
(30-39, 40-49, 50-74 vs.16-29) 3 51.15 <0.0001 

Sex 
(Female vs. Male) 1 6.16 0.0131 

Days post-vaccination 6 18.78 <0.0001 

Interaction terms    

Days*Vaccination_Time 12 1.26 0.2380 

Days*Vaccine type 6 7.24 <0.0001 

Days*Age 18 1.70 0.0319 

Days*sex 6 1.03 0.4010 

Vaccination_Time*Vaccine type 2 1.22 0.2945 

Vaccination_Time*Age 6 0.71 0.6446 

Vaccination_Time*Sex 2 0.44 0.6412 
 
Details of the linear mixed modeling are: Time of vaccination (Time 1, 07:00-
10:59; Time 2, 11:00-14:59; Time 3, 15:00-21:59), vaccine type (Pfizer mRNA 
or AstraZeneca Adenovirus), age groups (from Table 1A), sex, and days post-
vaccination were treated as fixed factors. A B-spline transformation of days post-
vaccination was used to model the non-linear pattern of anti-Spike antibody 
responses (log10 transformed) post vaccination. 
DF= Degrees of Freedom.† For all F tests the denominator DF was 3359. ‡ For 
each F test, the fixed effect referent is the last term shown, the F and P values 
are the Type III tests of overall fixed effects. 
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