Protocol for 18F-PSMA PET imaging in staging and management of prostate cancer – a retrospective cohort study

Matthew H V Byrne, Nithesh Ranasinha, Richard J Bryant, Freddie C Hamdy, Tom Leslie, Saiful Miah, Fergus Gleeson, Ruth MacPherson, Mark Tuthill, Andy Protheroe, Philip Camilleri, Phil Turner, Ami Sabharwal, Gerard Andrade, Alastair D Lamb

1Oxford University Hospitals NHS Foundation Trust, UK

Corresponding author
Name: Matthew H V Byrne
Email address: mhvbyrne@doctors.org.uk
Full Institution address: Churchill Hospital, Old Road, Headington, Oxford, UK
Institution postcode: OX3 7LE

Funding declarations: None
Conflicts of interests: None
Study type: Protocol
Running title: 18F PSMA PET prostate cancer protocol

Key words: PSMA PET, Fluorine-18, prostate cancer

Word count: 1328

Ethics: This study was approved as a service evaluation by the Audit Department at Oxford University Hospitals Trust, UK and ethical approval was not required for this study.
ABSTRACT

Background: MRI, bone scan, and CT staging is recommended in the staging of prostate cancer. However, prostate-specific membrane antigen positron emission tomography (PSMA PET) could be superior in detection of local and distant prostate cancer cells. Most PSMA PET scans for prostate cancer are performed with a Gallium-68 ligand, with the Fluorine-18 (^{18}F) ligand being introduced more recently.

Methods: We will conduct a retrospective review of electronic patient records for all consecutive patients who underwent preoperative ^{18}F-PSMA PET scan for prostate cancer from its introduction at our centre in 2019. We will compare PET scans with other imaging modalities and evaluate its use in diagnosis and management decisions for prostate cancer.

Conclusions: Understanding the role of ^{18}F-PSMA PET in diagnosis and management could influence the diagnostic pathway of primary and secondary prostate cancer.

Trial registration: Not applicable.
BACKGROUND

European Association of Urology guidelines recommend the use of magnetic resonance imaging (MRI) to assess local staging of prostate cancer alongside computer tomography (CT) and a bone scan to assess distant metastasis in patients with higher risk disease. However, MRI and CT have low sensitivity, and MRI has low specificity for detecting lymph node metastasis. This is problematic as patients considered appropriate for radical therapy for localised disease may have micro-metastases.

An alternative is positron emission tomography (PET), which can detect local and distant prostate cancer cells. 18F-fluorodeoxyglucose is a tracer that is used in most oncological PET scans, as it has preferential uptake in cancer cells. However, early studies into its use in prostate cancer were not promising, with one study showing a sensitivity of 37%. As such alternative PET tracers have been trialled. These include Gallium-68 (68Ga) and Fluorine-18 (18F) prostate-specific membrane antigen (PSMA) PET.

68Ga-PSMA-PET

68Ga-PSMA-PET is a ligand that binds to PSMA – a glycoprotein that is overexpressed on the surface of prostate cancer cells. In a randomised controlled trial of 302 men with high-risk prostate cancer, Hofman et al. evaluated the accuracy of 68Ga-PSMA-PET versus CT and bone scan at detecting pelvic nodal or distant metastatic disease. 68Ga-PSMA-PET had significantly superior accuracy.
Petersen and Zacho conducted a systematic review of 68Ga-PSMA-PET for lymph node staging in prostate cancer. In 18 studies including 969 patients, the weighted sensitivity and weighted specificity compared to pathology as a reference was 59% (range 23-100%) and 93% (range 67-100%), respectively. In four studies, 68Ga-PSMA-PET was superior to CT or MRI, but in three studies comparing 68Ga-PSMA-PET to mpMRI (multiparametric MRI) or diffusion weighted MRI there were mixed results.

68Ga-PSMA-PET may also be used to improve the detection of metastatic disease in those with biochemical recurrence (BCR). In a systematic review of 37 studies comprising 4790 patients, Perera et al. demonstrated that in patients with biochemical recurrence (BCR) 68Ga-PSMA-PET positivity increased with increasing PSA level, and could be used to detect recurrence at low PSA levels (68Ga-PSMA-PET positivity for <0.2ng/ml was 33% and for 0.2-0.5ng/ml was 45%).

Hofman et al. also found that first-line 68Ga-PSMA-PET changed management intent, modality, or modality delivery more commonly compared to CT and bone scan (28% v 15%, p=0.008). 68Ga-PSMA-PET was also associated with management change in those who received in second-line compared to CT and bone scan (27% v 5%) 14. Han et al. performed a systematic review of the impact of 68Ga-PSMA-PET on management decisions. 1163 patients across 15 studies were included, and there were management changes in 54% (95% CI 47-60%) of patients following 68G-
PSMA-PET17. \textit{68Ga-PSMA-PET} positivity was significantly associated with increased rate of management change and meta-regression demonstrated that for each percent increase in positivity there was a 0.55\% change in management (p<0.05).

\textbf{\textit{18F-PSMA-PET}}

A more recent development in PSMA-PET imaging is the use of 18F-PSMA-PET as an alternative tracer to 68Ga, utilising the 18F radio-isotope ligand to label PSMA. One advantage of 18F is its minimal urinary excretion compared to 68Ga, which is limited by primary excretion through the urinary system, resulting in accumulation in the bladder, obscuring the prostate18. Furthermore, 18F has practical advantages over 68Ga, including a longer half-life, aiding production of the agent in a central facility and distribution to distant imaging centres (Table 1)18.

Prive et al compared 18F-PSMA-PET to conventional mp-MRI for local primary staging, in a cohort of 55 patients with intermediate to high risk prostate cancer19. 23 patients received both imaging modalities and underwent radical prostatectomy, with prostate specimens subsequently available for histopathological analysis. Using histopathological T stage as reference, this study demonstrated 18F-PSMA-PET correctly staged seminal vesical invasion (pT3b) more often than mp-MRI (90 vs 76\%), whereas mp-MRI correctly staged extra-capsular extension (pT3a) more often than 18F-PSMA-PET (90 vs 57\%).

Rowe et al evaluated 18F-PSMA-PET performance in distant lesion detection in metastatic prostate cancer20. Eight patients with biochemical recurrence underwent both 18F-PSMA-PET and CT-bone scan. 139 sites of PET positive for metastatic
Disease were detected, whereas only 45 sites of metastatic disease were identified on CT-bone scan. Although metastatic deposit biopsy data was not available for reference, regression analysis estimated 72% (95% CI 55-84%) of negative or equivocal lesions on CT-bone scan would be positive on 18F-PSMA-PET. Conversely, it was estimated that only 3% (95% CI 1-7%) of negative or equivocal lesions on 18F-PSMA-PET would be positive on CT-bone scan.

Dietlein et al compared 18F-PSMA-PET to 68Ga-PSMA-PET in the context of biochemically recurrent prostate cancer. They performed PSMA-PET scans with both tracers on 25 patients with biochemically recurrent prostate cancer. This demonstrated non-inferiority of 18F-PSMA-PET and suggested its improved sensitivity in localising relapsed tumours after prostatectomy in moderately raised PSA contexts.

<table>
<thead>
<tr>
<th>PET Modality</th>
<th>Mechanism of targeting</th>
<th>Sites of physiological uptake</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>G68-PSMA-PET</td>
<td>Gallium-68 radioisotope</td>
<td>PSMA; transmembrane protein over-expressed in PCa</td>
<td>Kidney, bladder, salivary/lacrimal glands, liver, spleen, intestines</td>
<td>High prostatic specificity</td>
</tr>
<tr>
<td>F18-PSMA-PET</td>
<td>Fluorine-18 radioisotope</td>
<td>PSMA; transmembrane protein over-expressed in PCa</td>
<td>Kidney, salivary/lacrimal glands, liver, spleen, intestines</td>
<td>High prostatic specificity; Minimal urinary clearance</td>
</tr>
</tbody>
</table>

Table 1: Comparison of different PET modalities for prostate cancer imaging

Our centre has performed 18F-PSMA PET since 2019 and we have conducted all primary staging with this modality since August 2020. In this study, we aim to examine the added value of 18F-PSMA PET over conventional staging modalities for
primary and secondary disease, local and distant disease, and to investigate the influence of 18F-PSMA PET on treatment decisions.

Hypothesis

18F-PSMA PET has suitable accuracy for investigation of primary and secondary prostate metastasis (nodal and distant) and alters management subsequently.

Aims

- Comparison of PSMA-PET vs mpMRI for T and N stage
- Comparison of PSMA-PET vs MRI marrow, MRI Narrow Slice, or bone scan for M stage
- Comparison between imaging modalities for positive, negative, and equivocal results
- Comparison between imaging modalities and histology results
- Added value of PSMA-PET in clinically significant disease where there is a discordance between pathology findings and biochemistry
- Impact of PSMA-PET for primary staging on decision making and treatment strategy
- Impact of PSMA-PET for secondary staging (BCR post radical local therapy) on decision making and treatment strategy
- Influence of risk factors on the above aims – e.g. PSA level or D'Amico risk classification.
We will conduct a retrospective review of electronic patient records for all consecutive patients who underwent preoperative 18F-PSMA PET scan for prostate cancer from its introduction at the Churchill Hospital, Oxford, UK in 2019. Patients will be identified from the list of PET scans held by the radiology department and relevant data points will be collected (Table 2).

The STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) guidelines for cohort studies will be followed.

PICOS

- **Patients**: all patients with prostate cancer who underwent a PSMA PET scan
- **Intervention**: PET scan
- **Comparison**: mpMRI, MRI Marrow, Bone scan, Pathological stage
- **Outcome**: Diagnostic accuracy for stage & management implication
- **Study type**: retrospective consecutive cohort study
Demographics
- Date of birth
- PSA at time of diagnosis
- D'Amico risk classification
- Primary or secondary prostate cancer
- Previous treatment for prostate cancer

Imaging
- PSMA PET report
- PSMA PET date
- PSMA PET stage - T, N, M
- PSA at time of PSMA PET
- MRI report
- MRI date
- MRI stage - T, N
- MRI Highest PIRADS
- MRI prostate volume
- MRI Marrow – M stage
- Bone Scan – M stage
- Narrow slice MRI – positive or negative outcome

Biopsy / Histology
- Biopsy / Histology report
- Biopsy / Histology date
- Grade
- Stage
- Positive margins
- Lymph node pathology

Decision making
- Management decision
- MDT report / Clinic letter detailing decision
- Did PSMA PET impact decision making? Y/N

Table 2: Data points which we intend to collect. As this study is a retrospective study, we may need to amend data points depending on whether the data is available.
REFERENCES

