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Abstract 

Magnetic resonance spectroscopy (MRS) is a non-invasive method of exploring cerebral 
metabolism. In Huntington’s disease, altered MRS-determined concentrations of several 
metabolites have been described; however, findings are often discrepant and longitudinal 
studies of metabolite trajectory are lacking. MRS metabolites may represent a valuable 
source of biomarkers, thus their relationship with established biofluid and structural imaging 
markers of disease progression require further exploration to assess prognostic value and 
elucidate biochemical pathways associated with neurodegeneration. In a prospective single-
site controlled cohort study with standardised collection of CSF, blood, phenotypic and 
imaging data, we used MRS to evaluate metabolic profiles in the putamen of 56 participants 
at baseline (15 healthy controls, 15 premanifest and 26 manifest gene expansion carriers) and 
at 2-year follow-up. Intergroup differences and associations with established measures were 
assessed cross-sectionally using generalized linear models and partial correlation, controlling 
for age and CAG repeat length. We report no significant groupwise differences in metabolite 
concentration but found several metabolites to be associated with measures of disease 
progression; however, only two relationships were replicated across both time points, with 
total Creatine (creatine + phosphocreatine) and myo-inositol displaying significant 
associations with reduced caudate volume. Although relationships were observed between 
MRS metabolites and biofluid measures, these were not consistent across time points. To 
further assess prognostic value of the metabolites, we examined whether baseline MRS 
values, or rate of change, predicted subsequent change in established measures of disease 
progression. Several associations were found but were inconsistent across known indicators 
of disease progression. Finally, longitudinal mixed effects models, controlling for age, 
revealed no significant change in metabolite concentration over time in gene expansion 
carriers. Altogether, our findings show some interesting cross-sectional associations between 
select metabolites, namely total creatine and myo-inositol, and markers of disease 
progression, potentially highlighting the proposed roles of neuroinflammation and metabolic 
dysfunction in disease pathogenesis. However, the absence of group differences, 
inconsistency between baseline and follow-up, and lack of clear longitudinal change over two 
years suggests that MRS metabolites have limited potential as biomarkers in Huntington’s 
disease. 
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Abbreviations 

Cho = choline 

Cr = creatine 

CTR = healthy controls 

cUHDRS = composite Unified Huntington’s Disease Rating Scale 

DBS = disease burden score 

DCL = diagnostic confidence level 

Glu = glutamate 



Glx = glutamine + glutamate 

GSH = Glutathione 

HD = manifest mutation carriers 

Lac = Lactate 

LLoQ = lower limit of quantification 

LoD = limit of detection 

mHTT = mutant Huntingtin 

MI = myo-inositol 

MRS = magnetic resonance spectroscopy  

NfL = neurofilament light chain 

PreHD = premanifest mutation carriers 

PVE = partial volume effect 

ROS = reactive oxygen species. 

SD = standard deviation 

SDMT = Symbol Digit Modality Test 

SNR = signal-to-noise ratio 

SWR = Stroop Word Reading 

tCho = total choline (phosphocholine + glycophosphocholine) 

tCre = total creatine (creatine + phosphocreatine) 

TFC = Total Functional Capacity 

TIV = total intracranial volume 

TMS = Total Motor Score 

tNAA = total N-acetylaspartate (N-acetylaspartate + N-acetylaspartate-glutamate) 

VFC = Verbal Fluency (Categorical) 

 

 

 

 

 

 



Introduction 

Huntington’s disease is a neurodegenerative disease characterised by progressive motor, 
psychiatric and cognitive dysfunction.1 Invariably fatal, Huntington’s disease is caused by an 
autosomal dominant mutation in the HTT gene, producing a CAG repeat expansion in the 
ubiquitously expressed huntingtin protein (HTT).2 This mutated pathogenic product (mHTT) 
causes a wide array of toxicities and disruption of downstream pathways, resulting in 
neuronal death.3 With genetic testing, the development of Huntington’s disease can be 
accurately predicted; however, there remains a need to discover clinically relevant 
biomarkers with the ability to detect and quantify pathogenic change, pharmacological target 
engagement and treatment response.4 Due to its non-invasive nature, accessibility and the 
potential to standardise parameters across multiple sites, neuroimaging is a valuable source of 
information about progression and prognosis4 and has been utilised in Huntington’s disease to 
explore cross-sectional and longitudinal changes in brain structure, metabolism and activation 
patterns.5–12  

Magnetic resonance spectroscopy (MRS) is a non-invasive method of exploring cerebral 
metabolism, and represents an interesting avenue in biomarker research as neurometabolic 
alterations may occur prior to the emergence of structural and functional change.13,14 The 
number of quantifiable metabolites depends on several factors including pulse sequence, 
spectral resolution and signal-to-noise ratio (SNR),15 all of which can be influenced by the 
magnetic field strength, with higher strengths providing increased sensitivity and spectral 
resolution.16,17 In the context of neurodegenerative disease, tNAA (N-acetylaspartate + N-
acetylaspartate-glutamate), tCho (phosphocholine + glycophosphocholine), tCre (creatine + 
phosphocreatine) and myo-inositol (MI) are considered respective biomarkers for neuro-
axonal viability and mitochondrial dysfunction,18,19 cellular proliferation and neuronal 
membrane turnover 20,21, brain energy metabolism and gliosis,22 and astrocytic density.23 Due 
to its relative stability in pathological conditions, creatine (Cr) is often used as an internal 
reference24; however, it is affected in Huntington’s disease, so MRS metabolites may be 
normalised to unsuppressed water signal, allowing the accurate identification of biochemical 
change in the brain.25 

In Huntington’s disease, altered concentrations of several MRS metabolites have been 
described in both premanifest and manifest patients across multiple brain regions 26–33; 
however, other studies have reported no significant differences in metabolite concentrations 
when comparing patient cohorts to controls (Table 1).34,35 These discrepant findings are likely 
due, in part, to sample size variations, patient heterogeneity and differences in spatial/spectral 
resolution. Recent work leveraging 7-tesla MRI35 found lower metabolite levels to 
correspond to poorer clinical, cognitive and behavioural scores, similar to work leveraging 
the TRACK-HD cohort in which tNAA displayed a significant negative correlation with 
disease burden score (DBS) across pre- and early manifest patients, further demonstrating its 
role as a marker of clinical decline.25 Longitudinal analyses have produced mixed results thus 
far, with reduced tNAA and Cho in the putamen, and Cr and MI in the caudate, reported,36 
whereas other have reported no longitudinal change in metabolite concentration.36,37 
Importantly, the latter two studies normalised metabolite values to unsuppressed water signal, 
whilst also benefitting from high SNR and large sample sizes; however, the role of MRS 
metabolites as prognostic biomarkers remains debatable and warrants further study.  



Table 1. Summary of MRS Studies in HD 

 

CTR, healthy controls; PreHD, premanifest mutation carriers; HD, manifest mutation carriers; tNAA, total 
N�acetylaspartate; Cho, choline; Cr, creatine; tCr, total creatine; tCho, total choline Glu, glutamate; GLX, 
glutamine and glutamate; MI, myo-inositol; Lac, lactate; ↓, reduced concentration; ↑, increased concentration. 

The relationship between biofluid markers and MRS metabolites requires further exploration, 
as combining direct and non-invasive quantifications of biochemical alterations could 
improve the value of both biomarker modalities. The concentration of neurofilament light 
chain (NfL), measured in CSF and blood, represents axonal damage and is a prognostic 
biomarker of neurodegeneration.38–40 Its relationship with MRS metabolites, particularly 
tNAA, MI and tCre, warrants additional study but has not previously been examined in 
Huntington’s disease. In patients with HIV, elevated levels of CSF NfL have been shown to 

Authors Patient group studied Brain region Metabolic changes in GEC 

Sturrock et al.25 

HD vs CTR Putamen ↓ tNAA, ↓ NAA, ↓ tCre, ↓ Glu, ↑ MI, ↑ 
tCho 

HD vs PreHD Putamen ↓ tNAA, ↓ NAA, ↓ tCre, ↓ Glu, ↑ MI, ↑ 
tCho 

PreHD vs CTR Putamen ↓ NAA 

Gomez-Anson et al.26 PreHD vs CTR 
Frontal cortex ↓ Cho 
Basal Ganglia No change 

Ruocco et al.27 HD vs CTR Thalmus ↓ NAA/Cr 
Sanchez-Pernaute et 
al.28 

PreHD/HD vs CTR Basal Ganglia ↓ NAA, ↓ Cre 

Hoang et al.29 HD vs CTR 
Occipital cortex ↓ NAA/Cr 
Putamen ↓ NAA/Cr, ↓ Cre, ↑ MI, ↑Cho/Cr 

Adanyeguh et al.30 HD vs CTR 
Visual cortex ↑ tCre,  
Striatum ↓ Glu, ↓ tCre 

Jenkins et al.31 HD vs CTR 
Striatum ↓ tNAA/Cr, ↑ Cho/Cr, ↑ Lac 
Occipital cortex ↑ Lac 

Jenkins et al.32 HD vs CTR 
Striatum ↓ tNAA/Cr, ↑ Cho/Cr, ↑ Lac 
Occipital cortex ↑ Cho/Cr, ↑ Lac 

Clarke et al.33 HD vs CTR Striatum ↓ NAA, ↓ Cre 
Van Oostrum et al.34 PreHD vs CTR Putamen No change 

Van den Bogaard et 
al.35 

 
HD vs CTR 
 

Hypothalamus No change 

Thalamus No change 
Caudate ↓ NAA, ↓ Cre 
Putamen ↓ NAA, ↓ Cre, ↓ GlX 
Prefrontal cortex No change 

PreHD vs CTR 

Hypothalamus No change 
Thalamus No change 
Caudate No change 
Putamen No change 
Prefrontal cortex No change 



correlate with decreased NAA/Cre in multiple brain regions, indicating compromised 
neuronal health and stability.41 In multiple sclerosis patients, the same inverse relationship 
has been observed between serum NfL and NAA/Cre at baseline, yet is not present at 12 and 
36 months following hematopoietic stem cell transplantation.42 Given the elevated 
concentration of NfL in Huntington’s disease, we hypothesised that an inverse relationship 
with tNAA and tCre would be present in the putamen of Huntington’s disease patients. 
Furthermore, mHTT can be accurately quantified in CSF following its release from damaged 
neurons43,44 and displays strong associations with CSF NfL.39,40,44 As such, we would expect 
to observe the same relationships with CSF mHTT. In Alzheimer’s disease, reduced 
NAA/Cre and increased MI/Cre have been associated with increased p- and t-tau, and 
decreased CSF amyloid-beta (Aβ42), across several brain regions.45–47 The association 
between MI and tau, another established marker of neurodegeneration,48 is thought to be 
driven by activation of MI-rich astrocytes and microglia.46 Additionally, given that 
neuroinflammation represents a key pathogenic component,49 and source of CSF 
biomarkers,50 in Huntington’s disease, we expect to observe positive correlations between MI 
and all biofluid markers, reflecting the contribution of excessive neuroinflammatory response 
on disease pathogenesis.  

We employed MRS to conduct a cross-sectional and longitudinal neurochemical analysis in 
the putamen of gene expansion carriers and healthy controls. Using the HD-CSF cohort,39,40 a 
large prospective sample of gene expansion carriers and matched controls with CSF and 
blood plasma collection and 3T MRI acquisition, we examined the biomarker potential of key 
MRS metabolites and explored their relationship with several established biofluid markers. 
We tested the hypothesis that significant metabolic alterations would be observed in the 
putamen of Huntington’s disease patients, specifically tNAA, MI and tCre, and would 
correlate with measures of clinical progression and established prognostic biomarkers 
quantified in CSF and blood.   

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Materials and Methods 

Participants 

HD-CSF was a prospective single-site study with standardised longitudinal collection of CSF, 
blood, and phenotypic data (online protocol: 10.5522/04/11828448.v1) from manifest 
patients (HD), premanifest (PreHD) patients and healthy controls (CTR). Eighty participants 
were recruited (20 CTR, 20 PreHD and 40 HD) based on a priori sample size calculations to 
detect cross-sectional and longitudinal differences in CSF mHTT between healthy controls 
and gene expansion carriers.44 3T MRI scans were optional for HD-CSF participants. The 
present study used MRS data obtained from 59 participants at baseline and 48 at longitudinal 
follow-up after 24 months.  Manifest Huntington’s disease was defined as Unified 
Huntington’s Disease Rating Scale (UHDRS)51 diagnostic confidence level (DCL) = 4 and 
CAG repeat length > 36. PreHD had CAG repeat length > 40 and DCL < 4. Healthy controls 
were contemporaneously recruited, drawn from a population with a similar age to patients, 
and clinically well, so the risk of incidental neurological diseases was very low. Consent, 
inclusion and exclusion criteria, clinical assessment, CSF collection and storage were as 
previously described.39,52 Baseline and longitudinal 24-month follow-up samples from HD-
CSF have been used for this study. 

Ethical Approval 

Ethical approval was given by the London Camberwell St Giles Research Ethics Committee 
(15/LO/1917), with all participants providing written informed consent prior to enrolment. 
This study was performed in accordance with the principles of the Declaration of Helsinki, 
and the International Conference on Harmonization Good Clinical Practice standards. 

Clinical Assessments 

Relevant aspects of clinical phenotype were quantified using the UHDRS.51 A composite 
UHDRS (cUHDRS) score was generated for each subject to provide a single measure of 
motor, cognitive and global functioning decline. This composite score is computed using the 
following formula (Total Functional Capacity, TFC; Total Motor Score, TMS; Symbol Digit 
Modality Test, SDMT; Stroop Word Reading, SWR): 

 

cUHDRS score has been found to display the strongest relationship to Huntington’s disease 
brain pathology and enhanced sensitivity to clinical change in early manifest disease.53 
Disease burden score (DBS) was calculated for each gene expansion carrier using the formula 
[CAG repeat length – 35.5] × age.54 DBS estimates cumulative pathology exposure as a 
function of CAG repeat length and the time exposed to the effects of the expansion and has 
been shown to predict several features of disease progression including striatal pathology.11,54 

Volumetric MRI Acquisition  



T1-weighted MRI data were acquired on a 3T Siemens Prisma scanner using a protocol 
optimized for this study. Images were acquired using a 3D magnetization-prepared 180 
degrees radio-frequency pulses and rapid gradient-echo (MPRAGE) sequence with a 
repetition time (TR) =2000 ms and echo time (TE)=2.05 ms. The protocol had an inversion 
time of 850 ms, flip angle of 8 degrees, matrix size 256 x 240 mm. 256 coronal partitions 
were collected to cover the entire brain with a slice thickness of 1·0 mm. Parallel imaging 
acceleration (GeneRalized Autocalibrating Partial Parallel Acquisition [GRAPPA], 
acceleration factor [R]=2) was used and 3D distortion correction was applied to all images. 
Volumetric measures (whole brain, grey matter, white matter and caudate volume) were 
computed using the previously described methodology39,40,55 and adjusted for total 
intracranial volume (TIV). 

Magnetic Resonance Spectroscopy and LCModel Quantification 

All scans were performed using 3T Siemen’s scanner (Prisma VE11C) with 64 channels RF 
head coil. 

For spectroscopy, a single voxel spin echo-based Siemens sequence (svs) was used with the 
following parameters: echo time TE=30ms; repetition time TR= 2000ms; vector size (number 
of points in the time domain) = 2048; spectral width = 2400 Hz. Spectra was acquired from a 
rectangular volume of interest (VOI): 35x10x15 mm3 (Fig. 1). Adjustments included: 
transmitter gain, receiver gain, shimming (3D Gradient Echo followed by manual 
adjustments to achieve less than 14 Hz water linewidth), and water suppression. Water 
suppressed spectrum was acquired with 160 averages with a reference scan (unsuppressed 
spectrum 4 averages). 

LCModel (v6.3-1L) spectra of 18 metabolites were included in the basis data set together 
with model spectra for macromolecules and lipids. Metabolite levels were estimated using 
internal water as a reference. The LCModel produces standard deviations (%SD) for each 
metabolite as a measurement of reliability, with SDs below 20% considered reliable. Only 
GABA had a mean %SD of >20% at both baseline and follow-up. As a quality control 
measure, we removed any subject with a %SD >= 100 from the analyses. This was applied to 
all metabolites, resulting in the removal of subjects from the GABA cohort only (8 from 
baseline, and 6 from the follow-up cohort; Supplementary Table 1). Spectral quality was 
assessed individually for all data. Spectra with SNR < 6 were deemed unacceptable for 
further analysis due to the presence of artefacts, and/or inaccurate fitting of spectra, and 
excluded. 

Fig. 1: MRS Voxel placement and LCModel output. 

 

Biofluid Collection and Processing 

CSF and matched plasma were obtained as previously described.39,40 All collections were 
standardised for time of day after overnight fasting and processed within 30 minutes of 
collection using standardised equipment. Blood was collected within 10 minutes of CSF and 
processed to plasma. Biosamples were frozen and stored at -80°C.  

Analyte Quantification 



Analytes were quantified as previously described.39,40  

CSF and plasma NfL were quantified in duplicate using the Neurology 4-Plex B assay on the 
Simoa HD-1 Analyzer (Quanterix). The limit of detection (LoD) was 0.105 pg/ml, and lower 
limit of quantification (LLoQ) was 0.500 pg/ml. NfL was above the LLoQ in all samples. The 
intra-assay coefficients of variation (CV) (calculated as the mean of the CVs for each 
sample’s duplicate measurements) for CSF NfL and plasma NfL were 5.0% and 3.7%, 
respectively. The inter-assay CVs (calculated as the mean of the CVs for analogous spiked 
positive controls provided by the manufacturer and used in each well plate) for CSF NfL and 
plasma NfL were 2.7% and 8.4%, respectively. CSF mHTT was quantified in triplicate using 
the 2B7-MW1 immunoassay (SMC Erenna platform, Merck). The LoD was 8 fM, LLoQ was 
25 fM and the intra-assay CV was 14.1%. CSF total tau was quantified using the INNOTEST 
enzyme-linked immunosorbent assay according to the manufacturer’s instructions (Fujirebio, 
Ghent, Belgium). 

All biofluid measures, except CSF mHTT, were log-transformed to meet model assumptions. 

Statistical Analysis 

Statistical analysis was performed with Stata IC 15 software (StataCorp, TX, USA). The 
distributions of all metabolite concentrations were visually assessed using kernel density 
estimate plots and Q-Q plots. Data transformations were not required to meet model 
assumptions (Supplementary Fig. 1). Differences in demographic, clinical, cognitive, imaging 
and biofluid measures were examined using Chi squared tests and generalised linear models 
(GLMs). Models were not adjusted for age, or CAG length, at this stage. 

To reduce the risk of type 1 error, we preselected tNAA, tCre, tCho and MI as primary 
outcome measures based on the published MRS literature in Huntington’s disease (see 
introduction). Glutathione (GSH), GABA and GLX were designated as secondary outcome 
measures. Age and gender were considered potentially confounding variables, thus their 
relationship with metabolite concentration was examined within controls using Pearson’s 
correlation and independent samples t-tests. Using linear regression, all metabolites were 
adjusted for the partial volume effect of cerebrospinal fluid (CSF PVE), with the residuals 
being used in the subsequent analysis.  

To investigate intergroup differences, we constructed two GLMs: one controlling for age; the 
other for and age and including CAG. The latter was used when comparing premanifest to 
manifest patients, and the former when comparing healthy controls to premanifest 
individuals. Additionally, we applied an inverse weighting to the %SD values of each 
metabolite to compensate for any variations in LCModel output quality. By including both 
age and CAG as covariates, accurate assessments of associations can be made, independent 
of known predictors. Due to the exploratory nature of the study, tests were not adjusted for 
multiple comparisons. 

Associations between metabolites and clinical, cognitive, imaging measures, and established 
biofluid markers were explored cross sectionally using Pearson’s partial correlation 
controlling for age, and age and CAG, in gene expansion carriers only. DBS is a product of 
age and CAG, as such, we did not adjust DBS for the effects of these variables. In keeping 
with our regression analysis, we removed any subject with a %SD >= 100 and applied 
inverse weighting to the %SD values of the remaining subjects. This process was applied to 



each metabolite individually. Additionally, we performed unweighted, bootstrapped (1000 
repetitions) partial correlations in which bias-corrected and accelerated 95% confidence 
intervals (95% CI) were calculated for correlation coefficients. Metabolites were deemed to 
have prognostic potential if a significant relationship was observed across all four correlation 
models (Inverse weighting controlling for age, and age and CAG; Bootstrapped controlling 
for age, and age and CAG). Although stringent, we chose this method to allow identification 
of MRS metabolites that demonstrate the strongest biomarker potential. No adjustments were 
made for multiplicity. 

The cross-sectional statistical analyses outlined above was also applied to the follow-up 
dataset. We reasoned that the 2 years’ disease progression in all gene expansion carriers 
might outweigh the loss of power from participant dropout.  

Annualised rate of change for each MRS metabolite and clinical, cognitive, and imaging 
measures were computed by subtracting baseline from follow-up values and dividing by the 
time between visits in years. Intergroup differences and correlations were examined using the 
methods outlined above. Only those subjects with data at both baseline and follow-up were 
included in this analysis.  

To study longitudinal trajectories of the metabolites, we used mixed effects models with age 
as a fixed effect, and random effects for participant (intercept) and age (slope), generated 
independently for controls and mutation carriers. All available data points were used in this 
analysis. 

Data Availability 

The data that support the findings of this study are available on request from the 
corresponding author, EJW. The data are not publicly available due to their containing 
information that could compromise the privacy of research participants. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Results 

Participant Characteristics 

At baseline our cohort consisted of 15 healthy controls and 44 Huntington’s gene expansion 
carriers, of whom 15 had premanifest and 29 manifest Huntington’s disease. 3 manifest 
participants had MRS with an SNR value of <6 so were deemed to be of poor quality and 
removed. Groups were equally matched for gender (χ2

 = 0.002, p = 0.99) and CAG repeat 
length (among gene expansion carriers), but as expected, displayed significant differences in 
clinical, cognitive, imaging and biofluid measures (Table 2). A significant difference in age 
was observed with manifest patients being significantly older than premanifest patients due to 
being more advanced in their disease course.  

Our follow-up cohort was smaller, consisting of 12 healthy controls and 36 gene expansion 
carriers (13 premanifest and 23 manifest), but largely similar in terms of demographics. No 
subjects were removed due to poor SNR value. Relationships that were significant in the 
baseline sample were also significant in the follow-up cohort (Supplementary Table 2). 

When analysing GABA, 8 subjects were removed at baseline and 6 at follow-up due to high 
%SD values (≥100), resulting in a smaller sample size (n=48 at baseline and 42 at follow-up) 
for this metabolite. 

Table 2. Participant Group Demographics at Baseline.   

 CTR PreHD HD Model 
p-value 

CTR vs 
PreHD 
p-value 

PreHD 
vs HD 
p-value n Mean ± SD n Mean ± SD n Mean ± SD 

Demographics 
Age (Years) 15 49.2 ± 10.5 15 42.6 ± 11.8 26 55.7 ± 9.2 0.001 0.08 <0.001 
Sex (M/F) 15 8/7 15 8/7 26 14/12 0.99 N/A N/A 
CAG N/A  N/A 15 42.1 ± 1.6 26 42.5 ± 1.8 0.48 N/A 0.48 
Clinical Scores 
cUHDRS 15 17.5 ± 1.4 15 18.0 ± 1.2 26 11.1 ± 3.7 <0.001 0.62 <0.001 
DBS N/A N/A 15 275.4 ± 69.2 26 382.5 ± 84.5 <0.001 N/A <0.001 
TFC 15 13.0 ± 0.0 15 13.0 ± 0.0 26 9.8 ± 2.7 <0.001 1.00 <0.001 
TMS 15 1.8 ± 1.5 15 2.5 ± 2.7 26 32.8 ± 16.6 <0.001 0.86 <0.001 
Cognitive Scores 
SDMT 15 50.9 ± 10.2 15 55.5 ± 9.9  26 30.0 ± 13.4 <0.001 0.29 <0.001 
SWR 15 101.4 ± 17.9 15 105.0 ± 13.1 26 64.8 ± 23.5 <0.001 0.62 <0.001 
VFC 15 23.9 ± 4.3 15 23.7 ± 3.0 26 15.3 ± 6.1 <0.001 0.91 <0.001 
SCN 15 75.1 ± 13.2 15 81.5 ± 11.6 26 48.3 ± 17.0 <0.001 0.24 <0.001 
Imaging Measures (mL, adjusted for total intracranial volume) 
Whole brain 15 1195.0 ± 56.4 15 1187.5 ± 51.3 25 1062.2 ± 73.7 <0.001 0.75 <0.001 
Caudate volume 12 7.1 ± 0.8 14 6.1 ± 1.2 24 3.9 ± 1.1 <0.001 0.02 <0.001 
Grey matter  15 705.2 ± 53.0 15 709.5 ± 48.0 26 602.8 ± 59.4 <0.001 0.83 <0.001 
White matter 15 438.5 ± 34.3 15  430.4 ± 29.1 26 386.0 ± 36.3 <0.001 0.52 <0.001 
Biofluid Measures (log pg/ml, unless stated otherwise) 
CSF NfL 15 5.9 ± 0.6 15 6.8 ± 0.8 26 7.7 ± 0.4 <0.001 <0.001 <0.001 
CSF mHTT 
(fM) N/A N/A 15 35.0 ± 21.1 26 50.3 ± 22.8 <0.05 N/A <0.05 



Intergroup differences were assessed using general linear models and Pearson’s chi squared test (Gender). P-
values are not adjusted for multiple comparisons. Models do not control for age or CAG repeat length. CTR, 
healthy controls; PreHD, premanifest mutation carriers; HD, manifest mutation carriers; cUHDRS, composite 
Unified Huntington’s Disease Rating Scale; DBS, Disease Burden Score; TFC, Total Functional Capacity; 
TMS, Total Motor Score; SDMT, Symbol Digit Modalities Test; SWR, Stroop Word Reading Test; VFC, Verbal 
Fluency Categorical; SCN, Stroop Colour Naming; NfL, Neurofilament light; mHTT, mutant Huntingtin; NA, 
not applicable. 

Analysis of Metabolite Group Differences 

Baseline analysis in healthy controls revealed MI to be significantly associated with age (r = 
0.64, p = 0.01) and tCho to display significant gender differences (mean difference = -0.11, p 
= 0.04). Therefore, in addition to age, gender was included as a covariate in all subsequent 
baseline analysis of tCho. In the follow-up cohort, no significant relationships were observed, 
and gender was not controlled for when analysing tCho (Supplementary Table 3).  

At baseline, we found no significant differences in metabolite levels between groups when 
controlling for the effects of age, and age and CAG. However, we observed trends towards 
reduced tNAA and tCre as disease progresses (Fig. 2; Table 3). Analysis in the follow-up 
cohort produced similar results, although tCre displayed significantly lower concentration in 
manifest, compared to premanifest, patients (p = 0.02). This relationship did not reach 
statistical significance when controlling for age and CAG repeat length (Supplementary 
Table 4; Supplementary Fig. 2). 

 

Fig. 2: Group differences in metabolite concentration. 

 

Table 3. Intergroup Differences in Primary and Secondary Metabolites at Baseline.   

 
CTR PreHD HD Adjusted for Model 

p value 

CTR 
vs 

PreHD 

PreHD 
vs HD 

n M SD n M SD n M SD     

Baseline Primary Metabolites (Controlled for CSF PVE) 

tNAA 
15 0.24 0.60 15 0.06 0.56 26 -0.17 0.69 Age 0.06 0.82 0.05 

 Age and CAG N/A N/A 0.09 

tCre 
15 0.22 0.42 15 0.02 0.51 26 -0.14 0.69 Age 0.16 0.60 0.16 

 Age and CAG N/A N/A 0.09 

tCho 
15 -0.07 0.11 15 0.04 0.21 26 0.02 0.22 Age and Gen 0.30 0.17 0.54 

 Age, CAG, Gen N/A N/A 0.20 

MI 
15 -0.15 0.47 15 -0.11 0.60 26 0.15 0.94 Age 0.57 0.69 0.43 

 Age and CAG N/A N/A 0.60 
Baseline Secondary Metabolites (Controlled for CSF PVE) 

GSH 
15 0.04 0.33 15 0.10 0.39 26 -0.08 0.42 Age 0.25 0.75 0.08 

 Age and CAG N/A N/A 0.12 

GABA 
15 0.14 0.40 14 0.06 0.24 19 0.07 0.29 Age 0.61 0.80 0.42 

 Age and CAG N/A N/A 0.31 

GLX 
15 0.22 1.21 15 -0.19 1.69 26 -0.02 1.52 Age 0.03 0.11 0.11 

 Age and CAG N/A N/A 0.08 

CSF Tau 15 4.2 ± 0.3 15 4.3 ± 0.3 26 4.5 ± 0.4 <0.05 0.62 <0.05 
Plasma NfL 15 1.9 ± 0.4 15 2.4 ±0.6 26 3.3 ± 0.4 <0.001 <0.01 <0.001 
Plasma Tau 15 1.7 ± 0.4 15 1.6 ± 0.4 26 1.6 ± 0.5 0.81 0.71 0.81 



Differences in metabolite concentration across disease stage were assessed using general linear models 
controlling for effects of age, and age and CAG repeat length. Gender was also controlled for when analysing 
tCho. P-values are not corrected for multiple comparisons due to exploratory nature of study. All metabolites 
were initially controlled for CSF PVE with the residuals being used in subsequent analysis. CTR, healthy 
controls; PreHD, premanifest mutation carriers; HD, manifest mutation carriers; Gen, Gender; tNAA, total 
N�acetylaspartate; tCr, total creatine; tCho, total choline; MI, myo-inositol; GSH, Glutathione; GLX, 
glutamine and glutamate.  

Correlation Analysis of Metabolites and measures of Disease Progression 

When controlling for age, we found MI to display a strong negative correlation with 
cUHDRS, in both the weighted and bootstrapped analysis. When additionally controlling for 
CAG repeat length, this relationship no longer achieved statistical significance (Fig. 3; S5 
Supplementary Table 5; Supplementary Fig. 3). 

In the follow-up cohort, we found reduced levels of tCre and GLX to be significantly 
associated with a reduction in cUHDRS scores, indicative of a worsening clinical phenotype. 
The relationships remained significant across all 4 correlation models (tCre, r ≥ 0.41, P ≤ 
0.01; GLX, r ≥ 0.36, P ≤ 0.03) (S5 Table).  

There were no statistically significant associations between any metabolite and DBS. 

 

Fig. 3: Associations between metabolites and measures of clinical progression (baseline 
cohort). 

 

Correlation Analysis of Metabolites and Cognitive and Imaging Measures 

When controlling for age, we observed significant relationships between several metabolites 
and cognitive and imaging measures in the baseline cohort (Fig. 4; Supplementary Table 5; 
Supplementary Fig. 3). Most notably, increased MI was significantly associated with a 
worsening clinical picture, cognitive decline, and volumetric reductions. When controlling 
for both age and CAG repeat length, many of the observed relationships did not reach 
statistical significance. However, several relationships survived across all models, with 
reduced levels of tNAA being associated with reduced caudate volume (r ≥ 0.29, P ≤ 0.04) 
and SCN score (r ≥ 0.30, P ≤ 0.04), and reduced tCre displaying a positive relationship with 
caudate volume only (r ≥ 0.34, P ≤ 0.02). Furthermore, the negative association between MI 
and caudate volume (r ≤ -0.32, P ≤ 0.05) remained, further highlighting the relationship 
between increased neuroinflammatory response and neurodegenerative processes in 
Huntington’s disease.  

In the follow-up cohort, only two relationships observed at baseline were replicated, with 
tCre (r ≥ 0.41, P ≤ 0.01) and MI (r ≤ -0.35, P ≤ 0.04) continuing to display significant 
correlations with caudate volume across all four models. Additionally, tCre, GLX and MI all 
displayed significant correlations with multiple measures; however, due to the exploratory 
nature of this study and resulting lack of multiplicity testing, these results should be 
interpreted with caution (Supplementary Table 5; Supplementary Fig. 4). 

 



Correlation Analysis of Metabolites and Established Biofluid Biomarkers 

When assessing the relationships between metabolites and the established biofluid markers; 
CSF NfL, CSF mHTT, CSF tau, plasma NfL and plasma tau, only MI displayed significant 
associations across all 4 models in the baseline cohort. When controlling for age, strong 
positive correlations were observed with both CSF and plasma NfL in both the weighted and 
bootstrapped analyses; however, when additionally controlling for CAG repeat length, only 
the relationship with plasma NfL remained significant across both models (r ≥ 0.39, P ≤ 
0.02), further reflecting the contribution of excessive neuroinflammatory response on disease 
pathogenesis (Fig. 4; Supplementary Table 5; Supplementary Fig. 3).  

Cross-sectional analysis in the follow-up cohort did not replicate any of the findings observed 
at baseline. Additional relationships were revealed however, with GLX and tCho displaying 
significant inverse correlations with mHTT (r ≤ -0.47, P ≤ 0.01) and CSF tau (r ≤ -0.38, P ≤ 
0.02), respectively. Most notably, negative associations between tCre and multiple biofluid 
markers were observed across all models (mHTT, r ≤ -0.47, P ≤ 0.01; CSF tau, r ≤ -0.30, P ≤ 
0.04; CSF NfL, r ≤ -0.51, P ≤ 0.01; Plasma NfL, r ≤ -0.51, P ≤ 0.01) (Supplementary Table 
5; Supplementary Fig. 4). Due to the lack of multiplicity testing, we cannot rule out false 
positives, thus further validation is required. 

 

Fig. 4: Associations between primary metabolites and clinical, imaging and biofluid 
(baseline cohort). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Longitudinal Analysis of Metabolites 

Out of the 56 subjects at baseline, 42 had MRS data available at 24-month follow-up. 9 
subjects were removed due to high %SD values in GABA, resulting in a smaller sample size 
(n=33) for this metabolite.  

The rate of change did not differ across disease stage for any of the primary metabolites. For 
the secondary metabolites, we found manifest patients to display a greater rate of change in 
GLX compared to premanifest patients (Table 4, Fig. 5).  

Table 4. Annual Rate of Change in all MRS Metabolites.   

 
CTR PreHD HD Adjusted for Model 

p value 

CTR 
vs 

PreHD 

PreHD 
vs HD 

n M SD n M SD n M SD     

Annual Rate of Change in Primary Metabolites (per annum) 

tNAA 
11 0.17 0.45 12 -0.04 0.44 19 -0.05 0.42 Age 0.60 0.30 0.79 

 Age and CAG N/A N/A 0.49 

tCre 
11 0.23 0.40 12 0.07 0.40 19 0.02 0.36 Age 0.15 0.73 0.21 

 Age and CAG N/A N/A 0.23 

tCho 
11 0.09 0.19 12 0.02 0.15 19 0.02 0.13 Age 0.02 0.81 0.16 

 Age and CAG N/A N/A 0.11 

MI 
11 -0.01 0.41 12 0.30 0.21 19 0.03 0.50 Age 0.97 0.75 0.72 

 Age and CAG N/A N/A 0.81 
Annual Rate of Change in Secondary Metabolites (per annum) 

GSH 
11 0.14 0.54 12 -0.07 0.41 19 0.09 0.41 Age 0.35 0.16 0.22 

 Age and CAG N/A N/A 0.17 

GABA 
11 0.15 0.41 11 -0.00 0.23 11 -0.07 0.25 Age 0.81 0.61 0.72 

 Age and CAG N/A N/A 0.62 

GLX 
11 0.15 1.06 12 0.68 1.59 19 0.03 1.10 Age 0.25 0.16 0.05 

 Age and CAG N/A N/A 0.02 
Differences in annual rate of change across disease stage were assessed using general linear models 
controlling for effects of age, and age and CAG repeat length. P-values are not corrected for multiple 
comparisons due to exploratory nature of study. CTR, healthy controls; PreHD, premanifest mutation carriers; 

HD, manifest mutation carriers; tNAA, total N�acetylaspartate; tCr, total creatine; tCho, total choline; MI, 
myo-inositol; GSH, Glutathione; GLX, glutamine and glutamate.  

To assess prognostic value of the metabolites, we examined if baseline values predicted 
subsequent change in established measures of disease progression. When controlling for all 
covariates, we found tCre to display a significant positive correlation with change in 
cUHDRS (r ≥ 0.36, P ≤ 0.03), indicating significant predictive power independent of the core 
genetic mutation (Fig. 5, Supplementary Table 6). Several additional relationships were also 
observed, most notably with MRI measures; however, only two remained significant across 
all 4 correlation models, with MI significantly predicting decline in white matter volume (r ≤ 
-0.44, P ≤ 0.02) and GSH associating with change in whole brain volume (r ≥ 0.36, P ≤ 0.04) 
(Supplementary Fig. 5, Supplementary Table 6).  

To assess if rate of change in metabolites provided additional prognostic behaviour beyond 
that observed using baseline values, we correlated metabolite rate of change, with the rate of 
change in markers of disease progression (Fig. 5). Findings were limited, with tCre 
displaying significant correlations with grey matter volume (r ≥ 0.38, P ≤ 0.02) and GLX 



displaying relationships with grey matter volume (r ≥ 0.39, P ≤ 0.04) and TMS (r ≤ -0.36, P ≤ 
0.03), across all models (Supplementary Fig. 6, Supplementary Table 7). 

 

Fig. 5: Metabolite rate of change and longitudinal associations with disease progression. 

 

Longitudinal trajectories of each metabolite within individuals are displayed in Fig. 6. 
Longitudinal mixed effects models, controlling for age, revealed no significant change in 
metabolite concentration over time in Huntington’s disease mutation carriers. 

 

Fig. 6: Longitudinal analysis of MRS metabolites 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Discussion 

In this study, we employed 3T magnetic resonance spectroscopy to successfully quantify 
seven metabolites in the putamen of Huntington’s disease patients and healthy controls. We 
specified the most prominent metabolites in the 1H spectrum – tNAA, tCre, tCho and MI – as 
primary metabolites and included lesser studied metabolites – GABA, GLX and GSH – as 
secondary metabolites. In keeping with previous work, metabolites were normalised to 
unsuppressed water signal,25,28,37,56 allowing for increased accuracy when identifying changes 
in brain biochemistry56 and additionally controlled for CSF partial volume effect. Using 
general linear models and correlation analysis, we assessed their potential as prognostic and 
diagnostic biomarkers, both cross sectionally and longitudinally, by exploring their 
relationships with established markers of disease progression, cognitive decline, and brain 
atrophy. Furthermore, we studied the relationship between MRS metabolites and several 
biomarkers derived from CSF and plasma, including NfL and the pathogenic protein, mHTT. 
To our knowledge, such relationships have not been explored in Huntington’s disease. 

When controlling for age and CAG, we observed no discernible group differences in any 
metabolite concentration across both time points. This finding contrasts with those of 
Sturrock et al.,25,37 who employed a similar methodology in a larger cohort and found tNAA 
concentration to be reduced, suggestive of neuronal dysfunction, in manifest compared to 
premanifest patients, and between premanifest patients and healthy controls across time 
points. In our baseline cohort, we observed non-significantly (p=0.05) reduced tNAA in 
manifest compared to premanifest patients; this was not replicated at the follow-up timepoint, 
likely due to lack of study power. Furthermore, Sturrock et al. found MI to be increased in 
manifest compared with premanifest patients at baseline, 12- and 24-month follow-up. Our 
MI results did not support this and may reflect methodological differences between the 
studies, specifically our adjustment for the effects of CSF partial volume effects, and 
inclusion of both age and CAG repeat length as covariates in all models. However, in keeping 
with Sturrock et al’s. findings, we did not observe any significant differences in MI 
concentration between premanifest patients and controls, and tCre was found to be 
significantly reduced in manifest compared to premanifest patients in the follow-up cohort; 
however, this relationship did not survive when additionally controlling for CAG repeat 
length. Reduced creatine has been consistently demonstrated in Huntington’s disease 
patients25,28,35 and may demonstrate diagnostic potential but will require further study in 
larger samples. 

Our study did not find any significant group differences when comparing premanifest patients 
to healthy controls. This supports earlier work,26,34 in addition to an exploratory study 
leveraging 7T MRI,35 in which concentrations of creatine, choline, MI, tNAA, GLX and 
lactate did not differ in the putamen of premanifest patients and controls, in addition to 4 
other distinct brain regions. Our findings may reflect the fact that our premanifest group were 
clinically well, demonstrating no significant differences in clinical, cognitive, or imaging 
measurements compared with healthy controls, whereas other studies may have included 
premanifest patients closer to clinical onset or with prodromal disease.  

In our cross-sectional correlation analysis, MI was significantly associated with caudate 
volume in both baseline and follow-up cohorts, and plasma NfL at baseline only. To our 
knowledge, this represents the first data in Huntington’s disease patients relating non-



invasive MRS measures to an established biofluid marker of disease progression. MI reflects 
astrocytic density, while NfL reflects neuro-axonal injury from any mechanism.57–59 This 
association perhaps reflects astrocytic involvement in neuroinflammation or in compensating 
for neurodegeneration.60–63 However, this finding was not replicated in the follow-up cohort 
and will require further study to better elucidate the relationship between the two measures. 

We also observed tCre to be significantly associated with caudate volume at baseline and 
follow up, representing the second correlation to be replicated across both time points. At 
follow up, it was significantly associated with measures of disease progression and cognitive 
decline, which is in keeping with previous findings.28,35 The strongest relationships were seen 
with cUHDRS, TMS, grey matter volume and SDMT, with reduced tCre indicative of a more 
severe disease phenotype. Additionally, we found tCre was negatively associated with CSF 
and plasma NfL, CSF mHTT and CSF tau in the follow-up cohort. Reduced GLX was 
associated with multiple markers, including CSF mHTT, in the follow up cohort only. 
Previous work has shown reduced GLX in the putamen of Huntington’s disease patients and 
its associations with worse performance on the SDMT.35 The lack of multiplicity testing 
means we cannot rule out false positives in this study and the lack of consistency between 
both cross sectional correlational analyses should be acknowledged; however, these results 
lend support to the notion that creatine concentration may reflect disease activity in a 
meaningful way, concordant with many other disease measures, and independently of known 
predictors, and provides additional evidence for reduced GLX being indicative of a 
worsening clinical phenotype. 

Like Sturrock et al.,37 we observed no longitudinal change in any metabolites in Huntington’s 
disease patients over 24 months. However, we did find that baseline values of tCre 
significantly predicted subsequent change in cUHDRS, a composite clinical measure 
sensitive to clinical change.53 We also found the rate of change in tCre to predict change in 
grey matter volume. Both relationships remained significant when controlling for age and 
CAG. While this predictive potential is of interest, it must be considered in the context of 
many statistical tests and should therefore be considered exploratory or hypothesis-
generating. 

We also observed a significant relationship between rate of change in GLX and change in 
TMS, concordant with our cross-sectional findings showing reduced GLX to be associated 
with worse cognitive performance. However, given that no relationships were observed with 
baseline GLX values, this result should be interpreted with caution. Furthermore, we found 
baseline MI values to associate with annualised rate of change in neuroimaging markers, but 
only the relationship with white matter volume remained significant across all models. This 
relationship lends support to earlier work highlighting the link between inflammation and 
myelin breakdown in manifest patients,64 and demonstrates MI’s potential as a marker of 
axonal degeneration. Interestingly, we also observed a significant relationship between 
reduced baseline GSH and larger rate of change in whole brain volume. GSH is a major 
antioxidant known to be dysregulated in Huntington’s disease65 and given that glial cell 
activation has been linked to increased reactive oxygen species (ROS) production,66 this 
finding could represent a cyclic cascade of events whereby increased ROS production due to 
neuroinflammation is insufficiently buffered by GSH, resulting in oxidative stress and 
mitochondrial dysfunction, further driving inflammatory pathways and contributing to the 
neuropathological hallmarks of the disease.  



This study is not without its limitations. Due to the exploratory nature of the study, we chose 
not to adjust our analyses for multiple comparisons. In doing so, we cannot rule out the 
influence of false positives on our findings. Our decision to adopt more rigorous 
methodologies also increases the chance of type 2 (false negative) error but lends greater 
credibility to our findings overall. Although our results provide some evidence supporting the 
prognostic potential of specific MRS metabolites, there was a lack of consistency between 
time-points, with the association between tCre and caudate volume being the only 
relationship to meet all pre-defined tests at baseline and follow up. Consequently, further 
validation is required in a larger sample. Although HD-CSF is a high-quality longitudinal 
cohort with biofluid collection and MRI imaging, the sample was principally designed to 
study manifest Huntingtin’s disease. Previous MRS studies often compared manifest patients, 
or a combination of manifest and premanifest patients, directly to controls, explored different 
brain regions and in some cases, normalised values to metabolites thought to be affected in 
Huntington’s disease28,30–32; thus our results may not be directly comparable to earlier work. 
As a means of quality control, we also excluded some participants based on SNR and %SD 
values, resulting in a smaller sample size, and reducing the generalisability of the findings. 
The longitudinal nature of this study is also limited by the small number of available time 
points. Future studies should aim to incorporate additional time points to help better 
characterise the longitudinal trajectory of metabolites and improve the models designed to 
inform on clinical prognosis.  

In conclusion, we found no groupwise differences in MRS metabolite concentration when 
comparing manifest to premanifest Huntington’s disease patients, and premanifest patients to 
healthy controls. This does not exclude the role of MRS-detectable metabolic dysfunctions in 
disease pathology, only that their use a state biomarker is limited. We found interesting cross-
sectional associations between multiple metabolites, namely tCre, MI and GLX, and markers 
of disease progression, highlighting the proposed roles of neuroinflammation and metabolic 
dysfunction in Huntington’s disease pathogenesis, but the inconsistent findings between 
timepoints and with rigorous statistical modelling suggests these changes, too will have 
limited biomarker potential. We provide the first evidence, to our knowledge, of an 
association between MRS metabolites and established CSF biomarkers in gene expansion 
carriers and, although no longitudinal change in metabolite concentration was observed, we 
found tCre, MI and GLX to significantly predict change in measures of disease progression, 
independent of existing predictors. The potential of non-invasive MRS measurements of 
brain metabolic activity to monitor the progression of Huntington’s disease or the response to 
therapeutic interventions warrants directed study of these hypotheses in larger longitudinal 
imaging cohorts linked to biofluid collection, such as the nascent Image-Clarity study, which 
will add advanced imaging modalities to the large, multi-site HDClarity CSF collection 
initiative.67 
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Fig.1. Voxel placement and LCModel output: Example voxel placement in right putamen 
displayed in all three planes (Top). LCModel output generated from Huntington’s disease 
mutation carrier (Premanifest) with black and red lines representing the raw spectrum and 
model fit overlaid on raw data, respectively (Bottom). Output peaks represent specific 
metabolite concentrations. ppm, parts per million. 
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Fig. 2: Group differences in metabolite concentration. No significant differences were 
observed in primary (A) or secondary (B) metabolites between controls, premanifest and 
manifest patients. Group membership main effect p-values are displayed in Table 3. When 
controlling for age and CAG, no significant group differences were observed. Residual values 
are displayed after controlling for CSF PVE only. Diamonds represent mean values. Tests 
were not corrected for multiple comparisons. 
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Fig. 3: Associations between metabolites and measures of clinical progression (baseline 
cohort). When controlling for age, MI displayed a significant negative association with 
cUHDRS. When additionally controlling for CAG, the correlation did not achieve statistical 
significance (S5 Table). Gender was included in the model when analysing tCho. Values 
displayed are controlled for CSF PVE only. Red and orange datapoints indicate manifest and 
premanifest patients, respectively.  
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Fig. 5: Metabolite rate of change and longitudinal associations with disease progression. 
Annualised rate of change in MRS metabolites is displayed across disease stage for both 
primary (A) and secondary (B) metabolites (Top Panels). Model outputs are displayed in 
Table 3. Associations between baseline values (Middle Panels) or annualised rate of change 
(Bottom Panels) in each metabolite, with annual rate of change in cUHDRS are also 
displayed. Dashed horizontal lines represent no change in cUHDRS, negative values indicate 
disease progression. Dash vertical lines represent no change in metabolites. Data points are 
controlled for CSF PVE only. Pearson’s partial correlation coefficient controlling for age, and 
age and CAG, and bias-corrected bootstrapped confidence intervals are displayed in 
Supplementary Table 6 and 7. Red, orange, and grey datapoints indicate manifest patients, 
premanifest patients, and healthy controls, respectively.  
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Fig. 6: Longitudinal analysis of MRS metabolites. Longitudinal trajectories (Left Panel) of 
all metabolites were studied controlling for age (controls), and age and CAG (mutation 
carriers). Model (solid lines) and 95% (dashed lines) confidence intervals were generated 
from generalized mixed-effects models. Bold text and ‘*’ indicate significance at p < 0.05. 
Beta values and 95% confidence intervals have been multiplied by 10 to show change/10yrs. 
Individual participant trajectories are displayed in the right panels with connected dots 
representing the same participant. Red, orange, and grey datapoints indicate manifest 
patients, premanifest patients, and healthy controls, respectively. 


