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Abstract 

Purpose. Imaging studies about the relevance of muscles in spinal disorders, and sarcopenia in general, 

require the segmentation of the muscles in the images which is very labour-intensive if performed 

manually and poses a practical limit to the number of investigated subjects. This study aimed at 

developing a deep learning-based tool able to fully automatically perform an accurate segmentation of 

the lumbar muscles in axial MRI scans, and at validating the new tool on an external dataset. 

Methods. A set of 60 axial MRI images of the lumbar spine was retrospectively collected from a clinical 

database. Psoas major, quadratus lumborum, erector spinae, and multifidus were manually segmented 

in all available slices. The dataset was used to train and validate a deep neural network able to segment 

muscles automatically. Subsequently, the network was externally validated on images purposely 

acquired from 22 healthy volunteers. 

Results. The Jaccard index for the individual muscles calculated for the 22 subjects of the external 

validation set ranged between 0.862 and 0.935, demonstrating a generally excellent performance of the 

network. Cross-sectional area and fat fraction of the muscles were in agreement with published data. 

Conclusions. The externally validated deep neural network was able to perform the segmentation of the 

paravertebral muscles in axial MRI scans in an accurate and fully automated manner, and is therefore a 

suitable tool to perform large-scale studies in the field of spinal disorders and sarcopenia, overcoming 

the limitations of non-automated methods. 
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Introduction 

The scientific study of sarcopenia gained high attention in recent years and is nowadays one of 

the most discussed issues in the field of the health of ageing subjects. According to the 

European Working Group on Sarcopenia in Older People, sarcopenia is defined as a “syndrome 

characterized by progressive and generalized loss of skeletal muscle mass and strength” [1]. 

Sarcopenia is a multifactorial condition associated with age-related reduction of physical 

activity, protein intake, anabolic hormonal activity, and vitamin D levels, as well as to a pro-

inflammatory status due to increased intracellular oxidative stress [2]. The decrease of 

hormonal levels, especially testosterone, estrogen, and growth hormone, has been found to be 

associated with muscle wasting [3].  

Several studies associated sarcopenia with spinal disorders. Toyoda and colleagues 

demonstrated that sarcopenia is correlated with back muscle strength and in turn with the 

presence of spinal degeneration [4]. The research highlighted that the association may be seen 

in two distinct ways: sarcopenia could induce spinal disorders, pain and spine-related disability, 

but also spinal disorders may cause muscle waste and increased fatty infiltration, probably due 

to the reduced physical activity associated with pain and fear-avoidance behavior. Indeed, 

sarcopenic patients were reported to show anxiety and catastrophizing signs more commonly 

than the age-matched population [5], initiating a vicious circle in which reduced physical 

activity due to psychological issues further promotes muscle waste. A correlation between 

sarcopenia and degenerative scoliosis, possibly involving reduced bone mineral density, has 

also been shown [6].  

In general, the study of sarcopenia as a possible risk factor for spinal disorders, a consequence 

of it or its role as a risk factor enhancing symptoms and disability in patients suffering from 

spinal disorders is at its infancy, since most studies are very recent and have been conducted 

on relatively small patient cohorts. While the importance of sarcopenia has been undoubtedly 

recognized, large-scale studies quantifying it and investigating it in detail are still lacking.  

Several imaging modalities, namely dual-energy X-ray absorptiometry (DXA), computed 

tomography (CT), magnetic resonance (MR), and ultrasound (US), have been used to 

investigate sarcopenia as well as for diagnostic purposes with the aim of quantifying muscle 

mass. MRI is recently gaining a wide interest since it allows measuring the muscle mass and 

the amount of fat infiltration inside muscle tissue, as well as additional information regarding 

muscular oedema, fibrous infiltration, fiber contractility, and elasticity [7], without any 

exposure to ionizing radiation. Fat and water discrimination can be done using multiecho 

gradient-echo sequences like the Dixon technique, which allows obtaining a quantitative 
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assessment of intramuscular fat [8]. However, it should be noted that the use of MRI to study 

and diagnose sarcopenia requires the segmentation of the images, i.e. the identification of the 

contours of the muscle mass or of the individual muscles in each slice. Although semi-

automated and fully automated methods to segment MRI scans have been presented [9–12], in 

most clinical papers about sarcopenia this step has been conducted by human operators since 

such methods are not publicly available and their performance is generally lower than that of 

expert operators, not generalizing well to pathological cases [11]. Besides, manual 

segmentation requires a substantial amount of work and practically poses a limit to the sample 

size, since processing high numbers of subjects such as several thousands requires a time not 

compatible with the length of most research projects. 

The aim of this study is to develop and validate an accurate automated tool to perform the 

segmentation of axial MRI scans of the paravertebral muscles in the lumbar region, to be used 

for the assessment and diagnosis of sarcopenia as well as of the condition of the lumbar muscles 

in general. The automated method shall allow processing large amounts of data, thus allowing 

the imaging investigation of sarcopenia and its association with spinal disorders in large-scale 

populations. The secondary aim of the work is to externally validate the new algorithm in a 

population of 22 healthy volunteers, in order to quantitatively check its ability to deal with a 

wide scenario of ages and body sizes. 

 

Materials and methods 

Training data 

A set of 60 axial images of the lumbar spine was retrospectively collected from the imaging 

database of University Hospital Ulm (Ulm, Germany). The retrospective data collection has 

been approved by the ethics committee of Ulm University (approval nr. 50/20). All slices 

relative to the L1-L5 region were manually segmented by means of ITK-SNAP free software 

(http://www.itksnap.org) by a single operator, using a published method as a reference [13]. 

The following muscles were segmented, depicting the left and right sides as separate entities: 

psoas major, quadratus lumborum, erector spinae, multifidus. The segmented images were 

randomly split into training and internal validation sets based on an 80-20% ratio. 

 

Network architecture 

The architecture of the deep artificial neural network used for the segmentation of the muscles 

was derived from the two-dimensional U-Net [14], with several modifications: (1) Leaky ReLU 

(α = 0.01) and softmax as activation functions instead of ReLU and sigmoid; (2) transposed 
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convolutions for upsampling; (3) dropout (p = 0.03) added to the encoder; (4) one additional 

layer in both encoder and decoder (Fig. 1). The network was trained using the Adam optimizer, 

with a learning rate of 0.001 and a minibatch size of 16. The architecture and the 

hyperparameters were extensively optimized by checking the performance of the network on 

the internal validation set. 

 

Metrics 

The “Intersection over Union”, in short 𝐼𝑜𝑈 and also known as Jaccard similarity coefficient 

[15], was used as a metric to evaluate the quality of the segmentations generated by it. For a 

specific muscle 𝐶, the relative 𝐼𝑜𝑈 can be calculated as follows: 

 

𝐼𝐶 = {𝑖 ∈  𝑃 | 𝑦𝑡𝑟𝑢𝑒(𝑖)  =  𝑦𝑝𝑟𝑒𝑑 (𝑖)  =  𝐶 }      (1) 

𝑈𝐶  = {𝑖 ∈  𝑃 | 𝑦𝑡𝑟𝑢𝑒(𝑖)  =  𝐶 ∨ 𝑦𝑝𝑟𝑒𝑑(𝑖)  =  𝐶 }     (2) 

𝐼𝑜𝑈𝐶 =
|𝐼𝐶|

|𝑈𝐶|
           (3) 

 

where 𝑖 is a pixel belonging to the image 𝑃(intended as a set of pixels), 𝐶is the muscle of 

interest, 𝑦𝑡𝑟𝑢𝑒(𝑖) is the ground truth for the specific pixel 𝑖, 𝑦𝑝𝑟𝑒𝑑(𝑖) is the value predicted by 

the neural network, 𝐼𝐶 is the set of pixels corresponding to the muscle 𝐶in both the ground truth 

and the network output, 𝑈𝐶 is the set of pixels corresponding to the muscle 𝐶in either the ground 

truth or the network output. The value of 𝐼𝑜𝑈 is therefore 1 if the network output corresponds 

perfectly to the ground truth, and 0 if there is no overlap between the ground truth and the 

predictions.  

For the sake of training the neural network, the sum of the 𝐼𝑜𝑈 calculated among all segmented 

muscles was used as loss function: 

 

𝑙𝑜𝑠𝑠 = ∑ 𝐼𝑜𝑈𝑐
𝑛
𝐶=1          (4) 

 

where 𝑛 is the number of segmented muscles (8 in the present study). 

 

External validation 

In order to test the performance of the segmentation tool on an external dataset, axial MRI 

scans of the whole lumbar spine were prospectively collected for 22 healthy volunteers, 10 

males (mean age: 38.6 years (range 25-61), mean weight: 83.3 kg (68-120), mean height: 179.4 
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cm (170-185)) and 12 females (mean age: 33.5 years (range 22-57); mean weight: 57.5 kg (48-

68); mean height: 166.3 cm (153-178)). The prospective image collection was approved by the 

ethics committee of Ulm University (approval nr. 255/20). The whole lumbar spine of all 

subjects was imaged with a 3T MRI system (MAGNETOM Skyra, Siemens Healthineers AG, 

Erlangen, Germany) by using standard imaging protocols. All images were manually 

segmented by the same operator who performed the segmentation of the training data using the 

same software tools and methods, as well as by the deep neural network. The manual 

segmentations were used as the reference for the quantitative assessment of the performance 

of the automated tool, which was conducted by calculating the 𝐼𝑜𝑈 of the individual 

paravertebral muscles for all slices.  

The segmented images generated by the neural network were used to calculate the cross-

sectional area of the individual paravertebral muscles for the 22 volunteers, exploiting the 

information about pixel size and slice spacing included in the DICOM files (attributes (0028, 

0030) and (0018, 0088) respectively). Furthermore, the fat fraction inside each muscle was 

determined by attributing each voxel to either fat or lean tissue, by using a simple Otsu binary 

thresholding implemented in the scikit-image Python library for image processing 

(https://scikit-image.org/). 

 

Results 

The neural network provided excellent outputs from a qualitative point of view (Fig. 2). A 

three-dimensional reconstruction of the shape of the paravertebral muscles showed realistic 

anatomies from a perceptual point of view, with smooth surfaces and limited artefacts (Fig. 3). 

The median values of the 𝐼𝑜𝑈 for the individual muscles calculated during the external 

validation ranged between 0.862 and 0.935 (Table 1), demonstrating a generally excellent 

agreement between the ground truth and the outputs of the neural network. The psoas major 

and the erector spinae showed a generally higher performance with respect to the quadratus 

lumborum and the multifidus (Fig. 4), suggesting that a higher cross-sectional area was 

associated with a higher 𝐼𝑜𝑈. Nevertheless, the lower quartile of the statistical distribution of 

the 𝐼𝑜𝑈 was in all cases higher than 0.75, indicating a high quality of the output in the vast 

majority of the processed slices. 

Among the 22 subjects included in the external validation, the male subjects showed generally 

higher cross-sectional areas of all muscles with respect to females (Fig. 5). The erector spinae 

was the larger muscle in all volunteers, followed by the psoas major in males while in females 
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the size of the latter muscle generally overlapped those of the quadratus lumborum and 

multifidus. The fat fraction was larger in females than in males (Fig. 6) and generally increased 

with age. A non-negligible variability of the fat fraction was found among the individual 

muscles, with the multifidus and the erector spinae generally showing higher fatty infiltration 

with respect to psoas major and quadratus lumborum. 

 

Discussion 

In this paper, we presented a novel tool based on artificial intelligence to perform the automatic 

segmentation of the paravertebral muscles in axial MRI scans. The tool demonstrated excellent 

performance, potentially enabling its use for processing large amounts of data in retrospective 

population studies about sarcopenia and its relation with spinal disorders. Since manual 

segmentation has always constituted a bottleneck for imaging studies about muscles due to its 

high requirements in terms of manual labour, existing works have been generally limited to 

dozens or hundreds of cases (e.g. [16, 17], with large populations consisting of several thousand 

subjects being practically not manageable. An accurate segmentation tool that does not require 

any human intervention can therefore act as the key enabling technology for large-scale studies. 

Sarcopenia, in particular in terms of reduced mass and quality of the back muscles, is associated 

with higher disability and lower quality of life in patients suffering from spinal disorders with 

respect to non-sarcopenic patients [18]. Sarcopenic patients subjected to spine surgery have a 

slower and sometimes less complete recovery, more severe postoperative symptoms and lower 

satisfaction, whereas the correlation between sarcopenia and increased risk of postoperative 

complications could not be proved [19]. In general, despite the literature indicating that 

sarcopenia is a highly relevant risk factor for patients suffering from spinal disorders in terms 

of worse outcomes, relatively little research has been performed in the field, and the availability 

of fully automated imaging segmentation tools can definitely play a role in future studies 

addressing this need. 

Other automated solutions based on neural networks aimed at segmenting the lumbar 

paravertebral muscles have been previously presented. Li et al. [12] developed a U-Net based 

network to perform the segmentation of multifidus and erector spinae, obtaining average Dice 

similarity coefficients of 0.949 and 0.913 respectively, generally in line with the performance 

of the current model while taking into account that the metrics used in the present and in the 

literature study are not directly comparable. Zhang et al. developed another U-Net based model 

and achieved similar performances [20]. However, it should be noted that in both studies psoas 

major and quadratus lumborum were not segmented, and that an internal validation on a test 
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set randomly selected from the original database rather than an external validation of a distinct 

dataset was performed. Xia and colleagues [11] tested several network architectures, including 

the U-Net as well as novel solutions, to segment psoas major, erector spinae, and multifidus, 

obtaining excellent Dice similarity scores between 0.913 and 0.95 for the best-performing 

neural network. Other studies achieved relatively lower performances [21], or focused on 

different imaging modalities or fields of view [22, 23]. In general, it can be concluded that our 

model achieved state-of-the-art performance and is the only one that has been externally 

validated on a purposely created dataset so far. 

The results extracted from the population recruited for the external validation, i.e. the cross-

sectional areas of the individual paravertebral muscles and their fat fraction, were in good 

agreement with existing research, further consolidating the validity of the novel model. Cooper 

et al. measured cross-sectional areas very similar to those in the present study for the paraspinal 

muscles (erector spinae and multifidus) as well as for the psoas major as well as the same 

gender-based differences, including the same disproportion between the size of the psoas in 

males and females with respect to the other muscles [24]. Fat fractions were also in line with 

previous observations [16, 25]. 

The study suffers from some limitations. First, the manual segmentations of the training set 

and for the external validation were performed only once by a single operator, and a 

quantitative assessment of the reliability and quality of the ground truth data could therefore 

not be performed. Besides, a single network architecture was employed as a basis for the 

development and optimization of the model; while U-Net is largely considered as a state-of-

the-art solution for the segmentation of medical images [26], other solutions such as for 

example generative adversarial networks may be worthy of investigation. Finally, the subjects 

recruited for the external validation were in a relatively low number and, while they covered a 

rather wide range of age and body sizes, were all asymptomatic. Therefore, the performance of 

the tool was not validated for severe pathological cases, which can be nevertheless highly 

relevant from a clinical point of view. 

In conclusion, the tool here presented was able to perform the automated segmentation of the 

paravertebral muscles in axial MRI scans in an accurate manner in an external validation set of 

patients, and is therefore a suitable tool to perform future large-scale studies aimed at analyzing 

the size and quality of the muscles of the lumbar region at the population level. 
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Figure captions 

 

Figure 1. The architecture of the neural network derived from the two-dimensional U-Net 

employed in this study. 

 

Figure 2. Segmentations of the paravertebral muscles for randomly selected slices of eight 

representative subjects recruited for the external validation. The average 𝐼𝑜𝑈 for the eight 

muscles is also shown. Green/blue: psoas major; orange/purple: quadratus lumborum; 

brown/yellow: erector spinae; gray/pink: multifidus. 

 

Figure 3. Three-dimensional reconstructions of the segmented paravertebral muscle for four 

representative volunteers. R: right; L: left; S: superior; I: inferior. 

 

Figure 4. Boxplots and jittered scatter plots of the 𝐼𝑜𝑈 calculated for the individual muscles in 

all slices acquired for the 22 subjects recruited for the external validation. 

 

Figure 5. Cross-sectional areas (mean value and standard deviation, in mm2) of the eight 

paravertebral muscles for the 22 subjects (top: females, bottom: males) in ascending order. 

 

Figure 6. Fat fraction in the paravertebral muscles depending on age and stratified by sex (top) 

and for the individual muscles (bottom) for the 22 subjects. 
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Figure 1. The architecture of the neural network derived from the two-dimensional U-Net 

employed in this study. 
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Figure 2. Segmentations of the paravertebral muscles for randomly selected slices of eight 

representative subjects recruited for the external validation. The average 𝐼𝑜𝑈 for the eight 

muscles is also shown. Green/blue: psoas major; orange/purple: quadratus lumborum; 

brown/yellow: erector spinae; gray/pink: multifidus. 
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Figure 3. Three-dimensional reconstructions of the segmented paravertebral muscle for four 

representative volunteers. R: right; L: left; S: superior; I: inferior. 
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Figure 4. Boxplots and jittered scatter plots of the 𝐼𝑜𝑈 calculated for the individual muscles in 

all slices acquired for the 22 subjects recruited for the external validation. 
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Figure 5. Cross-sectional areas (mean value and standard deviation, in mm2) of the eight 

paravertebral muscles for the 22 subjects (top: females, bottom: males) in ascending order. 
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Figure 6. Fat fraction in the paravertebral muscles depending on age and stratified by sex (top) 

and for the individual muscles (bottom) for the 22 subjects. 
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Table 1. Median values of the 𝐼𝑜𝑈 for the individual paravertebral muscles calculated for the 

22 volunteers recruited for the external validation. 

 
 psoas major quadratus lumborum erector spinae multifidus 

 left right left right left right left right 

𝐼𝑜𝑈 0.930 0.935 0.891 0.892 0.929 0.923 0.868 0.862 
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