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Abstract

Background: Decision makers may use social distancing to reduce transmission between risk groups in a
pandemic scenario like Covid-19. However, it may result in both financial, mental, and social costs. Given these
tradeoffs, it is unclear when and who needs to social distance over the course of a pandemic when policies are
allowed to change dynamically over time and vary across different risk groups (e.g., older versus younger
individuals face different Covid-19 risks). In this study, we examine the optimal time to implement social
distancing to optimize social utility, using Covid-19 as an example.

Methodology: We propose using a Markov decision process (MDP) model that incorporates transmission
dynamics of an age-stratified SEIR compartmental model to identify the optimal social distancing policy for each
risk group over time. We parameterize the model using population-based tracking data on Covid-19 within the
US. We compare results of two cases: allowing the social distancing policy to vary only over time, or over both
time and population (by risk group). To examine the robustness of our results, we perform sensitivity analysis on
patient costs, transmission rates, clearance rates, mortality rates.

Results: Our model framework can be used to effectively evaluate dynamic policies while disease transmission
and progression occurs. When the policy cannot vary by subpopulation, the optimal policy is to implement social
distancing for a limited duration at the beginning of the epidemic; when the policy can vary by subpopulation,
our results suggest that some subgroups (older adults) may never need to socially distance. This result may
occur because older adults occupy a relatively small proportion of the total population and have less contact
with others even without social distancing.

Conclusion: Our results show that the additional flexibility of allowing social distancing policies to vary over
time and across the population can generate substantial utility gain even when only two patient risk groups are
considered. MDP frameworks may help generate helpful insights for policymakers. Our results suggest that social
distancing for high-contact but low-risk individuals (e.g., such as younger adults) may be more beneficial in some
settings than doing so for low-contact but high-risk individuals (e.g., older adults).

Keywords: Markov Decision Process; Optimal Disease Control; Compartmental Model; Infectious Disease;
Covid-19

Introduction
Disease control has long relied on behavior modification
techniques to reduce infection spread. At early stages
of a pandemic, when interventions such as vaccination,
antivirals, and antibiotics are not available, health offi-
cials must rely on implementing non-pharmaceutical
interventions. These measures include social distanc-
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ing, encouraging sick individuals to rapidly seek care,
promoting hand washing and mask-wearing, or in more
extreme cases, self-quarantining, among others. While
these efforts may reduce disease spread, they may come
at a high financial and psychological cost. For instance,
to mitigate the spread of Covid-19, many countries have
turned to social distancing, shutting nearly a hundred
thousand businesses [1], separating family members [2]
[3], and limiting social contact. The US lost 3.5 trillion
dollars in GDP over the past year [4], had record levels
of unemployment [5], and many suffered from the psy-
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chological toll and social stress due to distancing from
friends and family.

Social distancing measures have generally taken the
form of blanket guidelines intended to limit the total
number of infections, rather than specifically limiting
infectious in groups most at risk [6], although a variety
of social distancing policies have been explored in the
literature. For instance, risk for Covid-19 and other
influenza-like diseases vary widely by patient age, with
increasing risk for hospitalization, poor prognosis, and
death among older individuals [7] [8]. Prior work has
explored the effect of different policies by considering
isolation by age group [9] [10] [11], different modalities
of social distancing [12], and different lengths of social
distancing duration [9]. Several locations in the US have
also varied their social distancing restrictions across
time, with periods of stricter distancing and periods of
re-opening businesses and social gathering places. These
variations on policy invite the question of what the
optimal social distancing policy would be, particularly
if it can vary over time and be applied selectively to
different demographics within the population.

However, to our knowledge, no prior work has ex-
amined social distancing policy duration by age group
using optimization techniques. This is possibly due to
the complexity of the optimization framework needed,
as it would require integration of non-linear disease
dynamics into the programming model. We do so in
this work by solving a Markov decision process (MDP)
model using simulation and numerical evaluation ap-
proaches. This is much more computationally intensive
compared to more efficient value iteration or policy
iteration algorithms [13] which are not feasible for this
model setup. However, setting up the optimization
framework in such a way allows us to include underly-
ing disease dynamics in our optimization problem which
are governed by a compartmental model of Covid-19
parameterized by empirical data and information from
the medical literature. Critically, the compartmental
model separately tracks the younger cohort (those aged
under 55) and older cohort (those aged above 55) in
the US. While age is not the only risk stratification
relevant to Covid-19, we choose to focus on it here
as a reasonable proxy for disease vulnerability; addi-
tionally, should a demographically heterogeneous social
distancing policy be implemented, enforcement would
be simpler if it varied only by age as opposed to un-
observed biological risk factors (such as presence of
comorbidities, etc., that also influence Covid-19 risk).
We use an objective function that considers both social
utility and health outcomes to determine when social
distancing should occur provided a finite time horizon
(e.g., when an effective treatment/vaccine is developed
and disseminated). This optimization framework al-
lows us to identify optimal social distancing policies

that vary across age groups and time. While we do not
consider a particular mechanism for achieving reduced
social mixing (e.g., we are not specifically consider-
ing school closures, etc.), we hope that this general
approach where contacts between certain age groups
are reduced can provide valuable general insight into
disease control policy.

We compare this demographically inhomogenous,
time varying optimal policy with an optimal policy
that cannot vary over age groups, as well as standard
comparators where the whole population must either
social distance or not over the entire time horizon.
Examining these policies sheds insight into the effec-
tiveness of social distancing by age group and the value
of allowing the policy to change over time.

This work provides the following three main contribu-
tions: (1) we demonstrate how a compartmental model
of disease transmission may be used in a Markov deci-
sion process to identify optimal disease control policy,
despite the computational complexity; while the numer-
ical example in this manuscript focuses on Covid-19,
this approach is generalizable to many other infectious
disease control problems where there is demographic
variation. (2) We identify an optimal social distancing
policy if demographic specific, time varying policies
were being considered; (3) we quantify the benefit of
such a policy compared to less flexible policies and
explore the effect of parameter variation on our results.

Methodology
Overview
We construct a Markov decision process (MDP) model
of a population meant to broadly approximate the US
population to seek the optimal dynamic policy that
maximizes the utility of a social distancing measure.
In our model, in each epoch, a policy-maker can decide
to implement social distancing or not; if so, individuals
are assumed to mix only with household contacts.

To identify the number of infected individuals in each
epoch, we employ a SEIR compartmental model of
disease. In an SEIR model, the population is divided
into four compartments: susceptible (S), Exposed (E),
Infected (I) and Recovered (R). Because there is sub-
stantial evidence that there exists significant differences
between young and old coronavirus patients, we model
‘young’ (below age 55) and ‘old’ (above age 55) cohorts
separately in the SEIR model. The number of individu-
als in each group in the simulation roughly corresponds
to the population proportions observed in the US. This
allows us to capture and predict disease dynamics more
precisely. This results in two joint SEIR models with
eight compartments to describe the flow of population
between different health states. We parameterize the
model with data from the medical literature as well as
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empirical mixing pattern data. Some parameters, such
as the overall transmission rate, were calculated – as in
the case of the transmission rates between age groups,
which used the next-generation method on information
around R0 ranges for Covid-19.

Our objective function, the total social utility, in-
cludes benefits from social activity (which is lost when
social distancing) and the negative effects due to dis-
ease infection (note that these, like the benefits of social
activity, may not be financial). This disutility per pa-
tient might include average medical costs as well as
reductions in the quality of life due to sickness and
mortality and vary across age groups. The social bene-
fit for individuals when not socially distancing includes
the benefits of social activities, economic activity, and
potential consumption. Because these costs and ben-
efits include financial and psychological components,
the exact value of these two parameters are difficult to
obtain. We therefore pick values for these parameters
that are not driven by data when simulating the model.
These outputs, while perhaps not precise or realistic,
still allow us to observe useful patterns in the optimal
policy. We then additionally explore these values in
sensitivity analysis to determine the robustness of these
patterns.

We examine two policies. The first is where we as-
sume policy makers can mandate social distancing or
not in each time epoch, but is homogeneous across the
population (the ‘homogeneous’ policy hereafter). The
second policy additionally allows the policy to vary
social distancing mandates across age groups as well
as over time – because the policy varies across the pop-
ulation, we refer to this policy as the ‘inhomogeneous’
policy from now on. We compare the outcomes of these
policies to scenarios where all individuals either do
no social distancing or are required to social distance
across the entire time horizon.

We assume that social distancing policies will stop
being necessary after an effective vaccine is fully de-
ployed. We therefore need to determine the optimal
homogeneous and inhomogeneous social distancing poli-
cies assuming a finite time horizon, where the termi-
nal time would be determined by when a vaccine is
rolled out. We approximate this process by assuming
the vaccine is fully rolled out quickly relative to the
optimization time horizon, and assume the problem
stops at time T (no gradual vaccine rollout and no
immune state). We also separate this time horizon into
discrete time epochs in which a single social distanc-
ing policy must be followed in each epoch; this is to
prevent too-frequent policy changes, which would not
be realistically implementable. For the purposes of our
modeling example, we use a time horizon of 50 weeks
and 5 epochs, resulting in epoch lengths of 10 weeks.

Utility Function and Objective

Our goal is to maximize the total social utility before
vaccines come out, which incorporates the social ben-
efits earned from social activities when people go out
and the disutility felt by those infected. In the homo-
geneous problem, the policy-maker considers using a
social distancing policy in each epoch before vaccina-
tion occurs over the entire population. Suppose x(t)
is a discrete decision variable that only takes values
0 or 1, where x(t) = 1 represents implementing social
distancing and x(t) = 0 means it is not implemented.
In this case, we model social distancing by modify-
ing the contact matrix such that mixing between age
groups is reduced to emulate reduced contacts outside
the home (details given in the sections on transmission
parameters below).

If the total population is N , and each person doing
social activities can earn s benefit per unit time, then
the momentary social benefit rate is Ns(1− x(t)). We
consider two age groups (young, below age 55, and old,
age 55 and above). We denote Cy and Co as the cost
of coronavirus patients per unit time associated to the
young and old age groups, respectively. By assuming
that Iy(t) and Io(t) are the number of young and old
individuals infected, respectively, at time t, the total
cost is given by CyIy(t)+CoIo(t). Thus, the momentary
total utility for the homogeneous problem is:

Uhom(t) = Ns(1− x(t))− CyIy(t)− CoIo(t)

If T is the time when the vaccine comes out, we aim
to find the optimal x(t), i.e., the optimal social dis-
tancing policy with respect to time, such that the total
utility over the time horizon [0, T ] is maximized. Math-
ematically, for the homogenous problem, our objective
is:

max
x(t)

∫ T

0

[Ns(1− x(t))− CyIy(t)− CoIo(t)]dt,

(1)

s.t. x(t) = {0, 1}. (2)

Note that this utility function gives 0 utility and
0 costs if everyone socially distances across the time
horizon and no one becomes infected, providing a rea-
sonable baseline for evaluation.

The utility function and decision variable above are
for the homogeneous problem where a policy maker im-
plements the same policy across the entire population.
If one wishes to implement different polices across the
young and old cohorts, then we can define similar deci-
sion variables, xy(t) and xo(t) for the young and old,
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respectively, and the momentary total utility would be:

Uinhom(t) = Nys(1− xy(t)) +Nos(1− xo(t))
− CyIy(t)− CoIo(t)

where Ny and No represent the young and old popu-
lation. Thus, our objective becomes:

max
xy(t),xo(t)

∫ T

0

[Nys(1− xy(t)) +Nos(1− xo(t))

− CyIy(t)− CoIo(t)]dt, (3)

s.t. xy(t) = {0, 1}, (4)

xo(t) = {0, 1}. (5)

The intractability of the preceding optimization prob-
lem arises from the fact that Iy(t) and Io(t) are cap-
tured by the susceptible-exposed-infected-recovered
(SEIR) model, which is governed by a system of differ-
ential equations. The choice of policy at each moment
before time t (i.e. the value of x(u) when u ∈ [0, t])
affects the transmission rate in the SEIR model so that
implemented policies can influence Iy(t) and Io(t) in
complex ways.

Markov Decision Process (MDP) Formulation
To overcome this difficulty, we separate the time horizon
into several equal time slots and require that the same
policy be implemented over the whole time slot. This is
more likely to match the real world because changing
policies frequently will be inconvenient and difficult to
implement.

Suppose we separate time horizon into n equal time
slots where the ith time slot is represented by [Ti, Ti+1]
where i ∈ {1, 2, . . . , n} and T1 = 0, Tn+1 = T . At the
beginning of time slot i, the policy maker decides which
policies to implement (enforce or not enforce social
distancing), i.e. select the value of decision variable
xi from the set {0, 1}. The initial state of Iy and Io
at time slot i is determined by the initial state of Iy
and Io at time slot i− 1 and xi, so we can reformulate
our previous optimization problems (1) and (2) into a
Markov decision process (MDP) problem. MDPs are
widely used across multiple disciplines for sequential
decision-making problems, where there are repeated
opportunities to make decisions and the optimal action
now depends on future actions. MDPs have been widely
used in prior literature in healthcare policy: for example,
Alagoz et al. formulated a MDP model for optimal
timing of liver transplantation [14], and Denton et al.
constructed a MDP model to optimize selection of
patients with type 2 diabetes for statin therapy [15].

In our MDP model, states include the size of the
susceptible population (S), the number in the exposed

state (E), the number of infected individuals (I), and
the number of people in the recovered state (R). The
transition function is governed by the age-stratified
SEIR model and the selected action. In the homoge-
neous problem, where the social distancing policy can
vary over time but not the population, the action space
contains only two elements: implementing social dis-
tancing and not implementing social distancing. In the
inhomogeneous problem, where decision makers can
implement different actions for the young and old co-
horts, the action space will contain four elements. For
simplicity, denote Iiy(t) to be the number of young in-
dividuals infected at time t of the ith time slot, and
Iio(t) for the old individuals. Thus, our homogeneous
problem MDP formulation is:

max
x1,x2,...,xn

n∑
i=1

∫ T
n

0

{Ns(1− xi)

− CyIiy(t)− CoIio(t)}dt (6)

s.t. (Iiy(0), Iio(0))

∼ SEIR(Ii−1
y (0), Ii−1

o (0), xi−1)

i = 1, 2, . . . , n (7)

xi ∈ {0, 1} i = 1, 2, . . . , n (8)

Since the length of each epoch is T
n , we treat Ii(Tn )

as the end state of the epoch i, and the initial state
in each epoch is equivalent to the end state of the
last epoch: (Iiy(0), Iio(0)) = (Ii−1

y (Tn ), Ii−1
o (Tn )). The

inhomogenous problem formulation is similar, except
that we use Uinhom(t) for the utility function to capture
social benefits separately for young and old, as they
may have different social distancing actions.

Given the relatively small number of epochs in our
problem, we can solve both MDPs through simulation
and numerical evaluation. For each possible social dis-
tancing policy, we first calculate the total utility by
running the SEIR model under that sequence of so-
cial distancing policy in each epoch. We then compare
the total utility across all 64 possible social distanc-
ing policies to determine which one is best. We repeat
this procedure to identify the optimal inhomogeneous
social distancing policy, where there are 1024 possible
policies.

Infection Cost and Social Distancing Benefit Parameters
Since the costs of social distancing (financial, social,
and psychological) are difficult to quantify, we assign
the social activity value of benefit per capita to have a
value of 1 (this is the value that is lost when social dis-
tancing policies are implemented). The relative health
and mortality costs are similarly difficult to quantify,
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but we may imagine them to be much larger (as indi-
viduals may die or have long term health effects from
infection). We therefore assign the costs per patient to
be 100 and 200, for young and old infected cases, for
each epoch an individual is infected. In sensitivity anal-
ysis, we modify patient health costs to vary between
25 and 800 for young and between 50 and 1600 for
old, respectively, which we believe is a sufficiently large
range to capture reasonable variation in outcomes.

Age-stratified SEIR model
In order to tackle our MDP problem, we build an
age-stratified SEIR model wth two age groups to simul-
taneously describe the population dynamics for young
and old. In this model, we separate the population
into young and old groups and assume cross-infection
happens in both groups. Thus, the age-stratified SEIR
model is expressed as:

dSy
dt

= −βxi
yy

SyIy
Ny
− βxi

oy

SyIo
No

(9)

dEy
dt

= βxi
yy

SyIy
Ny

+ βxi
oy

SyIo
No
− αEy (10)

dIy
dt

= αEy − (νy + dy)Iy (11)

dRy
dt

= νyIy (12)

dSo
dt

= −βxi
oo

SoIo
No
− βxi

yo

SoIy
Ny

(13)

dEo
dt

= βxi
oo

SoIo
No

+ βxi
yo

SoIy
Ny
− αEo (14)

dIo
dt

= αEo − (νo + do)Io (15)

dRo
dt

= νoIo (16)

Here, subscripts o and y denote old and young re-
spectively, and βxi

jk represents the transmission rate
at which individuals in age group k become infected
by age group j under policy xi. α represents the rate
of disease activation (from latent to active stage), ν
is the clearance rate, and d the death rate. Figure 1
depicts each compartment’s inflow rates and outflow
rates in the SEIR model. We assume higher mortality
rates for old patients (do ≥ dy) to better capture the
poorer health outcomes experienced by this particularly
high-risk group.

Estimation of SEIR Model Parameter Values
The accurate estimation of parameter values is cru-
cial to complete the age-stratified SEIR model and
solve the MDP problem. However, some parameters,
like transmission rates, can not be found from the

literature directly, or are known only with great un-
certainty. Others show considerable variation, as there
exists heterogeneity across different settings in the US.
Additionally, this SEIR model is age-specific, and there
may not be research examining values across different
age groups. In the following sections, we will introduce
how we estimate model parameters and how we address
these challenges.

Incubation Period
The incubation period is the time from exposure to the
causative agent until the first symptoms develop. We
assume there is no significant difference in incubation
periods between young and old. Hence, the parameter
1/α, representing the incubation period in the age-
stratified SEIR model, is the same for both age groups.
Based on the findings of Li, Guan, et al., we set 1/α
to be 5.2 days [16].

Mortality Rate
The mortality rate is a measure of total deaths per
unit time in a particular population, scaled to this
population’s size. Thus, the mortality is equal to the
product of the case fatality rate and the inverse of the
duration from symptom onset to death. The study from
Wu and McGoogan shows that the general case fatality
rate in China is 2.3%, but it jumps to 8% for those aged
between 70-79, and 14.8% in those aged between 80-89
[17]. Thus, in our age-stratified model, we consider the
heterogeneity of mortality rates in different age groups.

The CDC website provides a report of demographic
trends of Covid-19 cases and deaths, from which we
calculate mortality values (shown in Appendix Table
A.1 and A.2 [18]). We use age 55 as the cutoff be-
tween young and old groups in the age-stratified SEIR
model. Thus, the deaths and confirmed cases in the
young group is 14,815 and 3,435,721, respectively, and
is 128,142 and 1,407,712, for the old cohort. As a result,
the case fatality rate for the young group is 0.4% and
10% for the old group. For the number of days from
symptom onset to death, Wang et al. found that the
average time from the first symptom to death is about
14 days, and this value will decrease to 11.5 days in ages
older than 70 and increase to 20 days in age younger
than 70 [19]. To use these observations for our age
stratification, we set the average time from symptom
onset to death among young and old to be 25 and 13
days, respectively, which matches the trend that older
patients die faster than younger patients. Therefore,
the mortality rates for young and old are dy = 0.00016,
do = 0.0077. However, we recognize that there is con-
siderable variation in mortality values across different
geographical regions, health systems, and demographic
groups, and we therefore perform a sensitivity analysis
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Figure 1: Model Schematic

around these parameters. In these sensitivity analyses,

we vary the mortality rate from 0.0001 to 0.00025 for

the young cohort and 0.006 to 0.009 for the old cohort

to observe changes to model outcomes.

Clearance rate

The clearance rate should be equal to the product of

the proportion of recovered individuals and the inverse

of days until recovery. Given the case fatality rate

information above, the recovery rate among young and

old are 99.6% and 90%, respectively. Pan et al. found

that the average recovery time since the initial onset of

symptoms is 10 days [20]. However, to the best of our

knowledge, there are no data tracking the recovery time

grouped by age, so we use 10 days as the average days

until recovery for both age groups. The clearance rates

for young and old are then νy = 0.1 and νo = 0.09.

In sensitivity analysis, we vary the clearance rate.

The observed data reveals that the range of days until

recovery is roughly between 5 to 16 days [21], so the

ranges of clearance rate for young and old are 0.06

to 0.199 and 0.056 to 0.18, respectively. We increase

clearance rates by 0.05 steps in both groups, with all

other parameters kept constant (note that this means

that the resultant R0 varies across sensitivity scenar-

ios). Since young people usually have stronger immune

systems, we set clearance rate for the younger cohort

such that they are always higher than that for old

individuals.

Transmission Input Data
The values for the four transmission parameters
βyy, βyo, βoy and βoo were informed by constructing
population-level contact mixing matrices. Following
the approach taken by Vardavas et al. [22], we use two
sources to derive these values, one for our base case
analysis and the other as a sensitivity analysis scenario.

For our base-case analysis, we use available data pro-
vided by the Network Dynamics and Simulation Science
Laboratory (NDSSL) at Virginia Polytechnic Institute
and State University that represent a synthetic popula-
tion of Portland Oregon [23]. The NDSSL data for Port-
land, Oregon, provides an instance of a time-varying
social contact network for a normative workday, de-
rived from daily activities. The data were created from
an urban transportation agent-based model (ABM),
which simulated individuals’ daily movements across
locations in Portland, Oregon. The data are synthetic
and represent only Portland on a usual workday, and
so might not be indicative of the entire United States
averaged across all days.

The data provides an edge-list that specifies which
nodes or vertices representing individuals are connected.
The edge-list data further contains information regard-
ing each individual’s activity or purpose during the
interaction, and an edge-weight is given by the dura-
tion, in seconds, of the interaction. Examples of these
activities include home, work, leisure, school, and com-
merce. More than 90% of all edges in the edge-list date
are assortative in the two connected individuals’ pur-
pose – the vast majority of edges describe interactions
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where both individuals engaged in the same purpose
(e.g., Home-Home, and Work-Work interactions). We
thus categorized each edge with a single purpose de-
scribing the nature of the interaction. For example,
Home-Home edges were categorized as Home interac-
tions. We also consolidated the many purposes into
six main categories: Home, Work, School, Commerce,
Leisure, and Other. All edges with disassortative pur-
poses of the two connected individuals were categorized
as an Other. The edge-list data was used to generate
the conditional mixing matrices that give the relative
proportion of contacts of an individual belonging to
a given population stratum (i.e., age group) with the
other strata for the six purposes. Moreover, from the
edge-list, we extracted the six coefficients representing
each of the six mixing matrices’ relative matrix-weights.
These matrix-weights sums to 100% and were calcu-
lated by summing the edge-weights for each of the
six interaction categories. Since the matrix-weights are
based on edge-weights rather than on the tally of each
edge type, they represent each type of interaction’s
overall strength in terms of aggregate duration rather
than on aggregated interaction-tick frequency. In this
study, we used these six mixing matrices and consoli-
dated them into two mixing matrices, one describing
home-level mixing and the second describing all other
mixing patterns. Overall matrix-weights were calcu-
lated and associated with the two mixing matrices. To
model social distancing, we scale down the importance
of the matrix-weight associated with all other interac-
tions while keeping the matrix-weight associated with
home mixing unaltered. After scaling, the sum of the
two matrix-weights is smaller than 100%. This data
was used for the base case analysis and is shown in
Table 1.

The second data source [24] was used for our sen-
sitivity analysis. It is based on self-reported survey
data of unique contacts over the course of one day
in eight European countries, listing the age, sex, and
location of the contact [25]. This data has been ex-
trapolated to create mixing matrices for 152 countries,
including the United States [24]. Similar to our pro-
cedure on the NDSSL data, the location was used to
create age-specific mixing matrices associated with in-
teractions that occur at the categorical groups Home
and Other. As before, associated with each of the two
mixing matrices, we computed their relative weights,
which add to 100% under pre-pandemic status-quo con-
ditions. Social distancing is modeled by scaling down
the matrix-weight, multiplying the mixing matrix as-
sociated with interactions belonging to the category
Other.

The mixing matrices produced by these two sources
are quite different, and we therefore use both to exam-
ine the effect of variation in transmission on our model

outcomes. We chose to use the mixing matrices gener-
ated from the NDSSL data for our base case analysis
because the NDSSL was generated from detained US
data for Portland, OR. The second data source [24]
was used for our sensitivity analysis because the data
was originally generated for European countries and
later transformed to be representative of the US.

However, this process only provides the relative values
of βyy, βyo, βoy and βoo; we still do not know their
actual values. To determine that, we calibrate these
values using R0. We describe this process in the next
section.

Transmission Rate Calibration

We apply the next-generation method to calibrate trans-
mission rates, which derive basic reproduction num-
bers (usually denoted as R0) from a compartmental
model of infectious disease. Based on the age-stratified
SEIR model and partial estimated parameter values,
transmission rates could be calibrated using the next-
generation method to generate an R0 value of 2.4 [26].

We have eight independent transmission rates (as we
have two age groups and two social distancing settings).
Thus, we explore the relationship of each transmission
rate using its definition: the transmission rate is equal
to the product of the probability of infection given a
contact between a susceptible and infected individual
(ρ) and the average contact rate between two groups
(c). Define c0yo to be the average contact rate between
young to old under policy xi = 0, then c0yo = Σ0

yo/No
where Σ0

yo is the number of total contacts between
young and old when xi = 0 and No is the number of
old individuals in the population. If we do not consider
the heterogeneity of ρ by age, then the ratio of any two
transmission rates is equal to the ratio of corresponding
average contact rates. For example,

β0
yo

β0
yy

=
ρc0yo
ρc0yy

=
c0yo
c0yy

=
Σ0
yo/No

Σ0
yy/Ny

(17)

Since the number in the young population and old
population is known, the ratio between other transmis-
sion rates and the base transmission rate β0

yy can be
calculated from equation 17 combined with Table 1.
For instance,

β0
yo

β0
yy

=
Σ0
yo

Σ0
yy

Ny
No

,

where Σ0
yo is equal to the sum of second row of Table

1 and Σ0
yy is equal to the sum of first row of Table 1.
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Table 1: Proportion of total contact calibrated by age and locations in the base case (calculated
from NDSSL data)

Household Work School Commercial Recreation Other
Within Young Cohort 0.0832 0.3544 0.1748 0.0385 0.0226 0.0959

Between Young and Old 0.0058 0.0984 0.0155 0.0261 0.0093 0.0490
Within Old Cohort 0.0051 0.0069 0.0012 0.0054 0.0011 0.0067

Then,

Σ0
yo = 0.0058 + 0.0984 + 0.0155 + 0.0261

+ 0.009 + 0.049 ≈ 0.204

Σ0
yy = 0.083 + 0.3544 + 0.1748 + 0.0385

+ 0.0226 + 0.0959 ≈ 0.769

Then we can obtain

β0
yo

β0
yy

=
Σ0
yo

Σ0
yy

=
0.204

0.769

Ny
No

.

Similarly, we can calculate other ratios of transmission
rates when social distancing is not in effect, which are
organized in Table 2.

Table 2: Ratios between partial transmission
rates and base transmission rate

β0
yo

β0
yy

β0
oo
β0
yy

β0
oy

β0
yy

0.204
0.769

Ny

No

0.026
0.769

Ny

N0

0.204
0.769

If β0
yy is known, then β0

oy, β
0
yo, β

0
oo can be obtained

by Table 2. Diekmann et cl. illustrated that one can
determine R0 from compartmental models by decom-
posing its Jacobian matrix into V +F , where V roughly
represents the production of new infections, and F rep-
resents transitions, describing the change of state. R0

is then equal to the largest eigenvalue of −V F−1 [27].
Using the compartmental model, we derive

V =

∣∣∣∣∣∣∣∣∣
0 0

Sy

Ny
β0
yy

Sy

No
β0
oy

0 0 So

Ny
β0
yo

So

No
β0
oo

0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣∣ and

F =

∣∣∣∣∣∣∣∣
−α 0 0 0
0 −α 0 0
α 0 −(vy + dy) 0
0 α 0 −(vo + do)

∣∣∣∣∣∣∣∣
where Sy and So are the number of young and old
susceptible individuals corresponding to the time when
R0 = 2.4, the reproductive number when no social
distancing policy was in effect. Replacing β0

oy, β
0
yo, β

0
oo

by β0
yy and setting Ny, No as shown in Table 5, based

on Table 2, then we can calculate R0 given any given
β0
yy. This relationship is shown in the plot in Appendix

Figure A.1.

Social Distancing Assumptions
To model social distancing policies, we assume contact
only occurs within households. This means that we set
all other contact modalities besides Home to be 0 in
our transmission data for this calculation. If the old do
social distancing but the young do not, we assume the
contacts between the young and the old also only occur
in the household. For example, if we want to calculate
β1
oy

β0
yy

, we first use an equation similar to equation 17:

β1
oy

β0
yy

=
Σ1
oy

Σ0
yy

To calculate Σ1
oy when social distancing, we need only

sum the contacts between young and old that occurs
in the household. Hence, Σ1

oy ≈ 0.006, and

β1
oy

β0
yy

=
0.006

0.769
.

We can calculate other transmission rates under social
distancing in a similar way. These are provided in Table
3.

Table 3: Ratios between partial transmission
rates and base transmission rate

β1
yy

β0
yy

β1
yo

β0
yy

β1
oo
β0
yy

β1
oy

β0
yy

0.083
0.769

0.006
0.769

Ny

No

0.005
0.769

Ny

No

0.006
0.769

Using Appendix Figure A.1, the estimated β0
yy = 0.2

if R0 is 2.4. Then, we use Tables 2 and 3 to calculate
all transmission rates, shown in Table 4.

Initial Conditions
We start the simulation with 30 individuals infected,
120 individuals exposed, no recovered individuals, and
300 million individuals total, which were the figures
near the beginning of the epidemic in the US [28]. The
initial value of I, 30, is the sum of Iy and Io. The exact
value of Iy and Io depends on the ratio of individuals
in the young and old groups. Since we stratify the
population using age 55 as a cutoff, the proportion
of the young population is 0.71% [29], so the ratio of
young and old population is 0.71/0.29 = 2.45. Thus,
the initial values of Iy and Io are 21 and 9 respectively.
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Table 4: Estimated transmission rates
Young Old

Young 0.2 0.13
Old 0.053 0.017

(a) Estimated transmission rates under non-social distancing

Young Old
Young 0.022 0.004

Old 0.002 0.003

(b) Estimated transmission rates under social distancing

The initial value of E is set as four times of I [28].
Using a similar rationale, Ey and Eo are then 84 and
36, respectively. Table 5 lists all base case parameter
values.

Sensitivity Analysis
This analysis depends on many estimated parameter
values. However, these values are uncertain for a va-
riety of reasons – heterogeneity over the population,
measurement error, lack of evidence, etc. We therefore
perform sensitivity analyses to determine the robust-
ness of the identified optimal policy. In particular, we
examine sensitivity scenarios on the utility parameters,
transmission rate, clearance rate, and mortality rate.
Parameter ranges for these analyses are given in the
Appendix (Additional Sensitivity Analyses section).

Results
No Social Distancing
Using the policy where no social distancing occurs,
a large part of the population, both young and old,
become infected. The social utility for young individuals
over the time horizon is -1.52 per capita and -3.20 per
capita for old individuals. This results in a total of
1.26 sick-weeks per capita among the young population
over the time horizon and 1.05 sick-weeks per capita
among the old population (see Figure A.3a). In the
end, there would be 5.2M deaths and 245.5M people
in the recovered state. Outcomes from all policies are
summarized in Table 6.

Social Distancing for the Entire Time Horizon
By contrast, if all individuals are socially distanced for
the entire time horizon, most of the population remains
in a susceptible state, with few individuals contract-
ing illness. The number of individuals infected falls to
almost 0 after 100 days’ social distancing, greatly reduc-
ing the total number of infected over the time horizon.
There would be almost 0 sick-weeks per capita among
the young and old populations over the time horizon.
As the number of infected is drastically reduced, at the
end of the time horizon, virtually no one would be in
the recovered state: 138 and 43 individuals would be
in the recovered state for young and old populations,
respectively (see Figure A.3b), compared to 188.0M
and 57.5M in the no-social distancing scenario. This

also greatly reduces mortality over the time horizon,
with only 4 deaths.

These health gains outweigh the social cost of dis-
tancing using our base case utility parameters, with an
average social utility of 0 among the young population
and 0 among the old population, an increase of 1.52
and 3.20 from the no-social distancing case. Hence, in
terms of social benefit and health gains, the all-social
distancing case outperforms no-social distancing case.
However, note that the young population bears the
brunt of the disease burden in both cases.

MDP Results: Homogeneous Policy
While all or none social distancing policies are natural
first options, additional social utility and better health
outcomes may be garnered if the policy can change
over time. We examine this scenario using the MDP
solution to the homogeneous policy problem, where the
optimal policy is to socially distance only in the first
and second epochs (out of five total epochs over the
time horizon; each epoch is 10 weeks).

The disease will be controlled well under the optimal
homogeneous policy where about 22,430 individuals are
infected at the end of simulation and a very small num-
ber of people become infected during the first 300 days
(shown in Appendix Figure A.2a). With this policy,
we find that social utility is higher than both extreme
distancing scenarios. The total social utility would be
0.60 per capita, with 0.60 per capita accrued to the
young population and 0.60 utility per capita to the
old population, respectively. This is in contrast to the
preceding all or none scenarios, which had lower overall
utility for both groups. This improvement is in part
due to the shorter duration of social distancing as well
as the maintenance of better health outcomes than the
no-social distancing case.

In terms of health outcomes, this optimal policy
would result in a total of 0.0002 sick-weeks per capita
among the young population and 0.0001 sick-weeks per
capita sick-weeks among old population, respectively
(see Figure A.3c), an increase of of 0.0002 sick-weeks
per capita and 0.0001 sick-weeks per capita from the all-
social distance policy. Additionally, 537 people would
die and 31,524 people end up in the recovered state.

These epidemiological results are quite sensitive to
when social distancing starts. If we run the simulation
and delay the optimal social distancing policy by one
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Table 5: Parameter values of base case
Notation Description Value Unit

N Total population 300,000,000 No. of People
s Social benefits per capita 1 (No. of People× Day)−1

Dy The cost per capita for young people 100 (No. of People× Day)−1

Do The cost per capita for old people 200 (No. of People× Day)−1

Sy(t = 0) The number of susceptible young people at time 0 213,000,000 No. of People
So(t = 0) The number of susceptible old people at time 0 87,000,000 No. of People
Ey(t = 0) The number of exposed young people at time 0 84 No. of People
Eo(t = 0) The number of exposed old people at time 0 36 No. of People
Iy(t = 0) The number of infected young people at time 0 21 No. of People
Io(t = 0) The number of infected old people at time 0 9 No. of People
Ry(t = 0) The number of recovered young people at time 0 0 No. of People
Ro(t = 0) The number of recovered old people at time 0 0 No. of People

νy Clearance rate of young patients 0.1 Day−1

νo Clearance rate of old patients 0.09 Day−1

dy Death rate of young patients 0.00016 Day−1

do Death rate of old patients 0.0077 Day−1

α Incubating rate from exposed state to infected state 0.192 Day−1

epoch (socially distance only in the second and third
epochs), the peak number of individuals infected reach
more than 8,000 people (shown in Appendix Figure
A.2b). This comparison reveals that only a one-epoch
delay in social distancing will result in an outbreak.

MDP Results: Inhomogeneous Policy

We additionally consider the case where we allow for
additional flexibility in policy where there can be dif-
ferent social distancing policies for the young and old
(an inhomogeneous, time-varying policy). In this case,
the optimal policy is for the young to socially dis-
tance in the first and second epoch while the old never
socially-distance. The epidemiological change over time
is shown in Appendix Figure A.3d. Compared with a
homogeneous optimal policy, the inhomogeneous policy
would result in higher total utilities over the whole pop-
ulation, but not within the young population. Health
outcomes also worsen, as less social distancing occurs.

The total utility per capita increases by 0.12 com-
pared to the optimal homogeneous policy, while the
utility per capita among the young population almost
does not change. The overall utility per capita increase
is due to the improvement among old population, which
increases by 0.40 compared to the homogeneous policy
(see Table 6).

The inhomogeneous policy results in worse health
outcomes than the homogeneous policy. The per capita
sick-weeks of the young and old population nearly does
not change(see Table 6). However, less total social dis-
tancing must result in more infections, which translates
to 690 deaths in the inhomoegenous policy, 153 more
deaths than with the homogeneous policy. The inho-
mogeneous policy also results in 40,516 people in the
recovered state, which is 8,992 more than recovered
people as under the homogeneous policy.

Overall, however, these health decrements are not
nearly as drastic as the ones seen when compared to
the no social distancing policy, although old individuals
never social distance. This is for a few reasons. One is
that the transmission rate between socially-distancing
young and non-socially-distancing old is same as in the
case when both the young and the old socially distance,
because in both cases the two groups would only contact
each other in the home due to our assumptions about
social distancing. In addition, the transmission rate
between old individuals under social distancing and
no-social distancing policies are 0.003 and 0.017 (see
Table 4), respectively. Both of these values are relatively
small, which means old people do not contact each other
much in either case. Lastly, old people occupy a small
part of the total population, which mitigates the risk
of infection from this subgroup.

Results: Summary

In summary, social distancing can indeed mitigate the
negative health outcomes of pandemics and preserve
utility, even when within-household contacts continue.
Unsurprisingly, increased health benefits through de-
creased transmission and infection have the potential
to outweigh lost social utility. While this depends heav-
ily on the magnitude of utility from social contacts,
which we explore in sensitivity analysis, our base case
analysis shows no social distancing can generate far
worse outcomes on both health and social utility fronts.

This analysis also demonstrates that using an in-
homogeneous policy that varies across time and by
demographic group can preserve utility with only small
compromises to health outcomes. Surprisingly, in the
optimal inhomogeneous policy, we find that young indi-
viduals have nearly the same social distancing policy as
in an optimal homogeneous policy. Old individuals, by
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Table 6: Outcomes across all policies
No Social All Social Homogeneous Inhomogeneous
Distancing Distancing Policy Policy

Average Daily Utility Per Capita -2.00 0 0.60 0.72
Young -1.52 0 0.60 0.60
Old -3.20 0 0.60 1.00

Total Sick Weeks Per 10,000 Persons 1.20 0 1.5 2.0
Young 1.26 0 1.7 2.2
Old 1.05 0 1.1 1.4

Total Deaths 5.2M 4 537 690
Young 0.3M 0 41 53
Old 4.9M 4 496 637

Num. in Recovered Population
at End of Time Horizon 245.5M 181 31,523 40,516

Young 188.0M 138 25,730 33,066
Old 57.5M 43 5,793 7,450

contrast, do not stop social activities at all. Our trans-
mission input values explain this unexpected outcome.
Our data shows a low transmission rate among old
individuals – even when they do not socially distance,
they are relatively much less likely to contact others
than younger individuals. The majority of young-old
contacts occur in the household, which is unchanged
due to social distancing. While we vary these transmis-
sion patterns in sensitivity analyses described below, it
is interesting to note that reasonable contact patterns
can generate unexpected outcomes.

As mentioned, these results may depend heavily on
transmission rates, mortality, and social utility costs.
Since great uncertainty remains in what these values
may be, we perform sensitivity analyses to examine the
effect variation would have on our results.

Sensitivity Analysis Results
We perform sensitivity analyses on a variety of param-
eters. However, the utility function benefits and costs
are the most uncertain and they also lead to qualita-
tively different results, so we summarize the results
from the other sensitivity analyses here (full sensitivity
analysis in the Appendix) and present utility parameter
sensitivity results in the main text.

In sensitivity analyses around utility and costs, we
find that varying the costs for young and old pa-
tients, respectively, between 25-800 and 50-1600 did
not change the optimal policy. It was still optimal
to social distance the first and second epochs (both
groups for the homogeneous policy; only young for the
inhomogeneous policy).

In clearance rate sensitivity analyses, the length of
social distancing needed decreases as clearance rate in-
creases. Both homogenous and inhomogeous social dis-
tancing policies are sensitive to clearance rate variation
over the range we examined, although social distancing
epochs remained concentrated in the earlier half of the

time horizon. With sufficiently high clearance rates, so-
cial distancing may not be necessary to preserve utility,
although health outcomes may deteriorate slightly in
this scenario.

In the transmission rate sensitivity analysis, we use
the mixing contact matrix from [24]. We find the opti-
mal policy is to socially distance in the second and third
epoch (all individuals in the homogeneous policy; only
young indivdiuals in the inhomogeneous policy). Due
to having larger transmission rates and the changed op-
timal policy for the mixing matrix, the health outcomes
worsen in this scenario compared to the base case. As
in the base case, the inhomogeneous policy outperforms
the homogeneous policy in utility outcomes.

Another interesting observation concerns the optimal
time to start social distancing. In both the homoge-
neous and inhomogeneous policy under this alternative
contact matrix, the optimal time to start social dis-
tancing is not at the very beginning of the epidemic
– socially distancing immediately may not always the
best choice. Intuitively, this occurs if the epidemic has
not yet grown to sufficient size to warrant the lost
utility from social distancing. These optimal policies
also do not recommend social distancing up until the
time of a vaccine roll out – instead, they stop a few
epochs before, even in the homogeneous policy where
both young and old social distance. This is because,
at some point in time, the infection does not have suf-
ficient time to spread widely enough to outweigh the
social benefits in the time remaining before a vaccine
is found. The exact timing of optimal initialization of
social distancing will depend on the disease dynamics
and the magnitude of utility loss due to distancing.

We find that the optimal policies for both inhomoge-
neous and homogeneous problems are not sensitive to
the mortality rate. As seen in the base case results, the
inhomogeneous policy outperforms the homogeneous
policy in terms of utility. Total sick weeks decrease
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and total deaths increase as mortality rate increases,
as expected.

One takeaway of these analyses is that a limited
amount of social distancing near the beginning of the
epidemic can greatly reduce sick-weeks and total deaths.
An MDP framework is a valuable tool to identify when
this social distancing should occur as well as which
populations to socially distance.

Conclusions
In this work, we examine the optimal social distancing
policy to maximize total social utility. We examine
both social utility and health outcomes in the resultant
policies. We do so by designing a novel MDP model
that uses an age-stratified SEIR compartmental model
to describe disease dynamics. This allows us to deter-
mine which groups (young or old) should be socially
distancing at what times. While data on Covid-19 is
continually being updated, we used information from
the medical literature and empirical contact pattern
data to calculate reasonable parameters for the model.

Using this framework, we identified both the optimal
time-varying and time-homogeneous social distancing
policies. The time inhomogeneous policy generated the
most total utility, due to its increased flexibility. Both
policies had young individuals social distancing in the
first and second epochs; however, the policies varied
much more widely for older individuals – in the time
inhomogeneous policy, the optimal policy did not have
older individuals social distance at all. This difference
in policy results in higher social utility for old individ-
uals and only slightly worse health outcomes for all
individuals (in terms of mortality and individuals ex-
posed to infection). We find that this result is primarily
driven by the mixing patterns used in our model, which
were derived from NDSSL [23]. This data indicated that
older individuals did not do much socializing (and there-
fore transmit disease) even when no social distancing
policy was in effect for them. In our sensitivity analysis,
we found that these patterns were generally robust to
changes in input values, and, critically, cost and benefit
assumptions.

Our results demonstrate the value of using an MDP
framework to examine optimal disease control policies
which can change over time, particularly in the context
of heterogeneous risk groups within the population. We
were able to identify social distancing policies where
infectious cases were virtually eliminated by imposing
a high cost of infection; in these cases, the number of
social distancing epochs remained small, and the policy
varied when it was allowed to vary social distancing
actions across demographics. We stratified the model
in this analysis on age as older groups have been docu-
mented to have higher mortality and morbidity risks

for Covid-19; however, this framework is applicable to
other diseases as well, where it may be appropriate to
differentiate risk groups along different characteristics.
This would still be within the capabilities of this model
framework, as it can handle any disease dynamics able
to be captured by a compartmental model.

There are several limitations to this work which we
would like to acknowledge here. First, there are several
highly uncertain input parameters. In particular, the
social benefits and cost values in our objective function
are not driven by data; these values are difficult to
measure, as they include psychological harms and stres-
sors of social distancing, and empirical data is lacking.
Instead, we perform sensitivity analysis around these
values to show how our results would change under
different values. Our results illustrate how identifying
the pattern of social distancing using a MDP frame-
work can still identify useful patterns for optimal policy
design despite highly uncertain model inputs.

Secondly, the model structure (an SEIR compart-
menal model) is a highly abstract description of true
Covid-19 dynamics. In reality, transmission, recovery,
and mortality, due to Covid-19 are dependent on a
variety of individual characteristics not captured here –
co-morbidities, social economic status, geographic loca-
tion, poverty level, access to healthcare, etc. However,
the simplicity of our model allows for more tractable
simulation, and we argue that the results still provide
general insights into optimal disease control policy.

Despite these limitations, this work demonstrates
that, even across a wide range of social benefit values
and health costs, social distancing can be a valuable
tool for reducing infection. However, demographic mix-
ing patterns and disease dynamics should be considered
when designing such policies, as limiting social distanc-
ing restrictions to groups that mix more (such as young
individuals in this model) can be an effective method
of reducing the impact of social distancing policies for
small changes in health outcomes. Moreover, social dis-
tancing policies should vary over time; starting too late
may unnecessarily reduce social benefits without much
reduction in infection.
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Appendix
Additional SEIR Model Parameters
In this section we present additional details on the SEIR model parameters.

Transmission

Figure A.1: R0 & Base transmission rate

In Figure A.1, we show the relationship between the base transmission rate (as described in the manuscript)
and the corresponding basic reproduction number R0. This plot is generated by using next generation method
where we input the base transmission rate as a variable and obtain R0. Since the estimated R0 is 2.4, we use a
base transmission rate of 0.2 in our analysis.

Demographic Trends of Covid-19 Cases and Deaths
Appendix Table A.1 shows the confirmed number of Covid-19 cases and Appendix Table A.2, below, shows
the number of Covid-19 deaths, by age group, in the US by August 2020; this information is taken from CDC
website [18]. We use this information in the model to determine the mortality rate of different age groups. We do
this by summing over all age groups from 0-55 to find the number of infected individuals and deaths under age
55; a similar procedure is done to determine values for the old cohort.

Table A.1: Confirmed cases by age
Age Group 0 - 4 5 - 17 18 - 29 30 - 39 40 - 49 50 - 64 65 - 74 75 - 84 85+

Count 85,864 319,990 1,133,167 814,387 746,949 1,006,092 367,878 210,868 158,238

Table A.2: Deaths by age group
Age Group 0 - 4 5 - 17 18 - 29 30 - 39 40 - 49 50 - 64 65 - 74 75 - 84 85+

Count 34 55 749 1,913 4,609 22,366 30,121 37,781 45,329

Additional Results Graphs
We show the number of infected individuals over time under different social distancing policies in a series of
plots. We examine what occur if the social distancing policy is implemented one epoch later in Figure A.2b
than in Figure A.2a, which shows the optimal policy (social distance in epoch 1 and 2). Figure A.2a, using the
optimal policy, shows that the number of infected increases at the end of the time horizon. Conversely, in Figure
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A.2b, there is a peak at about day 80. In this case, social distancing begins at the second epoch starting at day
70, so the disease will be suppressed when just as it is about to spread widely.

In addition, both Figures A.2a and A.2b show a rise at the end of time horizon, which occurs due to our
objective to maximize social utility within the time horizon – after some time, suppressing the disease through
social distancing is no longer worth the lost social utility given the limited amount of time until the end of the
time horizon (when everyone is assumed to become immune to the disease). .

Figure A.2: Sensitivity of infected population patterns to timing of homogeneous social distancing
policy

(a) (b)

Figure A.3 depicts the epidemiological outcomes with each social distancing policy. Note that the y-axes scales
are quite different to allow for readability.
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Figure A.3: Epidemiological Change Over Time

(a) (b)

(c) (d)
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Additional Sensitivity Analyses
Results of Sensitivity Analysis on Utility and Costs
The optimal policies of both the demographically homogeneous and inhomogeneous problems vary with different
values of social benefits and costs in the objective function. We show some of these optimal policies in Table A.3.

In both homogeneous and inhomogeneous problems, the optimal policy remains unchanged when varying the
costs of young and old patients in the range of 25-800 and 50-1600, respectively. The values of social benefits
and costs in base case are given arbitrarily due to lack of related research on it, so it is compelling to verify the
robustness (insensitivity) of optimal policy on benefits and costs.

Table A.3: Optimal policies under different benefits and costs
Social Cost of Cost of Social Distancing Epochs Social Distancing Epochs

Benefit Young Patient Old Patient in Time Homogeneous Policy Time Inhomogeneous Policy
1 25 50 1, 2 Y: 1, 2 O: N/A
1 50 100 1, 2 Y: 1, 2 O: N/A
1 100 200 1, 2 Y: 1, 2 O: N/A
1 200 400 1, 2 Y: 1, 2 O: N/A
1 400 800 1, 2 Y: 1, 2 O: N/A
1 800 1600 1, 2 Y: 1, 2 O: N/A

Optimal policies under different costs and benefits. There are 5 epochs total (each epoch is 10 weeks long). The last two columns of the
table give the epoch numbers in which the optimal policy recommends social distancing for either the whole population (homogeneous
policy) or for the young or old cohorts (inhomogeneous policy)

Higher costs under the same optimal policy should result in lower daily utility per capita, but the difference is
small (less than 0.01 utility units) as shown in Table A.4. The total sick weeks, total deaths, and the number
of individuals recovered at end of time horizon do not change because the optimal policy and epidemiological
parameters are the same even as the costs vary.

Table A.4: Comparison of outcomes under different costs; note that (100, 200) is the base case.
Costs for (young, old): (25, 50) (50, 100) (100, 200) (200, 400) (400, 800) (800, 1600)
Policy: Homog. Inhomog. Homog. Inhomog. Homog. Inhomog. Homog. Inhomog. Homog. Inhomog. Homog. Inhomog.
Average Daily Utility Per Capita 0.60 0.72 0.60 0.72 0.60 0.72 0.60 0.72 0.60 0.71 0.60 0.71
Young 0.60 0.60 0.6 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60
Old 0.60 1.00 0.60 1.00 0.60 1.00 0.60 1.00 0.60 1.00 0.60 1.00

Total Sick Weeks Per 10,000 Persons 1.50 1.97 1.50 1.97 1.50 1.97 1.50 1.97 1.50 1.97 1.50 1.97
Young 1.70 2.22 1.70 2.22 1.70 2.22 1.70 2.22 1.70 2.22 1.70 2.22
Old 1.10 1.36 1.10 1.36 1.10 1.36 1.10 1.36 1.10 1.36 1.10 1.36

Total Deaths 537 690 537 690 537 690 537 690 537 690 537 690
Young 41 53 41 53 41 53 41 53 41 53 41 53
Old 496 637 496 637 496 637 496 637 496 637 496 637

Num. in Recovered Population
at End of Time Horizon 31,524 40,516 31,524 40,516 31,524 40,516 31,524 40,516 31,524 40,516 31,524 40,516
Young 25,730 33,067 25,730 33,067 25,730 33,067 25,730 33,067 25,730 33,067 25,730 33,067
Old 5,794 7,449 5,794 7,449 5,794 7,449 5,794 7,449 5,794 7,449 5,794 7,449

Clearance Rate Sensitivity Analysis
The optimal policies under different clearance rates are shown in table A.5. The optimal policy is sensitive to
clearance rate in that higher clearance rates result in an optimal policy with less accumulated social distancing
time.

Clearance Rate of Clearance Rate of Social Distancing Epochs Social Distancing Epochs
Young Patients Old Patients in Time Homogeneous Policy Time Inhomogeneous Policy

0.06 0.05 1, 2, 3 Y:1, 2, 3 O: N/A
0.11 0.1 1,2 Y: 1, 2 O: N/A
0.16 0.15 1 Y: 1 O: N/A
0.21 0.2 N/A Y: N/A O: N/A

Table A.5: Optimal policies under different clearance rates

The improvement of clearance rates could increase social utility significantly (see Table A.6). When both
clearance rates increase up to 0.2, the per-capita utility exceeds 0.9; note that a per-capita utility of 1 only
happens when disease is eradicated and no social distancing occurs. In terms of health outcomes (see Table
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A.6), although the highest clearances rates could bring substantial social utility, it results in large sick-weeks per
capita because the optimal policies recommend less social distancing.

Table A.6: Comparison of outcome under different clearance rates
Clearamce Rates for (young, old): (0.06, 0.05) (0.11, 0.1) (0.16, 0.15) (0.21, 0.2)
Policy: Homog. Inhomog. Homog. Inhomog. Homog. Inhomog. Homog. Inhomog.
Average Daily Utility Per Capita 0.40 0.57 0.60 0.72 0.80 0.86 1.00 1.00
Young 0.40 0.40 0.60 0.60 0.80 0.80 1.00 1.00
Old 0.40 1.00 0.60 1.00 0.80 1.00 1.00 1.00

Total Sick Weeks Per 10,000 Persons 2.50 3.50 0.17 0.22 0.16 0.19 1.10 1.10
Young 2.80 3.90 1.90 0.24 0.18 0.21 0.12 1.20
Old 1.70 2.40 0.12 0.15 0.11 0.13 0.76 0.76

Total Deaths 884 1215 60 77 57 67 386 386
Young 68 93 5 6 4 5 30 30
Old 816 1122 55 71 53 62 356 356

Num. in Recovered Population
at End of Time Horizon 30,719 42,141 3,834 4,904 5,356 6,290 48,209 48,209
Young 25,416 34,857 3,114 3,981 4,330 5,084 38,959 38,959
Old 5,303 7,284 720 922 1,026 1,206 9,250 9,250

Transmission Matrix Sensitivity
Betz et cl. studied 152 country’s population-based contacts by using a Bayesian hierarchical model to do
estimation on the proclivity of age-and-location-specific contact patterns [24]. In their project, locations of
contacts are divided into four locations, including home, school, work and other locations. The interval of each
group by age is five years. We extract the American contact pattern data and summarize them in Table A.7.
Each numeric entry in the table represents the contact rate within different age groups under each location.
We generate transmission matricies using the procedure described in the main text. The complete estimated
transmission rates are shown in Table A.9.

Table A.7: Average contact rates between different age groups under different locations
Home School Work Other Locations

Young to Young 35.777 26.188 41.418 85.134
Old to Young 1.161 0.249 2.119 1.843
Young to Old 10.492 2.246 4.273 2.633

Old to Old 4.329 0.219 0.443 0.433

Table A.8: Ratios between base transmission rates and other transmission rates under new mixing
contact matrix

young old
young 0.190β0

yy 0.056β0
yy

old 0.006β0
yy 0.023β0

yy

(a) Transmission rate under social distancing

young old
young β0

yy 0.104β0
yy

old 0.028β0
yy 0.029β0

yy

(b) transmission rate without social distancing

Table A.9: Estimated transmission rates under new mixing contact matrix
Young Old

Young 0.24 0.02496
Old 0.00672 0.00696

(a) Estimated transmission rates under non-social distancing

Young Old
Young 0.0456 0.01344

Old 0.00144 0.00552

(b) Estimated transmission rates under social distancing

The optimal inhomogeneous social distancing policy under these new estimated transmission rates is to socially
distance at the second and third epoch for the young cohort while the old cohort never socially distance, which
shifts social distancing one epoch later than the optimal policy derived from our base case contact pattern. The
daily utility per capita derived from the new contact pattern is slightly lower than that of the one derived from
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h

Figure A.4: Epidemiological Change Over Time for the New Mixing Contact Matrix

(a) R0 & Base transmission rate

(b) Optimal Homogeneous Policy (c) Optimal Inhomogeneous Policy

the base case contact pattern (see Table A.10). The epidemiological change over time for homogeneous and
inhomogeneous policies under the new pattern is shown in Figure A.5b and A.5c. Compared with Figures A.3c
and A.3d, it would appear that we have similar epidemiological trends although more people would be infected
in this new case. The deterioration in social utility and health outcomes under this new pattern is due to its
larger estimated transmission rates under social distancing (see Tables 4 and A.9).

The higher average utility per capita earned by the inhomogeneous policy comes from the considerable increase
of old’s average utility, who no longer social distance. Regarding health outcomes, the optimal policy under base
case pattern (see Table A.10) outperforms the optimal policy under new mixing contact matrix because the
transmission rates under social distancing estimated by new mixing contact matrix are larger (compare Tables 4
and A.9).

Mortality Rate Sensitivity Analysis

The results shown in Table A.11 reveal that the optimal policy is not sensitive to variation in mortality rates.
Higher mortality rates result in lower number of sick-weeks but higher number of deaths, as expected.
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Table A.10: Comparison of Outcomes Under Different Mixing Patterns
Costs for (young, old): Former Contact Pattern New Contact Pattern
Policy: Homog. Inhomog. Homog. Inhomog.
Average Daily Utility 0.60 0.72 0.59 0.70
Young 0.60 0.60 0.58 0.58
Old 0.60 1.00 0.60 1.00

Total Sick Weeks Per 10,000 Persons 1.50 1.97 6.60 66
Young 1.70 2.22 89 89
Old 1.10 1.36 10 10

Total Deaths 537 690 6765 6,781
Young 41 53 2123 2,127
Old 496 637 4642 4,654

Num. in Recovered Population
at End of Time Horizon 31,524 40,516 1.38M 1.38M
Young 25,730 33,067 1.33M 1.33M
Old 5,794 7,449 54,259 54,397

Table A.11: Optimal policies under different mortality rates
Mortality Rate of Mortality Rate of Social Distancing Epochs Social Distancing Epochs

Young Patient Old Patient in Time Homogeneous Policy Time Inhomogeneous Policy
0.00010 0.006 1, 2 Y: 1, 2 O: N/A
0.00015 0.007 1, 2 Y: 1, 2 O: N/A
0.00020 0.008 1, 2 Y: 1, 2 O: N/A
0.00025 0.009 1, 2 Y: 1, 2 O: N/A

Table A.12: Comparison of outcome under different mortality rates
Mortality Rates for (young, old): (0.0001, 0.006) (0.00015, 0.007) (0.0002, 0.008) (0.00025, 0.009)
Policy: Homog. Inhomog. Homog. Inhomog. Homog. Inhomog. Homog. Inhomog.
Average Daily Utility Per Capita 0.60 0.72 0.60 0.72 0.60 0.72 0.60 0.72
Young 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60
Old 0.60 1.00 0.60 1.00 0.60 1.00 0.60 1.00

Total Sick Weeks Per 10,000 Persons 1.60 2.10 1.60 2.00 1.50 1.90 1.50 1.80
Young 1.80 2.40 1.80 2.30 1.70 2.20 1.70 2.10
Old 1.10 1.50 1.10 1.40 1.00 1.30 1.00 1.30

Total Deaths 436 577 499 650 558 714 612 711
Young 27 36 39 51 51 65 61 77
Old 409 541 460 599 507 649 550 694

Num. in Recovered Population
at End of Time Horizon 33,127 43,869 32,076 41,725 31,065 39,752 30,101 37,933
Young 27,001 35,743 26,162 34,029 25,362 32,451 24,599 30,996
Old 6,136 8,126 5,914 7,696 5,703 7,300 5,502 6,937
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