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Abstract 

Genetic variants identified through genome-wide association studies (GWAS) are 

typically non-coding and exert small regulatory effects on downstream genes, but which 

downstream genes are ultimately impacted and how they confer risk remains mostly unclear. 

Conversely, variants that cause rare Mendelian diseases are often coding and have a more 

direct impact on disease development. We demonstrate that common and rare genetic 

diseases can be linked by studying the gene regulatory networks impacted by common 

disease-associated variants. We implemented this in the ‘Downstreamer’ method and 

applied it to 44 GWAS traits and find that predicted downstream “key genes” are enriched 

with Mendelian disease genes, e.g. key genes for height are enriched for genes that cause 

skeletal abnormalities and Ehlers-Danlos syndromes. We find that 82% of these key genes 

are located outside of GWAS loci, suggesting that they result from complex trans regulation 

rather than being impacted by disease-associated variants in cis. Finally, we discuss the 

challenges in reconstructing gene regulatory networks and provide a roadmap to improve 

identification of these highly connected genes for common traits and diseases.  
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Introduction 

Genetic variation plays a major role in the development of both common and rare 

diseases, yet the genetic architectures of these disease types are usually considered quite 

different. Rare genetic disorders are thought to primarily be caused by a single, mostly 

protein-coding genetic variant that has a large effect on disease risk. As a consequence, the 

causal genes for a rare disorder can often be identified by sequencing individual patients or 

families. In contrast, the genetic risks for common diseases are modulated by a large 

number of mostly non-coding variants that individually exert small effects. These variants are 

typically identified through genome-wide association studies (GWASs). However, 

identification of the causal variants and genes affected by GWAS loci remains challenging, 

in part due to linkage disequilibrium (LD) and small effect-sizes 1,2. 

Despite the differences between rare and complex diseases, it has been shown that 

GWAS loci for multiple traits are enriched for genes that can cause related rare diseases 

when damaged 3,4. For instance, common variants associated to PR interval, a 

measurement of heart function, have been found within the MYH6 gene 5, which is known to 

harbour mutations in individuals with familial dilated cardiomyopathy 6. Moreover, eQTL 

studies have found examples of rare disease genes that are affected by distal common 

variants in trans, such as the immunodeficiency gene ISG15, which is affected by multiple 

systemic lupus erythematosus–associated variants 7. These results indicate that common 

and rare diseases can result from damage to or altered regulation of the same genes, 

suggesting that the same biological pathways underlie these conditions 4. However, it is not 

fully known to what extent specific genes and pathways are shared between rare and 

common diseases.  

Over the years, many pathway-enrichment methods have been developed that can 

identify which biological pathways are enriched for common diseases 8–10 as well as 

highlighting their most likely cellular context(s) 11,12. In addition, several methods can 

prioritize individual genes within GWAS susceptibility loci by studying how they are 

functionally related to genes in other susceptibility loci 8,13–16. However, these methods 

confine themselves to genes in GWAS loci, potentially missing relevant trans-regulated up- 

or downstream effects. In blood, expression quantitative trait locus (eQTL) mapping has 

been successful in identifying the downstream trans regulatory consequences of GWAS-

associated variants (i.e. trans-eQTLs and eQTSs, where polygenic scores are linked to 

expression levels) 7. Unfortunately, large eQTL sample sizes are required to detect such 

effects, and such datasets are not yet available for most tissues. 
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Here we build upon the ‘omnigenic model’ hypothesis, which states that the genes that 

are most important in complex diseases are those that are modulated by many different 

common variants through gene regulatory networks 17,18. The omnigenic model postulates 

that a limited number of core genes exist that drive diseases, but that many peripheral 

genes, which contain associated variants, contribute indirectly to disease development by 

modulating the activity of the core genes. Since the omnigenic model predicts that many 

core genes map outside GWAS loci, these genes will be missed by methods that prioritize 

genes within GWAS loci. The omnigenic model hypothesis is supported by recent works 

assessing RNA levels of blood cells 19 and molecular traits 20 and a large-scale in vitro 

knockdown experiment 21. However, these studies were performed in blood, limiting their 

conclusions to GWAS studies on blood-related traits and immunological disorders. 

To take this work further, we integrated (mRNA level) gene regulatory networks with 

GWAS summary statistics to prioritize key genes that we suspect are more likely to directly 

contribute to disease predisposition than genes in GWAS loci. We have implemented this 

strategy in a software package called ‘Downstreamer’ that uses GWAS summary statistics 

and gene co-regulation based on 31,499 multi-tissue RNA-seq samples in order to prioritize 

these key genes. We also provide pathway, rare disease phenotype (coded by HPO terms) 

and tissue enrichments to aid in the comprehensive interpretation of GWAS results. 

We applied Downstreamer to 44 GWASs for a wide variety of traits (Table S1) and 

show that the identified key genes are enriched for intolerance to loss-of-function (LoF) and 

missense (MiS) mutations and for Mendelian disease genes that lead to similar phenotypic 

outcomes as the GWAS trait. Specifically, we find that key genes for height are strongly 

enriched for severe growth defects and skeletal abnormalities in humans and mice. 

Additionally, key genes for auto-immune diseases point to lymphocyte checkpoints and 

regulators and those for glomerular filtration rate (GFR; a measure of kidney function) are 

transporters for several metabolites. 

Key genes that cause Mendelian disease can therefore highlight the molecular 

pathways driving the complex disease. Conversely, predicted key genes may aid in 

identifying new Mendelian disease genes.  

Results 

To enable identification of GWAS key genes, we developed Downstreamer (Methods), 

a tool that integrates GWAS summary statistics with gene expression–based co-regulation 

networks. Downstreamer first converts individual variant associations to gene p-values by 

aggregating associations within a 25kb window around the gene body for all protein-coding 
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genes while correcting for LD between variants 9 (Fig. 1A). These gene p-values are then 

converted to z-scores. We calculated gene z-scores for 44 GWAS summary statistics 

reflecting a wide variety of disorders and complex traits (Table S1). 

Association signals for polygenic traits cluster around transcription factors 

We observed that the z-scores of individual GWASs were often weakly positively 

correlated (Fig. S1A), especially for traits for which many loci have been identified (Fig. S1 
B). For instance, the gene-level z-scores for height correlated positively with the gene-level 

z-scores of all other traits. To investigate the source of this shared signal, we calculated the 

average gene-level significance across all 44 traits while correcting for bias that might be 

introduced for traits that are strongly correlated (see Methods).  

We observed that 30% of the variation in this ‘average GWAS’ signal could be 

explained by both the extent of LD around a gene and by the local gene density (Fig. S2). 

The more extensive the LD around a gene, the higher the chance that genetic variants within 

the gene are associated, especially for highly polygenic traits 22,23. Consequently, the gene-

level z-score for these genes increases. Hence, when collapsing GWAS summary statistics 

into gene z-scores, some amount of correlation between well-powered GWAS studies is to 

be expected. However, this is unwanted when using gene z-scores in a pathway-enrichment 

analysis. We next evaluated if the remaining 70% of the average signal was enriched for any 

biological processes. After correcting for LD and gene density, we observed that 79 of the 

top 500 genes are transcription factors (OR: 2.22, p-value: 4.25×10-9). We also saw 

enrichment among the top 500 genes for pathways related to DNA binding and transcription, 

for example, transcription regulator activity (OR: 1.98, p-value: 2.24×10-11) (Table S2). 

Additionally, genes with a higher average gene z-score were enriched for intolerance to LoF 

(Fig. S3). These enrichments suggest that there is a set of genes, enriched for GWAS hits, 

that confer risk to many different types of traits. This is consistent with previous observations 

that broad functional categories tend to be enriched for many traits17. 

However, as these often-associated genes obscure the specific pathways and key 

genes for a trait, we corrected the individual gene z-scores for the average gene z-score in 

order to get disease-specific gene-level significance scores that were as specific as 

possible. Downstreamer then correlates these corrected gene z-scores to gene expression 

patterns, pathway memberships and tissue expression through a generalized least squares 

(GLS) model that accounts for gene–gene correlations resulting from the relationship 

between LD and sharing of biological functionality (Fig. 1B, Methods). This results in a z-

score that represents the significance of the association of a gene, pathway or tissue 
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Fig. 1 A) Downstreamer works on the idea that many genes identified through GWAS jointly affect a set of key 

genes that strongly impact disease development. B) Schematic overview of Downstreamer methodology. C) The 

31,499 RNA-seq samples used for the study visualized using Uniform Manifold Approximation and Projection 

(UMAP). The zoom-in on the right shows a detailed view of the various primary tissues in the dataset. 

Identification of key genes using gene co-expression 

To identify key genes, we searched for genes that are co-regulated with the genes 

within a given trait’s GWAS loci. We used a gene expression database containing 31,499 

tissue and cell-line RNA-seq samples 24 to calculate gene co-regulation (a measure of the 

similarity of expression) for each pair of protein-coding genes (Fig. 1, Methods). Co-

regulation is defined as the correlation between standardized eigenvector coefficients 

derived from the expression data (Fig. 1B). Since each component is given equal weight, co-

regulation is less sensitive to the major tissue effects that can confound co-expression 

correlations calculated using expression data from a set of heterogeneous tissue samples. 

To ensure that no bias was introduced by GWAS loci located in highly co-regulated gene 

clusters, co-regulation relationships between genes within 250kb were removed to further 

compensate for these gene clusters resulting from genomic organisation. We then 

associated the gene z-scores to gene co-regulation using a GLS model. We use 

permutations to determine the significance of the association. The resulting association z-

score reflects the overall connectivity of that gene to the GWAS genes in the network (Fig. 

1B, Methods). We call this z-score the ‘key gene score’ throughout the manuscript, and we 

call the genes that pass Bonferroni significance and have a positive association ‘key genes’. 

Besides detecting key genes, Downstreamer is also able to identify pathway and tissue 

enrichments for GWAS traits, using reconstituted gene sets that provide increased statistical 

power to identify significant pathway enrichment (Note S1, Note S2). Pathway and tissue 

enrichments results yielded plausible results consistent with previous findings, indicating that 

correction for the average GWAS signal is a useful addition. 

In total, we identified 3,648 key genes over the 44 tested traits, with most key genes 

arising from GWASs for white blood cell composition and other haematological factors (Fig. 

2A). The number of samples and independent loci for a GWAS is positively correlated to the 

number of detected key genes (Pearson R: 0.38 and 0.33, p-values: 1×10-2 and 2.8×10-2, 

respectively; Fig. S4), which is to be expected as larger GWASs typically contain more 

signal. To determine how similar the key gene predictions are, we correlated the key gene 

scores of the 44 different traits to each other and observed that traits of the same class 

cluster together (Fig. 2B). For example, the immune diseases (inflammatory bowel disease 

(IBD), coeliac disease (CeD), type 1 diabetes (T1D), rheumatoid arthritis (RA), asthma and 
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multiple sclerosis (MS)) clustered together, neighboured by traits representing white blood 

cell composition. Other distinct clusters were found for psychological traits (educational 

attainment, schizophrenia, major depressive disorder, body mass index (BMI)) and 

cardiovascular traits (pulse pressure, diastolic and systolic blood pressure, coronary artery 

disease), further showing that the gene regulatory networks downstream of GWAS signals 

are partially shared between related traits. To some extent, this sharing is expected, given 

known co-morbidities between, for example, CeD and T1D 25 and the widespread genetic 

correlations of related complex traits 26. 

On average, 82% of predicted key genes are located outside GWAS loci (≥250kb from 

the lead variant) (Fig. 2C). This indicates that the key genes may be under trans regulation 

by the genes within the GWAS loci, rather than being impacted by a GWAS variants directly 

in cis, as is the case for most genes in GWAS loci. The other 18% of key genes are located 

within GWAS loci, suggesting that there is both a cis effect by a genetic variant that directly 

perturbs the function of these genes and a trans effect where the other GWAS loci modulate 

these genes.  

Of note, out of the 3,648 key genes detected, 2,036 (55%) were detected in multiple 

GWAS traits. However, this number is largely driven by the genes we detected for highly 

correlated traits such as blood cell composition (Fig. 2A, Fig. S5). To better determine if key 

genes are trait-specific or shared among different diseases, we assigned each of the 44 

traits to 10 broader classes such as auto-immune disease or blood cell composition. We 

then observed that 1,032 (28%) of the key genes are shared between at least two different 

classes (Fig. S5A). This is largely driven by the overlapping key genes of blood cell 

composition and auto-immune disease, which account for 413 of the 1,032 overlapping key 

genes. 

Below we highlight key genes for a few traits. For prostate cancer, we prioritized 14 key 

genes, 10 of these are outside the GWAS loci (Fig. 2D). The most notable are KLK3, which 

encodes for PSA (prostate-specific antigen), the marker that is used to screen for prostate 

cancer 27, and KLK2, which is known to activate KLK3 28.  Additionally, many other key 

genes we identified have either been implicated in prostate cancer29–32 (TMC5, MLPH, 

OVOL2 and CHD1) or in other types of cancer (TFAP2C, BAIAP2L1 and PLEKHN1)33–35. 

The GWAS for GFR, a measurement of kidney function, revealed 32 key genes (Fig. 

2E), of which 6 genes are solute carriers (a group of membrane transporters). Two of these, 

SLC22A12 and SLC17A1, are known to be urate transporters, fitting the known relationship 

between urate levels and GFR 36. Other notable GFR key genes include four 

glucuronosyltransferases (UGT1A9, UGT2B7, UGT2A3 and UGT1A6) that are important in 
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drug metabolism and clearance of drugs by the kidneys 37–39 and four genes (UMOD, 

SLC22A12, SLC36A2 and NPHS2) known to cause rare forms of kidney disease 40.  

The auto-immune diseases shared several key genes, such as IL-2RA, ICOS and 

CD48, indicating an adaptive immune signature. Recently, a large-scale CRISPR assay 

assessing the regulators of IL-2, IL-2RA and CTLA4 systematically knocked down 

thousands of immune genes in primary CD4+ T cells in order to assess how these genes are 

co-regulated 21. The genes regulating IL-2RA formed a highly inter-connected network, with 

the members of this network being significantly enriched for harbouring GWAS signals for 

MS. We prioritize IL-2RA as one of the most significant key genes for MS, but IL-2RA is also 

a key gene for IBD, asthma, CeD, RA and white blood cells, consistent with the role of T 

cells in these diseases. For IBD, low-dose IL-2 has been shown to alleviate symptoms of 

DSS-induced colitis in mice, highlighting this pathway as a potentially viable therapeutic 

target 41. Additionally, a duplication found in the IL-2RA locus, causing excessive IL-2 

signalling, may predispose carriers to early-onset colitis 42. 

Among the key genes identified for IBD (Fig. 2F), there are several known drug targets. 

Some targets were already identified through GWAS (e.g. TNF, JAK2 and PRKCB). Others 

are located outside the GWAS loci, including ITGB7, which is one of the targets of 

Vedolizumab 43; JAK3, which is targeted by JAK inhibitors 44 and S1PR4 which is targeted by 

Amiselimod 45. Additionally, RGS1 has been proposed to be a druggable target that protects 

against colitis when downregulated 46–48. While RGS1 has been associated to CeD 49 and 

MS 50, its loci were not identified by the IBD GWAS. 

Similarly, for schizophrenia, we identify key genes within GWAS loci that are targeted 

by schizophrenia drugs (RM3, GRIA1 and GRIN2A), as well as key genes located outside of 

the GWAS loci that are established drug targets or being tested as drug targets. These 

include HTR1A, which is target of aripiprazole 51; HTR5A and HTR1E, which are both 

targeted by amisulpride 52 and GRIA2 and GRIA3, which are both targets of topiramate 53 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 27, 2021. ; https://doi.org/10.1101/2021.10.21.21265342doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.21.21265342
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 27, 2021. ; https://doi.org/10.1101/2021.10.21.21265342doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.21.21265342
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

 

Fig. 2 A) Number of key genes detected for each GWAS tested. B) Pearson correlations between the gene z-

scores after correction for the mean signal (lower triangle) and the key gene scores (upper triangle). Correlations 

were calculated using all protein-coding genes (including non-significant ones). C) Boxplots showing key gene 

scores in relation to the independent significant top SNPs from the GWAS. D) The gene regulatory network for 

prostate cancer. The network shows how prostate cancer GWAS genes and key genes are interconnected. Grey 

nodes represent GWAS genes. Red nodes indicate key genes. A key gene may also be located in a GWAS 

locus. Only positive co-regulation relationships with a z-score >4 are drawn as an edge in the network. E) As D, 

but showing the network for the GWAS and key genes for glomerular filtration rate. F) As D, but showing the 

network for the GWAS and key genes for inflammatory bowel disease. 

Key genes can be depleted or enriched for cis-eQTL effects 

It has been observed in blood that genes without a detectable cis-eQTL effect are more 

intolerant to loss-of-function mutations 7. This is possibly explained by more extensive 

buffering of regulatory effects on these important genes  54. This has implications for the use  

of cis-eQTLs to identify disease-relevant genes. Here, we assessed whether key genes 

have fewer cis-eQTL effects than expected by chance. We did not observe consistent 

depletion of cis-eQTL. When testing 28 traits for which Downstreamer predicted at least 10 

key genes, using blood-based cis-eQTLs from the eQTLgen consortium (Fig. 3A), we found 

Bonferroni significant enrichments for five traits (IBD and four different white blood cell count 

measurements, ORs: 2.36 – 2.93, p-values: 1.31×10-3 – 2.45×10-7). Two traits were 

significantly depleted for blood cis-eQTLs: C-reactive protein levels (OR: 0.19, p-value: 

4.68×10-4) and BMI (OR: 0.47, p-value: 1.19×10-3) (Fig. 3A). When using brain-based cis-

QTLs from the MetaBrain project 55, we found three traits for which the key genes are 

significantly depleted for being cis-eQTLs: educational attainment (OR: 0.69, p-value 

7.40×10-7), BMI (OR: 0.63, p-value 1.17×10-7), and schizophrenia (OR: 0.61, p-value 

4.54×10-8) (Fig. 3B), and observed no significant enrichment.  

Overlap between key genes and trans regulatory targets 

To investigate if the key genes result from trans regulation originating in the GWAS loci, 

we assessed if there was a correlation between the key gene scores and trans-eQTL effects 

from the eQTLgen consortium 7. To do so, for each gene, we summed the squared z-scores 

of trans-eQTL effects from the independent top hits for each GWAS. This results in a chi-

square score for each gene that depicts to what extent the top GWAS variants of a trait 

affect the expression of those genes. We then correlated these scores with key gene scores.  

We found a significant association between the Downstreamer key gene scores and chi-

square statistics of the eQTL effects for 24 of the 44 traits (Bonferroni-adjusted P≤0.05, Fig. 

3C). Not surprisingly, the strongest associations were for the GWASs representing blood cell 

traits and auto-immune diseases. Interestingly, three non-blood traits – height, BMI and GFR 
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– displayed significant negative correlations, which suggests the unsuitability of blood trans-

eQTLs for interpreting non-blood traits, likely due to low expression of the relevant genes in 

blood 7. 

Since trans-eQTL effects are typically small and current datasets are only powered to 

detect a fraction of these effects 7, the eQTLGen consortium correlated the polygenic scores 

for a diverse set of traits to gene expression levels. The genes with significantly lower or 

higher expression depending on the polygenic scores of the individuals (so-called eQTS 

genes) were prioritized as relevant for the trait. We observed that eQTS genes had higher 

key gene scores for three traits (T-test p-values, IBD: 1.8×10-3, CeD: 8.3×10-5 and asthma: 

8.5×10-3), suggesting that key genes are more likely to be influenced by converging trans-

eQTL effects (Fig. 3D). 

We identified two genes that were both key genes and eQTS genes for asthma: RELB 

and CST7. RELB is a member of the NF-κB family of transcription factors that activate the 

non-canonical NF-κB pathway 56 and has been linked defects in T and B cell maturation, 

leading to combined immunodeficiency and auto-immune responses 57. CST7 has been 

described as a critical factor in maintaining eosinophile function 58, and eosinophiles are 

known to be one of the key cell types in asthma 59. 
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Fig. 3 A) Enrichment of cis-eQTL genes and key genes. Cis eQTL genes are genes that have a significant cis 

eQTL effect in eQTLgen. * Indicates Bonferroni-adjusted p-values < 5e-2 corrected for 28 tests. B) As A, but 

using MetaBrain cis eQTLs. C) Pearson correlation coefficients between key gene scores and the sum chi 

square statistics (see Methods) of the trans eQTL effects from significant independent GWAS SNPs. * Indicates 

Bonferroni-adjusted p-values < 5e-2 corrected for 44 tests. D) Key gene scores for genes found to be in eQTS in 

the eQTLgen consortium for CeD, IBD and asthma. Nominal p-values of a t-test between the eQTS and non-

eQTS groups are indicated. * Indicates Bonferroni-adjusted p-values < 5e-2 corrected for 11 tests.  

Key genes tend to be highly expressed in relevant tissues and cell types 

As GWASs in the same class tended to show enrichment in the same cell types 

(Data S1, Fig. S7) and shared key genes, we next tested if key genes were highly expressed 

in the cell types relevant for the corresponding trait. To determine the tissue specificity of 

each gene for a given tissue, we calculated a statistic for how highly a gene is expressed in 

that tissue by subtracting the mean expression of the samples of that tissue from the mean 

of all other samples in our dataset. This revealed significant association between the key 

gene scores and the expression level of genes in seemingly relevant tissues (Fig. 4, Fig. S8, 

Fig. S9, Fig. S10), highlighting that the key genes tend to be highly expressed in the cell 

types where the GWAS is most enriched. 

For example, several key genes for prostate cancer, such as KLK3 (coding for the 

prostate-specific antigen), are highly expressed in prostate (Fig. 4). However, we also 

identified key genes for prostate cancer, such as GPRS158, that showed average 

expression in prostate but were much more highly expressed in other tissues such as 

muscle. Additionally, we also observed genes that were highly expressed in the prostate that 

were not key genes, such as NKX3-1. We saw similar examples for GFR and IBD (Fig. S9, 

Fig. S10). This indicates that the key gene prioritizations are in all likelihood not purely 

driven by tissue specific expression. 
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Fig. 4 Scatterplot showing the specificity of expression of a gene in prostate (x-axis) versus the key gene z-score 

of prostate cancer (y-axis). The Pearson correlation is 0.2 (p-value: 4.9×10-180). Specificity of expression was 

determined by taking the mean in prostate samples and subtracting the mean from all other annotated samples 

in the dataset. The three panels show the expression of the highlighted genes, revealing that some key genes 

are specifically expressed in prostate but there are also key genes that are not prostate-specific and, vice-versa, 

there are prostate-specific genes that are not predicted to be key genes.  
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Key genes are more often constrained 

We next reasoned that if key genes are essential to fundamental biological processes, 

they would be more likely to be more evolutionarily constrained. We therefore compared the 

key gene scores to the MiS and LoF z-scores from gnomAD  60. These z-scores describe the 

tolerance level of a gene to MiS or LoF variants. The higher the score, the less tolerant the 

gene is to these types of variants. We observed significant association between the key 

gene scores and the MiS (Pearson R: 0.12, p-value: 3.7×10-57) and LoF (Pearson R: 0.13, p-

value: 1.4×10-7) z-scores (Fig. S11). Compared to the key genes, genes that map within 

GWAS loci had a lower LoF association (Pearson R: 0.07, p-value: 1.2×10-05), but similar 

association with MiS (Pearson R: 0.12, p-value: 1.3×10-12). Next, we evaluated if this 

association was driven by genes that have more connections in the gene network (i.e. 

whether a gene is a ‘hub’ gene or not), as we observed that the number of connections a 

gene has in the network is associated to the key gene score (Fig. S13). After correcting for 

the number of connections a gene has, the associations for MiS and LoF remained, but were 

reduced (Pearson R: 0.07, 0.08, p-value 6.31×10-21 and 3.9×10-24, respectively). Together, 

these results suggest that key genes tend to be evolutionarily constrained and are especially 

intolerant to LoF variants compared to the PASCAL gene p-values. 

Key genes are enriched for Mendelian genes for related phenotypes 

Genes in GWAS loci are known to be enriched for causing Mendelian diseases 3. We 

observe that these enrichments of Mendelian disease genes are even stronger for the key 

genes that we prioritize. For example, we identified 398 Bonferroni-significant key genes for 

height and 90 (22.6%) of those are Mendelian disease genes causing “Abnormality of the 

skeletal system” (p-value: 5.18×10-9, OR: 2.13, Data S4). This enrichment is stronger than for 

genes in the GWAS loci, where 319 of the 1,951 (16.4%) genes are annotated to cause 

“Abnormality of the skeletal system” (p-value: 7.86×10-9, OR: 1.47, Data S2). Even when only 

considering the closest gene near the lead height GWAS hits, the enrichment of key-genes 

remains stronger (p-value: 7.02×10-12, OR: 1.85, Data S3) 

The most significant enrichment for height key genes is for “Abnormal lower limb bone 

morphology”: 43 key genes are annotated to this HPO term (p-value: 6.86×10-15, OR: 4.71). 

When also considering phenotypes based on mouse orthologs, we found 78 that are 

associated to growth and 128 that are pre- or post-natal lethal. In total, we can hereby 

explain 171 of the 398 (43%) associated height genes (Fig. 5A). These key genes are 

enriched for various pathways (Fig. 5B) including ‘Collagen fibril organisation’, ‘Embryonic 

digit morphogenesis’ and ‘Extracellular matrix organisation’. 
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Among the Bonferroni-significant key genes for height are 9 of the 21 known Ehlers-

Danlos genes (Fig. 5C, D). When using a less stringent FDR of 5%, we predict 17 out of the 

21 Ehlers-Danlos genes to be key genes for height. Ehlers-Danlos syndromes are disorders 

of the connective tissues that often result in skeletal malformities 61. These syndromes are 

caused by defects in, or related to, the collagen formation needed for the extracellular 

matrix. This is in line with the pathway enrichments of the height key genes and earlier 

findings 62.  

Three genes with a Bonferroni significant gene p-value for IBD (SKIV2L, NOD2, RTEL1) 

overlapped with the 36 HPO-annotated colitis genes (OR: 4.87, p-value: 2.8×10-2). The 

enrichment for colitis genes improved when assessing the key genes, which increased the 

overlap to six genes (IL10RA, RASGRP1, NCF4, TNFAIP3, FASLG, ZAP70; OR: 11.46, p-

value: 3.3×10-5).  IL10RA, RASGRP1, NCF4 and ZAP70 were all located further than 250kb 

from an independent GWAS hit in the GWAS used, meaning that these genes would not 

have been identified by overlapping IBD GWAS loci with known Mendelian genes. Other 

phenotypes that were significantly enriched among the key genes for IBD included those 

related to recurrent (fungal) infections and various phenotypes relating to immune function. 

Enriched mouse phenotypes included many related to T and B cell function and abundance 

(Data S1).  

We matched each of the 44 GWAS traits to a best-fitting HPO term based on the 

phenotypic descriptions (Table S3). We observed that 22% of the identified key genes are 

linked to rare diseases that cause related phenotypes (Fig. 6A, Table S4). We found that the 

key genes for 18 of the 44 traits are significantly enriched (adjusted for 44 tests) for related 

rare disease genes (Fig. 6B; p-values: 2.98×10-4 to 4.91×10-29, OR: 1.79 to 71.83). Another 

eight traits showed nominally significant overlap between key genes and related rare 

disease genes. For the 18 traits without significant overlap, we found between 0 and 20 key 

genes, indicating that our power for these traits was limited (Fig. 6D). The only exception to 

this was the GWAS for c-reactive protein levels, for which we found 148 key genes but only 

6 genes were linked to its HPO term. Despite the limited power for these 18 traits, 9 traits 

had significantly larger key gene scores for the HPO-associated genes (U-test p-values: 

8.73×10-12 to 8.28×10-4), indicating that the key gene scores still have some predictive power 

for detecting rare disease genes (Fig. 6C).  
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Fig. 5 A) 43% of height key genes are known to result in growth abnormalities in either humans or mice, 

indicating that these key genes are important genes for height. B) The height key genes are enriched with 

different, only partly overlapping, pathways, indicating that the key genes are part of multiple biological 

processes. C) Nine of the height key genes are known to cause Ehlers-Danlos syndromes, which involve 

abnormalities of the skeletal system. Most of these are annotated to the GO pathways for “Extracellular matrix 

organization” and “Collagen fibril organization”. It may be that the key genes that we now link to height and that 

are part of the collagen or extracellular matrix pathways also contribute to Ehlers-Danlos syndromes. D) The 

Ehlers-Danlos genes are co-expressed with many height GWAS loci genes. 
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Fig. 6 A) Overview of the overlap between key genes, the genes for the 44 HPO terms we matched to their 

respective GWAS and the Bonferroni-significant genes identified by PASCAL. B) Comparison between the odds 

ratios of the HPO enrichment done using key genes and Bonferroni-significant GWAS genes identified by 

PASCAL. Each dot represents the HPO term matched to that GWAS. 95% confidence intervals of the odds ratios 

are represented. C) As in B but showing the AUC values calculated using the entire key gene z-score or GWAS 

gene p-value vector for all protein-coding genes. D) Association between the AUC values and the number of 

genome-wide significant hits for each GWAS. 

Discussion 

In this work, we present Downstreamer, a method that integrates gene co-regulation 

with GWAS summary statistics to prioritize genes central in the respective trait’s network. 

We applied Downstreamer to 44 GWAS studies and prioritized genes that are not directly 

implicated by GWAS, yet are good candidates based on pathway annotation and their 

involvement in Mendelian diseases. Some of the genes showed evidence of being directly 

regulated by trans-acting genetic factors. The key genes are enriched for being 

evolutionarily constrained, indicating they more often have crucial biological functions. These 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 27, 2021. ; https://doi.org/10.1101/2021.10.21.21265342doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.21.21265342
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

 

findings suggest that the small effects of GWAS-associated variants ultimately converge on 

key disease genes. 

We observed that the gene prioritization scores of related traits are often correlated 

(Fig. 2B). To some extent this is expected given the known shared genetic signature of, for 

instance, auto-immune disorders. It could also potentially indicate that the gene 

prioritizations are confounded by cell type–specific expression levels. Indeed, we found the 

genes prioritized for a trait to be more abundantly expressed in the samples that best match 

that trait (Fig. 4, Fig. S8). However, this was not the sole driver of our key gene prioritization. 

We also found several examples of key genes that are not specifically expressed in the 

relevant tissues, as well as genes with very low key genes scores that show similar tissue-

specific expression to the key genes. For instance, GPR157 is predicted to be a key gene 

for prostate cancer, but it is highly expressed in many tissues (Fig. 4, Fig. S9, Fig. S10). 

Additionally, high expression of key genes in the disease-relevant tissue is to be expected 

because rare disease genes are also highly expressed in the tissue relevant to those 

diseases 63.  

We recently also applied a pre-release version of Downstreamer to several 

neurodegenerative diseases, while using a comprehensive brain-specific gene co-regulation 

network of the MetaBrain project. This revealed that the signal of underrepresented cell 

types and tissues can be overshadowed by more abundant tissues in our expression data 55. 

This might be especially relevant for diseases in which uncommon or rare cell types are 

instrumental to disease pathophysiology, such as gluten-specific T cells in CeD 64. We 

therefore expect that key gene prioritizations can benefit from creating tissue- or even cell 

type–specific gene regulatory networks, should enough samples be available for the relevant 

tissue or cell type to accurately calculate co-expression. The future generation and inclusion 

of single-cell RNA-seq data should also be able to solve the issues regarding confounding 

by cell-type composition. 

We observe that genes with cis-eQTL effects in blood are enriched for being key genes 

for blood traits. For instance, for IBD the key genes are more likely to be blood eQTLs than 

is expected by chance (Fig. 3A). A similar enrichment is seen at nominal significance levels 

for rheumatoid arthritis and asthma. Different results were found when using brain-derived 

cis-eQTLs. Using MetaBrain eQTLs, we found a depletion of cis-eQTL genes among the key 

genes of several brain related traits (Fig. 3B). This might indicate that genes that are 

important for the brain are more tightly controlled and are therefore not as easily affected by 

eQTL effects compared to important immune genes. 
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When comparing our prioritized genes to the results of a large blood-based trans-eQTL 

and eQTS analysis, we found an overlap in identified genes (Fig. 3C). As expected, this 

primarily holds for traits manifesting in blood, such as immune disorders and blood cell 

proportions. This confirms that a portion of the genes identified by Downstreamer are 

modulated by disease-associated variants in trans. We suspect four main causes for why 

there are key genes for which we cannot confirm trans regulation using blood-based trans-

eQTLs or eQTSs: 1) the gene is not expressed in blood or the regulation is not present in 

blood, 2) the effects of genetic variants that only act in rarer blood cell types that are diluted 

by the expression levels in the more common cell types 65, 3) some trait-associated eQTLs 

depend on specific environmental stimuli 66, which can hinder the ability of population cohort 

studies to identify the regulatory consequences of disease-associated variants, and 4) 

Downstreamer works by integrating the many small effects originating from many different 

loci. Individually these effects might be too weak to currently be detected as trans-eQTL 

effects. We therefore conclude that co-expression-based methods such as Downstreamer 

are complementary to existing studies that link disease-associated variants to gene profiles. 

One assumption we make when calculating the gene p-values is that the genes within 

25kb of a GWAS signal are affected by the GWAS variants, but this might not the case for all 

genes. However, recent work has suggested that except for integrating epigenetic and HiC 

contact data, the next best predictor of causality is the closest gene to the top of the GWAS 

signal and this approach outperforms eQTL-based approaches 67. We therefore decided not 

to integrate any prior eQTL information when calculating gene p-values, as this would often 

lead to incorrect prioritizations. In addition, the genes affected by GWAS variants are also 

likely to be tissue-specific, further complicating the prioritizations, and we would need 

extensive prior information to select the correct eQTLs or epigenetic information. This 

presents an area where major improvements could be made in future, when more accurate 

and systematic predictions can be made about which genes are regulated by GWAS 

variants in cis. 

Our findings are in line with the infinitesimal model 68 that postulates that a quantitative 

trait or complex genetic disease can result from an infinite number of variants, each exerting 

an infinitely small effect size. An extension of the infinitesimal model is the omnigenic model 
17, which predicts that all genes that are expressed in the relevant tissue or cell type will 

have a non-zero effect on disease outcome. The omnigenic model also postulates the 

existence of core genes that are pivotal in the development of a disease or trait. These core 

genes are expected to be enriched for genes that are involved in rare Mendelian diseases. 

The fact that key genes tend to be highly expressed in the relevant tissues for a trait, 
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together with the enrichments of rare disease genes among the key genes, fits the 

regulatory pattern hypothesized in the omnigenic model. Hence, (some proportion of) the 

key genes we predict using Downstreamer could be the core genes described in the 

omnigenic model. 

There is an important implication of the enrichment of key genes among known 

Mendelian disease genes for rare disease diagnostics. On average, a genetic cause is 

currently identified for only 30% of the patients with a suspected rare disease 69. One of the 

reasons for this low diagnostic yield is that if a rare variant is found in a gene with an 

unknown function, it is difficult to determine if this variant could be causative for a patient’s 

phenotype. We expect that in the future approaches like ours could be used to leverage the 

key genes of common diseases and traits to prioritize candidate rare disease genes in a 

manner similar to what we did previously using GADO 24. 

In summary, we present Downstreamer, a method that integrates multi-tissue gene 

regulatory networks with GWAS summary statistics to prioritize key genes central in the 

gene network. These key genes were enriched for Mendelian variants that cause related 

phenotypes, highlighting that GWAS signals partially converge on Mendelian disease genes. 

While gaps remain in our understanding of the trans regulatory architecture of GWAS traits 

and diseases, assessing the genes most central in their respective regulatory network 

presents a promising way forward for interpreting both complex and rare disease genetics.  
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Methods 

GWAS summary statistics 

We downloaded the publicly available summary statistics from either the GWAS 

catalogue 70 or supplementary data files. A full list of the summary statistics used is available 

as Table S1. Downstreamer requires rs identifiers (RsId) of the variants as well as the p-

values. These were extracted from the summary statistic files, and any duplicate variants or 

variants without a RsId were removed. Where needed, summary statistics were lifted to build 

37 and the RsIds matched on position and allele to 1000 Genomes phase 3 EUR for all 

variants with a minor allele frequency (MAF) > 0.05 71.  

Pathway databases 

We used the following pathway and gene-set databases: Reactome72, KEGG73 and 

GO74 (downloaded July 18, 2020), HPO75 (filtered version as in 76) and MGI (downloaded 

October 20, 2020) 77.  

For the pathway enrichments below in step 2.2, we first expanded the known 

pathway annotations using the pathway predictions algorithm described in 76. We expanded 

the pathway annotations with all genes with a Bonferroni-significant prediction of a pathway. 

Using the DEPICT algorithm, we have already shown that using predicted pathway 

annotations improves pathway enrichments 8. Therefore, we used these expanded pathways 

when associating pathways to traits using Downstreamer.  

Overview of Downstreamer methodology 

In short, Downstreamer associates a gene-level prioritization score (GWAS gene z-

scores) to a gene–gene co-regulation matrix to find genes that have many connections (at 

the expression level) to genes inside GWAS loci (core genes). In addition, Downstreamer 

can identify pathway enrichments by switching the co-regulation matrix for pathway 

annotations. Downstreamer implements a strategy that can perform these associations while 

accounting for LD structure and chromosomal organization. Downstreamer operates in two 

steps. In the first step, the GWAS gene z-scores are calculated for the GWAS trait and a null 

distribution. In the second step, the GWAS gene z-scores are associated with either the co-

regulation matrix or the pathway annotations. Details of these steps are outlined in the 

sections below.  
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Downstreamer step 1.1. Calculation of GWAS gene z-scores 

The first step in Downstreamer is to convert GWAS summary statistics from p-values 

per variant to an aggregate p-value per gene while accounting for local LD structure (1000 

Genomes phase 3 EUR). This p-value is then converted to a gene z-score. This aggregate 

gene-level z-score represents the GWAS signal potentially attributable to that gene.  

This was done as follows. First, we applied genomic control to correct for inflation in the 

GWAS signal. We then integrated the procedure from the PASCAL method into 

Downstreamer so that we can aggregate variant p-values into a gene p-value while 

accounting for the LD structure 9. We aggregated all variants within a 25kb window around 

the start and end of a gene using the non-Finnish European samples of the 1000 Genomes 

(1000G) project, Phase 3 to calculate LD 71. We calculated GWAS gene p-values for all 

20,327 protein-coding genes (Ensembl release v75).  

Downstreamer step 1.2. Null GWAS to account for chromosomal organization of genes and 

empirical p-value calculations. 

To account for the longer-range effects of haplotype structure, which result in genes 

having a similar GWAS gene z-score, we use a GLS regression model for all regressions 

done in Downstreamer. The GLS model takes a correlation matrix that models this gene–

gene correlation.  

To calculate this correlation matrix, we first simulated 10,000 random phenotypes by 

drawing phenotypes from a normal distribution and then associating them to the genotypes 

of the 1000G Phase 3 non-Finnish European samples. Here, we only used the overlapping 

variants between the real traits and the permuted GWASs to avoid biases introduced by 

genotyping platforms or imputation. We then calculated the GWAS gene z-scores for each of 

the 10,000 simulated GWAS signals, as described above. Next, we calculated the Pearson 

correlations between the GWAS gene z-scores. As simulated GWAS signals are random 

and independent of each other, any remaining correlation between GWAS gene z-scores 

reflects the underlying LD patterns and chromosomal organization of genes.  

We simulated an additional 10,000 GWASs as described above to empirically 

determine enrichment p-values. Finally, we used an additional 100 simulations to estimate 

the false discovery rate (FDR) of Downstreamer associations. 
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Downstreamer step 1.3. Correction for additional variables and mean gene p-value 

calculation 

To facilitate the correction of additional parameters, variables can be provided which 

are used to correct the GWAS gene p-values before fitting the GLS (step 2.2). These are fit 

using a (multivariate) OLS model of which the residuals are taken and used as input for the 

subsequent steps. We used this option to additionally correct for gene length as well as the 

mean gene p-value over the 44 traits. The mean gene p-value was calculated by first 

calculating the mean of the traits in each of the 10 classes of GWAS traits for each gene. 

Then, for each gene, the mean over these 10 means was calculated in order to avoid having 

the overrepresented classes (blood cell composition) overshadow the calculation of the 

means.  

Downstreamer step 2.1. Pre-processing GWAS gene z-scores and pruning highly correlated 

genes 

For each GWAS, both real and simulated, we force-normalized the GWAS z-scores into 

a normal distribution to ensure that outliers will not have disproportionate weights. Due to 

limitations in the PASCAL methodology that result in ties at a minimum significance level of 

1x10-12 for highly significant genes, we use the minimum SNP p-value from the GWAS to 

identify the most significant gene and resolve the tie. We then use the linear model (step 

1.3) to correct for gene length, as longer genes will typically harbour more SNPs. 

Sometimes, two (or more) genes will be so close to one another that their GWAS gene 

z-scores are highly correlated, violating the assumptions of the linear model. Thus, genes 

with a Pearson correlation r ≥ 0.8 in the 10,000 GWAS permutations were collapsed into 

‘meta-genes’ and treated as one gene. Meta-gene z-scores were averaged across the input 

z-scores. Lastly, the GWAS z-scores of the meta genes were scaled (mean = 0, standard 

deviation = 1). 

Downstreamer step 2.2. GLS to calculate key gene scores and pathway enrichments 

We used a GLS regression to associate the GWAS gene z-scores with the gene co-

regulation z-scores or with the expanded pathway annotations. These two analyses result in 

the key gene prioritizations and pathway enrichments, respectively. We used the gene–gene 

correlation matrix derived from the 10,000 permutations as a measure of the conditional 

covariance of the error term (𝛀𝛀) in the GLS to account for the relationships between genes 

due to LD and proximity. The pseudo-inverse of 𝛀𝛀 is used as a substitute for 𝛀𝛀-1 

The formula of the GLS is as follows: 
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β=(XTΩ-1X)-1XTΩ-1y 

Where β is the estimated effect size of the pathway, term or gene from the co-regulation 

matrix; Ω is the gene-gene correlation matrix; X is the design matrix of real GWAS z-scores 

and y is the vector of gene z-scores per pathway, term or gene from the co-regulation 

matrix. As we standardized the predictors, we did not include an intercept in the design 

matrix and X only contains one column with the real GWAS gene z-scores. We estimated 

the betas for the 10,000 random GWASs in the same way and subsequently used them to 

estimate the empirical p-value for β. 

Downstreamer step 2.3. Pathway and gene set gene enrichments 

To identify pathway and disease enrichments, we used the following databases: HPO, 

KEGG, Reactome, MGI and GO Biological Process, Cellular Component and Molecular 

Function. We have previously predicted how much each gene contributes to these gene 

sets, resulting in a z-score per pathway or term per gene 24. We then used Bonferroni 

correction to determine if the gene should be added to the extended pathway membership. 

Next, we collapsed genes into meta-genes, in parallel with the GWAS step, to ensure 

compatibility with the GWAS gene z-scores, following the same procedure as in the GWAS 

pre-processing. The pathway memberships for a meta-gene were calculated as the sum of 

the membership divided by the square root of the number of genes. So, a meta-gene 

containing five genes, of which two are in a pathway, would get a value of 2 / √5 = 0.89 for 

that pathway. Finally, the pathway memberships of the meta-genes were scaled and centred 

(mean = 0, standard deviation = 1).  

Downstreamer step 2.4: Co-regulation matrix 

To calculate key gene scores, we used a previously generated co-regulation matrix 

based on a large multi-tissue gene network 24. In short, publicly available RNA-seq samples 

were downloaded from the European Nucleotide Archive (https://www.ebi.ac.uk/ena). After 

quality control, 56,435 genes and 31,499 samples covering a wide range of human cell-

types and tissues remained. We performed a principal component analysis on this dataset 

and selected the 165 principal components representing 50% of the variation that offered the 

best prediction of gene function 76. We then selected the protein-coding genes and centred 

and scaled the eigenvectors for these 165 components (mean = 0, standard deviation = 1) 

such that each component was given equal weight. The first components mostly describe 

tissue differences 24, so this normalization ensures that tissue-specific patterns do not 

disproportionately drive the co-regulation matrix. The co-regulation matrix is defined as the 
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Pearson correlation between the genes from the scaled eigenvector matrix. The diagonal of 

the co-regulation matrix was set to zero to avoid correlation with itself having a 

disproportionate effect on the association to the GWAS gene z-scores. Finally, we converted 

the Pearson r to z-scores. To associate the co-regulation to the gene z-scores, the same 

meta-gene procedure was applied as outlined for the pathway enrichments. 

Enrichment of key genes 

Enrichments of key genes among HPO/MGI/GO terms and KEGG gene sets was done 

by Fisher's exact test, taking all key genes at Bonferroni or FDR significance and comparing 

their overlap to all other genes. AUCs were calculated by dividing the Mann-Whitney U 

statistic of the key gene z-scores and gene set membership by the product of sample sizes. 

The gene-pathway/term definitions we used were those provided by the respective 

databases, thus they were not the extended versions used for the GWAS gene set 

enrichments. This is implemented in Downstreamer using –T PRIO_GENE_ENRICH. 

Enrichment of average gene z-scores and association with LD and gene density 

Enrichments of the top 500 average gene z-scores were done by first correcting the 

mean gene z-score vector (see step 1.3 for details on calculating this) for the extent of the 

LD around a gene as well as the gene density. To quantify the extent of the LD block, we 

took the mean of the LD scores of all SNPs in a 25kb window around the gene. Pre-

computed European LD scores were downloaded from https://github.com/bulik/ldsc. Gene 

density was calculated by counting the number of genes in a 500kb window around the start 

end of the gene. Both these factors were then fit in a linear model with the mean gene z-

score as the outcome. The residuals were taken and ranked to arrive at the top 500 genes. 

We then carried out overrepresentation analysis using 

https://toppgene.cchmc.org/enrichment.jsp with the default background set.    

Association with LoF and MiS intolerance 

MiS and LoF intolerance z-scores were downloaded from the gnomAD consortium 

(https://gnomad.broadinstitute.org/downloads > pLoF Metrics by Gene TSV v2.1.1). As an 

overall measure of the “keyness” of a gene, we calculated the maximum key gene z-score 

observed over the 44 traits for each gene. We then associated this to the MiS and LoF z-

scores from the gnomAD consortium by Pearson correlation.  
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Enrichment of cis-eQTL and key genes 

 Enrichments of cis-eQTL and key genes were calculated by fisher exact test, taking 

all the genes tested in eQTLgen or  MetaBrian respectively as the background set. A gene 

was considered to be a cis-eQTL gene if it had a significant association in eQTLgen or 

MetaBrain analyses respectively. 

Overlap with trans-eQTLs and eQTS genes 

To investigate their overlap with the key genes identified by Downstreamer, we 

downloaded the trans-eQTL and eQTS results from the eQTLGen Consortium 

(www.eqtlgen.org). For each GWAS, we selected all trans-eQTLs that emanate from 

independent top SNPs (1000 Genomes phase 3 EUR, r2 0.2, 500kb window) and calculated 

the sum of trans-eQTL squared z-scores for each gene. We then log-transformed this and 

associated it to the key gene z-score for the GWAS using Pearson correlation.  

For the overlap with eQTS genes, we selected eQTSs for which we had overlapping 

GWAS traits. We then evaluated if the eQTS genes had a higher key gene z-score 

compared to all other genes using a Student’s T-test.  

Code and data availability 

Software and scripts are available for download at: 

https://github.com/molgenis/systemsgenetics/tree/master/Downstreamer 

A manual for Downstreamer is available at: 

https://github.com/molgenis/systemsgenetics/wiki/Downstreamer 

All RNA-seq data used in the main analysis are publicly available in the European 

Nucleotide Archive, for details please see 24.  
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Note S2. Tissue- and cell type–enrichments 
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Fig. S1. Association between gene z-score profiles of different traits 

 

A) Pearson correlations between gene z-scores reveal that most pairwise correlations between traits are positive. 

B) Mean correlation in gene z-scores with all other GWASs (y-axis) versus the number of independent genome-

wide significant hits for the respective GWAS. 
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Fig. S2. Association between average gene z-score and LD and gene density  

 

A) Association between average gene z-score (y-axis) and the number of genes within a ±500kb window (x-

axis). B) As in (A), but x-axis indicates the log2 of the average LD score of SNPs located ±25kb around the start 

and end of a gene. The adjusted R2 of the model associating the average gene z-score and these two 

parameters as the independent variables is 0.298 p-value <1e-16. 
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Fig. S3. Enrichment of missense and loss of function intolerance in the average 
gene z-score 

 

A) Association between average gene z-score (x-axis) and the missense intolerance z-scores from the gnomAD 

consortium (y-axis). B) As in (A), but the y-axis indicated the z-score for loss of function intolerance. Pearson 

correlation coefficients indicated. 
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Fig. S4. Relationship between number of samples used for a GWAS and the power 
to detect key genes 

 

A) Association between the detected number of key genes for each GWAS (y-axis) and the sample size of that 

GWAS (x-axis). B) As in (A), but the x-axis shows the number of independent genome-wide significant hits as 

determined by clumping using a LD R2 threshold of 0.2 in a 250kb window. 
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Fig. S5. Sharing among the key genes 

 

A) Percentage of all detected key genes (y-axis) versus the number of classes in which the key gene was 

detected. B) Network plot showing the sharing of key genes (Bonferroni significant). Edges represent the 

percentage of sharing calculated on the smaller of the pair. Nodes represent a GWAS trait. Traits without 

predicted key genes or traits that show no overlap are omitted in this panel. 
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Fig. S6. Comparison of pathway enrichment results before and after extending 
pathway definitions using a gene regulatory network 

 

Comparisons of Downstreamer association -log10(p-values) for the pathway databases GO BP, GO MF, GO CC 

and KEGG before extending the pathway memberships (x-axis) and after extending the pathway memberships. 

A–D) indicate the comparison for CeD. E–H) indicate the comparison for inflammatory bowel disease. I–L) 

indicate the results for height. Colours indicate significance: bright green significant in extended set only, blue 

green significant in annotated set only, purple significant in both, blue significant in neither.  
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Fig. S7. Sample enrichment per plots per traits 

Provided separately 

The first plot is an UMAP coloured using the annotations of the 31,499 RNA-seq samples used. The right panel is 

a zoom-in of the marked region to better reveal the differences of the primary tissues. The plots on the other 

pages show the enrichment scores for each sample per GWAS. Only samples that pass the FDR 5% threshold 

are given a colour indicating enrichment or depletion. 
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Fig. S8. Correlations between tissue expression and key gene z-scores 

 

Correlation heatmap showing Pearson correlation coefficients between the key gene z-scores calculated by 

Downstreamer and the specificity of expression of a gene. Specificity of expression was determined by taking the 

mean in the query samples and subtracting the mean from all other annotated samples in the dataset. 
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Fig. S9. Relation between glomerular filtration rate key gene scores and expression levels 1 

 2 

Expression specificity of genes in kidney vs key gene scores of glomerular filtration rate. We highlight three genes to show that not all key genes are kidney-specific genes and 3 
that not all kidney-specific genes are predicted to be key genes.  4 
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Fig. S10. Relation between inflammatory bowel disease key gene scores and expression levels 5 

 6 

Expression specificity of genes in blood and immune cells vs key gene scores of inflammatory bowel disease. We highlight three genes to show that not all key genes are 7 
blood/immune specific genes and that not all blood and immune genes are predicted to be key genes.8 
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Fig. S11. Association between LoF and MiS scores and key gene z-scores  9 

 10 

Association between the maximum key gene score for a gene (x-axis) and the constraint metrics from the 11 
gnomAD consortium (y-axis). Pearson correlations are indicated above each panel. A) Association with the 12 
synonymous variant z-score. B) Association with the missense variant z-score. C) Association with the loss of 13 
function variant z-score.  14 
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Fig. S12. Association between LoF and MiS scores and GWAS gene p-value  15 

 16 

Association between the maximum GWAS gene p-value gene calculated by Pascal (x-axis) and the constraint 17 
metrics from the gnomAD consortium (y-axis). Pearson correlations are indicated above each panel. A) 18 
Association with the synonymous variant z-score. B) Association with the missense variant z-score. C) 19 
Association with the loss of function variant z-score.  20 
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Fig. S13. Association between degree and key gene z-scores 21 

 22 

A) Association between the degree of a gene in the gene network (y-axis; degree indicates the number of 23 
connections at a z-score threshold of 1.6) and the maximum key gene score a gene obtained (x-axis). B) As in 24 
(A), but x-axis indicates the maximum GWAS gene p-value calculated by Pascal. Pearson correlations are 25 
indicated above each panel.   26 
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Fig. S14. Association between LoF and MiS scores and key gene z-scores after 27 

correction for the degree 28 

 29 

Association between the maximum key gene score a gene obtained after linearly correcting the key gene scores 30 
for the degree in the gene network (x-axis; degree indicates the number of connections at a z-score threshold of 31 
1.6) and the constraint metrics from the gnomAD consortium (y-axis). Pearson correlations are indicated above 32 
each panel. A) Association with the synonymous variant z-score. B) Association with the missense variant z-33 
score. C) Association with the loss of function variant z-score.  34 
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Fig. S15. Sharing between GWASs among pathway enrichments for GO biological 35 

process 36 

 37 

Network plot showing Bonferroni-significant pathways (grey dots). Connections with the respective GWAS are 38 
indicated by an edge. Colours indicate the class of GWAS trait. Clusters formed with white blood cells and 39 
immune diseases, hematopoietic factors, lipid levels and psychological traits 40 

  41 
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Table S1. List of the 44 complex traits and diseases to which we applied 42 

Downstreamer 43 

GWAS Trait Number of samples Class Pubmed ID 

Body mass index 693529 metabolic 30124842 

Height 681275 skeletal 30124842 

Inflammatory bowel disease 59957 immune 28067908 

Coeliac disease 24269 immune 22057235 

Diastolic blood pressure 757601 cardiovascular 30224653 

Systolic blood pressure 757601 cardiovascular 30224653 

Pulse pressure 757601 cardiovascular 30224653 

Coronary artery disease 296525 cardiovascular 29212778 

Glomerular filtration rate 567460 kidney function 31152163 

Rheumatoid arthritis 80799 immune 24390342 

Heel bone mineral density 394929 skeletal 30048462 

Breast cancer 139274 cancer 29059683 

Asthma 521528 immune 32296059 

Multiple sclerosis 109879 immune 31604244 

Major depressive disorder 480359 psychological 29700475 

Schizophrenia 105318 psychological 29483656 

Parkinsons disease 482730 neurodegenerative 31701892 

HDL cholesterol 94674 metabolic 29507422 

LDL cholesterol 94674 metabolic 29507422 

Total cholesterol 94674 metabolic 29507422 

Triglycerides 94674 metabolic 29507422 

Prostate cancer 140254 cancer 29892016 

Basophils 408112 blood composition 32888494 

Eosinophils 408112 blood composition 32888494 

Hematocrit 408112 blood composition 32888494 

Hemoglobin 408112 blood composition 32888494 

Lymphocytes 408112 blood composition 32888494 
Mean corpuscular hemoglobin 
concentration 408112 blood composition 32888494 

Mean corpuscular hemoglobin 408112 blood composition 32888494 

Mean corpuscular volume 408112 blood composition 32888494 

Monocytes 408112 blood composition 32888494 

Mean platelet volume 408112 blood composition 32888494 

Neutrophils 408112 blood composition 32888494 

Platelets 408112 blood composition 32888494 

Red blood cells 408112 blood composition 32888494 

Red cell distribution width 408112 blood composition 32888494 

White blood cells 408112 blood composition 32888494 

Type 1 diabetes 29652 immune 25751624 

Type 2 diabetes 298957 metabolic 29632382 
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C-reactive protein 418642 NA 31900758 

Educational attainment 1131881 psychological 30038396 

Amyotrophic lateral sclerosis 80610 neurodegenerative 29566793 

Colorectal cancer 387318 cancer 30104761 

Endometrial cancer 121885 cancer 30093612 

Table S2. Enrichment of top 500 genes from average GWAS signal 44 

Provided separately 45 

Table S3. Mapping of GWAS traits to HPO-terms 46 

GWAS Trait Related HPO term Related HPO ID 

Body mass index Abnormality of body mass index HP:0045081 

Height Abnormality of body height HP:0000002 

Inflammatory bowel disease Increased inflammatory response HP:0012649 

Coeliac disease Increased inflammatory response HP:0012649 

Diastolic blood pressure Abnormal systemic blood pressure HP:0030972 

Systolic blood pressure Abnormal systemic blood pressure HP:0030972 

Pulse pressure Abnormal systemic blood pressure HP:0030972 

Coronary artery disease Abnormality of the cardiovascular system HP:0001626 

Glomerular filtration rate Abnormal renal physiology HP:0012211 

Rheumatoid arthritis Increased inflammatory response HP:0012649 

Heel bone mineral density Abnormality of the skeletal system HP:0000924 

Breast cancer Neoplasm HP:0002664 

Asthma Increased inflammatory response HP:0012649 

Multiple sclerosis Increased inflammatory response HP:0012649 

Major depressive disorder Behavioral abnormality HP:0000708 

Schizophrenia Behavioral abnormality HP:0000708 

Parkinsons disease Involuntary movements  HP:0004305 

HDL cholesterol Abnormal HDL cholesterol concentration HP:0031888 

LDL cholesterol Abnormal LDL cholesterol concentration HP:0031886 

Total cholesterol Abnormal circulating cholesterol concentration HP:0003107 

Triglycerides Abnormal circulating cholesterol concentration HP:0003107 

Prostate cancer Neoplasm HP:0002664 

Basophils Abnormal basophil count HP:0031806 

Eosinophils Abnormal eosinophil count HP:0020064 

Hematocrit Abnormal hematocrit HP:0031850 

Hemoglobin Anemia HP:0001903 

Lymphocytes Abnormal lymphocyte count HP:0040088 
Mean corpuscular hemoglobin 
concentration 

Abnormal mean corpuscular hemoglobin 
concentration HP:0025546 

Mean corpuscular hemoglobin Abnormal hemoglobin HP:0011902 

Mean corpuscular volume Abnormal mean corpuscular volume  HP:0025065 

Monocytes Abnormal monocyte count  HP:0012310 
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Mean platelet volume Abnormal platelet volume  HP:0011876 

Neutrophils Abnormal neutrophil count HP:0011991 

Platelets Abnormal platelet count HP:0011873 

Red blood cells Abnormal erythrocyte morphology HP:0001877 

Red cell distribution width Abnormal erythrocyte morphology HP:0001877 

White blood cells Abnormal leukocyte count HP:0011893 

Type 1 diabetes Increased inflammatory response HP:0012649 

Type 2 diabetes Diabetes mellitus HP:0000819 

C-reactive protein Abnormal C-reactive protein level HP:0032436 

Educational attainment Neurodevelopmental abnormality HP:0012759 

Amyotrophic lateral sclerosis Motor neuron atrophy HP:0007373 

Colorectal cancer Neoplasm HP:0002664 

Endometrial cancer Neoplasm HP:0002664 

Table S4. Enrichment of GWAS genes and key genes per trait 47 

Provided separately 48 

Data S1. Key gene prediction and pathway enrichments of the 44 tested traits and 49 

diseases 50 

https://doi.org/10.6084/m9.figshare.16866193.v1  51 

Data S2. HPO enrichments of genes with significant PASCAL gene p-values 52 

https://doi.org/10.6084/m9.figshare.16866193.v1  53 

Data S3. HPO enrichments of genes closest to the GWAS lead variants 54 

https://doi.org/10.6084/m9.figshare.16866193.v1  55 

56 
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Data S4. HPO enrichments of key genes 57 

https://doi.org/10.6084/m9.figshare.16866193.v1  58 

Note S1. Pathway enrichments using co-regulation networks 59 

For most biological pathways, not all the participating genes are known because their 60 

identification relies on manual annotation and curation. To expand the gene memberships 61 

for pathways, we used our previously developed approach 76 to predict additional pathway 62 

members (Methods). We did this for pathways and gene sets from Reactome, the Kyoto 63 

encyclopaedia of genes and genomes (KEGG), gene ontology (GO), human phenotype 64 

ontology (HPO) and the mouse genome informatics phenotypes (MGI). Downstreamer then 65 

associated the GWAS gene p-value profile to the expanded pathway annotations. 66 

These pathway enrichments recapitulated previous findings, for example the roles of T 67 

cell receptor (TCR) and cytokine signalling in CeD 78,79 and the KEGG pathway representing 68 

T1D and asthma genes being significantly enriched for T1D and asthma, respectively (Data 69 

S1). However, we also observed new enrichments as a result of the increased statistical 70 

power of the predicted, as opposed to the directly annotated- pathway memberships (Fig. 71 

S6). For example, the GO biological processes for IL-2 regulation, T cell co-stimulation and 72 

cytokine production did not yield a significant enrichment for CeD when using the annotated 73 

databases, but did do so when we used the predicted annotations (Fig. S6A). We also 74 

observed a similar increase in power for certain pathways for height and IBD (Fig. S6E-L).  75 

Many of the 44 traits shared pathways. For example, the auto-immune diseases 76 

showed consistent enrichment for pathways related to TCR and B cell signalling (Fig. S15, 77 

Data S1). We also observed other clusters for traits relating to metabolism, red blood cells, 78 

white blood cells and the cardiovascular system (Fig. S15), highlighting that the genetic 79 

underpinnings of the traits within each cluster are partially impacting the same pathways.  80 

Note S2. Tissue- and cell type–enrichments 81 

Next, we associated the gene z-score profile of each GWAS to the expression profile of 82 

each of the 31,499 tissue and cell-line samples. This gave us an empirical way to estimate 83 

which tissues and cell types are likely to be relevant for a given GWAS trait at the mRNA 84 

level. Here we observed clear enrichments for relevant tissues. For example, IBD genes are 85 

strongly enriched for being expressed in immune and intestinal cells, while genes related to 86 

BMI, educational attainment and cholesterol levels were enriched in brain and liver (Fig. S7). 87 

The same patterns were also observed when assessing the average expression of genes in 88 
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GTEx and the human cell atlas (Data S1). These findings recapitulate observations that 89 

these GWAS loci are enriched in epigenetic marks11,12 and mRNA levels80. 90 
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