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ABSTRACT2

It has been established that smell and taste loss are frequent symptoms during COVID-19 onset.3
Most evidence stems from medical exams or self-reports. The latter is particularly confounded by4
the common confusion of smell and taste. Here, we tested whether practical smelling and tasting5
with household items can be used to assess smell and taste loss. We conducted an online survey6
and asked participants to use common household items to perform a smell and taste test. We7
also acquired generic information on demographics, health issues including COVID-19 diagnosis,8
and current symptoms. We developed several machine learning models to predict COVID-199
diagnosis. We found that the random forest classifier consistently performed better than other10
models like support vector machines or logistic regression. The smell and taste perception of11
self-administered household items were statistically different for COVID-19 positive and negative12
participants. The most frequently selected items that also discriminated between COVID-1913
positive and negative participants were clove, coriander seeds, and coffee for smell and salt,14
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lemon juice, and chillies for taste. Our study shows that the results of smelling and tasting15
household items can be used to predict COVID-19 illness and highlight the potential of a simple16
home-test to help identify the infection and prevent the spread.17

Keywords— self-administered test, machine learning, COVID-19, taste, smell, anosmia and18
disgeusia.19

1 INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) commonly known as COVID-19, has20
perhaps been one of the most catastrophic pandemics. In India, the first case was reported in January 202021
[Andrews et al., 2020]. Due to high transmission rates among humans [Ke et al., 2020], it has infected22
more than 33 million people (according to the latest update available on Sep 8th, 2021) and caused the23
casualties of more than 0.4 million in India [Worldometers, 2021]. The major challenges that have been24
posed by COVID-19 are the unspecificity of most symptoms [Gerkin et al., 2021] and the scarcity of25
facilities permitting mass testing for the SARS-CoV-2 virus [Momtazmanesh et al., 2020, Altayb et al.,26
2020], which is essential to identify infections and reduce the fatality rate [Rong et al., 2020, Czeisler et al.,27
2020], especially in developing countries. Hence, there is a need to incorporate other methods to alleviate28
the load on the existing approaches.29

In line with the recent trends in medicine [Sajda, 2006], several studies used machine learning models to30
predict the diagnosis of COVID-19. These models have been trained using features like images of CT scan31
and X-ray [Owais et al., 2021, Wang et al., 2021], clinical features [Zoabi et al., 2021, Menni et al., 2020],32
routine laboratory tests [Feng et al., 2021], demographic as well as symptomatic information [Zoabi et al.,33
2021] or a combination of these features [Mei et al., 2020]. It has been observed that loss of smell and34
taste in the majority of COVID-19 infected individuals, appear before other symptoms [Samaranayake35
et al., 2020]. Lechien et al. [2020a] found that more than 80% out of 417 confirmed COVID-19 patients36
had reported olfactory dysfunction. Makaronidis et al. [2020] analyzed the number of people who had37
developed COVID-19 antibodies out of 567 participants from London with a newly developed loss in38
their sense of smell or taste. Around three fourth (78%) of people with smell and taste loss were found to39
have COVID-19 antibodies. Out of these, 40% of the people had neither cough nor fever. The participants40
with the loss of smell were 3 times more likely to have COVID-19 antibodies, compared with those41
with loss of taste. Working on similar lines, Parma et al. [2020] conducted a global online survey to42
assess smell, taste, and chemesthesis (often summarized as chemosensory) abilities in participants with43
COVID-19 and those with other respiratory illnesses. They found that COVID-19 affects not only smell44
but also taste and chemesthesis. These works have led to the use of various smell and taste tests such45
as Sniffin Sticks [Lechien et al., 2020b], University of Pennsylvania Smell Identification Test [Moein46
et al., 2020], Brief Smell Identification Test, Waterless Empirical Taste Test for the objective evaluation of47
chemosensory dysfunction and provide insights into the characteristics of the disease [Cao et al., 2021].48
The main advantage of these tests is their portability and scalability. However, they require close physical49
contact between the patient and medical assistant as well as the test material (e.g. the Sniffin sticks), which50
both pose high risks of spreading the virus further. Hence, alternative testing methods that permit social51
distancing are urgently needed.52

In this work, we have presented a self-administered smell and taste test with common household items53
such as spices, tea, and dairy products to test its suitability to predict COVID-19 illness. Using smell54
and taste along with other health-related features, we compared model performances and identify the55
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most informative features. The use of machine learning models to detect COVID-19 based on the earliest56
symptoms is necessary for developing countries like India where not all citizens have immediate access to57
medical care or testing facilities.58

Thus, our study sought to answer the following research questions:-59

• RQ1: Can we design a machine learning model based on various generic features including60
demographic (age and gender), smoking habit, number of daily physical contacts, health issues61
(obesity, diabetes, etc), along with general symptoms such as fever, headache, etc. and smell and62
taste specific symptoms (complete loss of smell, change in taste of bitter, etc) for efficient prediction63
of COVID-19 diagnosis?64

• RQ2: Can self-administered tests performed at home be used to predict COVID-19 and which of65
the item groups of the self-administered tests are significantly effective in diagnosing the patient as66
being COVID-19 positive or negative?67

From our study, we found that the random forest model trained on self-administered olfactory and68
gustatory test ratings along with the generic features performed better than the models trained on the69
various generic features (i.e. demographic, health issues, symptoms, etc.). The ratings obtained from70
olfactory and gustatory based self-administered tests for household items like salt, chilli, etc. (for taste) as71
well as spices, coffee, etc. (for smell) were found to be significantly different for individuals diagnosed72
as COVID-19 positive than that of the individuals who reported themselves as negative. The novelty of73
this paper is to show that machine learning models built upon the self-reports and the objective taste and74
smell based ratings using household items could be used to predict COVID-19. This could be useful for75
a resource-constrained country like India where models can act as assistive diagnosis methods for rapid76
assessment.77

2 EXPERIMENTAL DESIGN

The overall design of the study for answering our key research questions is shown in Figure 1. First, the data78
from the participants was collected by organizing an online survey through a web application. The survey79
was approved by the institutional ethics committee (IEC/CSIO/2020 No. 23 dated June 18, 2020 and No. 3080
dated September 23, 2020). The survey included an informed consent form and only the participants aged81
above 18 years were allowed. The data included for this study was from 25th Aug 2020 to 9th May 2021.82
To answer RQ1 stated above, we first extracted the statistically significant features from demographics,83
smoking habits, number of daily physical contacts, health issues, general symptoms and smell and taste84
specific symptoms (coded as GEN for statistically significant Generic features). These features were then85
used to develop and assess multiple machine learning models for the prediction of disease. Similarly to86
answer RQ2, we first identified various olfactory and gustatory groups, that are significantly effective in87
COVID-19 diagnosis, through the statistical analysis on the ratings obtained from self-administered tests88
for COVID-19 positive and negative individuals (coded as OBSAT for olfactory based self-administered89
test results and GBSAT for gustatory based self-administered test results). Later different combinations of90
these features were used to train different machine learning models and a comparison was done to assess91
the efficacy of these features for the diagnosis of COVID-19.92
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Figure 1. The overall workflow of our study. The significant generic features (GEN) were extracted and
used in prediction task for answering RQ1. Similarly, to answer RQ2, first the significant olfactory (OBSAT)
and gustatory (GBSAT) based self-administered test results were extracted. Lastly, different combinations
of these features were used for comparing their prediction capability in diagnosis of COVID-19. Here ML
stands for Machine Learning.

3 MATERIALS AND METHODS

In this section, we have discussed various methods employed in our study including data collection as well93
as development and evaluation of the machine learning models for predicting the diagnosis of COVID-19.94

3.1 Data95

We built a smell and taste tracking web app using open-source software vue.js, Flask, Python and96
JavaScript. The web app was deployed at https://mapcorona.in/. In the web app, the participants were asked97
several questions pertaining to their demographic (i.e., year of birth, gender and country of residence), the98
number of people they came in contact with, their smoking habit, health issues (in the past six months),99
information related to various symptoms (general or smell and taste specific) in the past fourteen days,100
their COVID-19 diagnosis and ratings for self-administered olfactory and gustatory tests. The detailed101
questionnaire is available in the supplementary material.102

For self-administered tests, we used a visual analogue scale in the range from 0 to 100 for olfactory and103
gustatory ratings using household items. In this scale, 0 denotes “No Sensation” and 100 corresponds to104
“Very Intense”. We provided seven different fragrant items for smelling (with default selection as detergents,105
clove, coriander, garam masala, lemon, coffee and milk primarily because of the ease of availability)106
and 4 different edible items for tasting (with salt, sugar, lemon and tea as default selection) and asked107
the participants to rate the intensity of their smell and taste respectively.We also selected Vicks VapoRub108
topical ointment (Procter & Gamble, a topical cough suppressant used in India) which has eucalyptus oil,109
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Table 1. Household items for self-administered test for olfactory assessment. Items provided as default
selection in each category is marked as bold.

Olfactory Group Househld Items
Scented Detergents Scented Soap, Detergent Powder and Shampoo

Spices/Herbs-1 Cinnamon(Dalchini), Clove(Lavang),
Cardamom (Elaichi) and Nutmeg(Jaifal)

Spices/Herbs-2 Cumin(Jeera), Carom seeds (Ajwain),
Fennel(Saunf) and Coriander seeds (Dhania)

Spice Mixtures Garam/Goda masala, Sambhar/Rasam/Puliyogare powder,
Biryani/Fish/Chicken/Meat masala, Maggi masala and Panch phoron

Fruits/Vegetables Lemon, Banana, Apple, Cucumber and Tomato
Dairy items Milk, Ghee, Butter
Other items Coffee(powder or bean), Burnt matches, Cigarette butts, Chocolate,

Crushed Grass or leaves, Wet Soil and Tea (powder or leaf)
Nasal irritants Holy basil (Tulsi), mustard, Mint leaves, Vicks vaporub or camphor

menthol, camphor as major constituents to observe olfactory irritant sensations along with chilli for taste110
irritants. Table 1 shows the olfactory groups and the items selected for the test. The primary reason for the111
selection of items for odour tests was the presence of molecules that activated major groups of receptors112
along with ease of availability, e.g. clove, nutmeg which has primarily eugenol; it triggers as many as 45113
olfactory receptors [Horio et al., 2019]. One of the groups consisting of soaps, detergents have aldehydes114
and some other sulphur related compounds which trigger a wide range of olfactory receptors [Bak et al.,115
2019]. The spice mixture related group was chosen to cater to the broad sensory activation by various116
major constituent molecules. Bak et al. [2019] identified 6 major groups of phytochemicals co-activating117
the known olfactory receptors, our selection of items encompassed the above-mentioned groups. Similarly,118
Table 2 specifies the set of items used for different taste groups.119

The questionnaire was distributed through social media and word of mouth. Every participant tasted or120
smelt different household items following a protocol and accordingly rated the perceived intensity of the121
sensation on the Visual Analog Scale (Please refer to Questions No 19 to 31 in the supplementary material).122
Overall, we collected data from 249 Indian participants. We further used the following exclusion criteria:-123
(1) participants having pending COVID-19 test report (No. of participants = 2) and/or (2) the ones with124
inconsistent reporting regarding smell or taste (No. of participants = 5) and/or (3) those suffering or have125
suffered from a prior smell or taste disorder (Please refer to Question No. 14 in the supplementary material)126
in the past six months (No. of participants = 3). The resultant data consisted of 239 participants (Male =127
163, Female = 76, age: µ = 36.73, σ = 12.60). Out of those 239, 105 participants were diagnosed with128
COVID-19 and the rest reported themselves as negative. As some of the questions in the survey were left129
unanswered by many of the respondents, therefore, we filtered them and used the remaining features (listed130
in Figure 2) with missing values filled with median [Acuna and Rodriguez, 2004].131

3.2 Model Development and Assessment132

Here, we have described the process of developing and evaluating the models. The implementation was133
done using the python sklearn library. It mainly involves the following two phases:-134

3.2.1 Data Preprocessing135

As shown in Figure 2, our data consisted of 59 features. Out of all these features, age and the self-136
administered test ratings were numerical and the remaining were categorical. The numerical features137
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Table 2. Household items for self-administered test for gustatory assessment. Items provided as default
selection in each category is marked as bold.

Gustatory Group Household Items
Sweet Sugar and Sweetener
Salty Salt
Sour Lemon, Tamarind, Kokam, Vinegar (any kind but balsmic)
Bitter Tea (leaves or grains or dust),Neem leaves,

Coffee (beans, grounds, instant powder) and Fenugreek
Taste irritants (cooling, tickling, Chilli, Black pepper,
burning or stinging sensation) ENO (fruit salt), Mint leaves

Figure 2. Categorization of several features of the participants obtained from the survey.

were transformed using standardization, whereas, each categorical feature was converted into multiple138
binary features using a one-hot encoding method. One hot encoding transforms a single variable with n139
observations and d distinct values, to d binary features with n observations each [Lantz, 2019]. Thus, on140
applying one-hot encoding, there were a total of 69 features (including both binary as well as numerical)141
for each participant.142
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3.2.2 Model Selection143

In this phase, we have compared the performance of five machine learning algorithms namely Naı̈ve144
Bayes, Decision Trees, Random Forest, Logistic Regression and Support Vector Machines to predict145
COVID-19 diagnosis. The optimal values of the parameters of these algorithms were obtained using146
the grid search method with F1-score as the maximising criteria (Please refer to Table S1 given in the147
supplementary material). The performance of a machine learning model is generally assessed using a point148
estimate of the evaluation metric such as accuracy or F1-Score. Here, a single value might not be a good149
indicator of the prediction capability, hence multiple sample sets from the given data are generated to150
train and test the model for capturing variations in the performance of the model. The percentile bootstrap151
method [Efron and Tibshirani, 1994] was employed in our study for obtaining confidence intervals as152
performance estimates (Refer Figure S1 in Supplementary Material Part A). It is a non-parametric method153
used for computing standard error and finding a confidence interval for a given statistic. In our case, the154
statistic would be the evaluation metrics used for a machine learning model, i.e. Accuracy, Recall, Precision155
and F1-Score. For doing so, 1000 bootstraps, i.e. training and test sets, were generated using sampling156
with replacement approach. Thus the given model was executed for all the bootstraps and the lower and157
upper bound estimates (using alpha=0.05, i.e. 95% confidence interval) were obtained for all the evaluation158
metrics.159

4 RESULTS AND DISCUSSIONS

In this section, we have reported and discussed the findings related to two key research questions of our160
study.161

4.1 Can we design a machine learning model based on various generic features including162
demographic (age and gender), smoking habit, number of daily physical contacts,163
health-related (obesity, diabetes, etc), along with general (fever, headache, etc) and164
smell and taste specific (complete loss of smell, change in taste of bitter, etc)165
symptoms for efficient prediction of COVID-19 diagnosis?166

In order to answer the research question, we first aimed at identifying the generic features that are167
significantly capable (α = 0.05) of differentiating infected individuals from non-infected ones. The168
category-wise results of statistical analysis are given as follows:-169

• Demographic: The comparison between COVID-19 and Non-COVID-19 participants on the basis170
of demographic features i.e. gender and age can be seen in Figures S2A and S2D (Supplementary171
Material Part A) respectively. The statistical tests were also conducted on both features. For gender,172
Pearson’s chi-square test [Pearson, 1900] was done, whereas, in the case of age, we used Mann173
Whitney U test [Mann and Whitney, 1947] as age is numeric in nature with non-gaussian distribution174
(Figure S2D). The gender did not play a significant role (χ2 statistic = 0.3490 and p-value = 0.5547) in175
the determination of the COVID-19 and Non-COVID19 infected patients. This has been observed in176
some other studies as well [Mihaltan et al., 2021]. On the other hand, the younger population were177
comparatively lesser in proportion among the infected participants (ρ statistic = 5395.5 and p-value =178
0.0001).179

• People Exposure: Here, we have compared the number of persons with whom an individual comes in180
contact i.e. In-Contact (Figure S2B in Supplementary Material Part A). Interestingly, based on the181
statistical analysis, the In-Contact feature seems to be one of the essential factors that distinguish182
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Table 3. Statistical results for comparing COVID-19 and non-COVID-19 participants with respect to
health issues observed in the last six months. Here, the significant results are highlighted in bold.

Health Issues (last 6 months) χ2 Statistic p-value
Seasonal Allergies 1.2613 0.2614

Diabetes 0.0048 0.9446
Obesity 1.1184 0.2902

Chronic Sinus Problems 1.4875 0.2352
High BP 0.0054 0.9413

Head Trauma 0.0454 0.8313
Dry Mouth 0.0048 0.9446

Heart Diseases 0.0150 0.9025
Lung Diseases 0.0000 1.0000

Neurological Diseases 0.0000 1.0000
Other 0.9170 0.3383

No Co-morbidity 21.2420 0.0000

a COVID-19 diagnosed person from others (ρ statistic = 14.869 and p-value = 0.0109). This is in183
consonance with some of the previous works where avoidance of crowds has been shown to be an184
effective measure to control the spread of infectious disease [Lau et al., 2003].185

• Smoking Habit: The habit of smoking (Smoker) among the COVID-19 and Non-COVID-19186
participants was also compared (Figure S2C in Supplementary Material Part A). The results of187
statistical analysis, did not find the Smoker feature to play any significant role in the diagnosis of188
COVID-19 (χ2 statistic = 1.419 and p-value = 0.7011).189

• Health Issues: We compared the COVID-19 and Non-COVID-19 participants based on the health190
issues reported by them in the survey for the past six months. As seen from Figure S3 (Supplementary191
Material Part A), there were no COVID-19 positive individuals who suffered from any lung disease192
or diseases other than the ones mentioned in our data. Similarly, there were no COVID-19 negative193
participants who suffered from any heart disease. None of the health issues was dominant, as found194
after performing chi-square tests of significance involving both types of participants (Table 3). However,195
the number of participants who reported to have been diagnosed with COVID-19 and co-morbidity196
was more than that of the non-COVID-19 participants (Table 3). The previous studies have associated197
the existence of health issues with the risk of getting severe COVID-19 [Wang et al., 2020].198

• General Symptoms The symptomatic differences in the participants can be seen in Figure S4199
(Supplementary Material Part A). Here, symptoms like fever, change in food flavour, change in200
smell, change in taste, cough with mucus, chest tightness and breathing difficulty were found to be201
present significantly more in the case of participants that were infected with the virus (Table 4). None202
of the symptoms was significantly higher in Non-COVID-19 participants. In our survey data, the203
number of infected individuals who reported not having any symptoms were relatively lesser (around204
10%) as compared to their counterpart (around 40%) as observed in Figure S4. This indicates that205
even the presence of any one of the symptoms is an indication that an individual should get tested for206
COVID-19.207

• Smell and Taste Specific Symptoms We assessed the reported smell and taste change on 4 scales (no208
change, slight change, moderate change and complete loss for smell change) and basic taste features209
(Sour, Bitter, Salty, Sweet and no change). As shown in Figure S5 (Supplementary Material Part210
A), both the symptoms highlighted differences between COVID-19 and Non-COVID-19 participants.211
Further, we performed statistical tests to ascertain if the reported changes were significant, it was212

8

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.20.21265247doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.20.21265247
http://creativecommons.org/licenses/by-nc-nd/4.0/


Kumar et al. Leveraging machine learning and self-administered tests to predict COVID-19

Table 4. Statistical results for comparing COVID-19 and non-COVID-19 participants with respect to
symptoms observed in the last fourteen days. Here, the significant results are highlighted in bold.

General Symptoms χ2 Statistic p-value
Fever 65.6068 0.0000

Change in Food Flavour 4.6794 0.0305
Change in Smell 9.3526 0.0022
Change in Taste 11.3862 0.0007

Headache 2.8650 0.0905
Fatigue 0.0305 0.8613

Body Aches 0.0000 1.0000
Nausea 0.0000 1.0000

Runny Nose 3.6815 0.0550
Cough with mucus 29.0047 0.0000

Dry Cough 1.1360 0.2865
Sore throat 0.6842 0.4081

Skin Sensitivity 2.3873 0.1223
Abdominal Pain 0.5405 0.4622
Chest Tightness 13.1800 0.0003

Diarrhea 0.0000 1.0000
Dry Mouth 0.0000 1.0000

Loss of Appetite 0.0048 0.9446
Difficulty in Breathing 8.4278 0.0036

No Symptoms 23.9219 0.0000

Table 5. Statistical comparison of smell and taste specific symptoms for COVID-19 and Non-COVID-19
participants. Here bold entries corresponds to significant results.

Taste and Smell Specific Symptoms χ2 Statistic p-value
No change in Taste (Yes/No) 21.2059 0.0000
Change in Bitter (Yes/No) 26.4649 0.0000
Change in Sweet (Yes/No) 13.0573 0.0003
Change in Sour (Yes/No) 14.2791 0.0002
Change in Salt (Yes/No) 17.0225 0.0000

Change in Smell (None to Complete Loss) 36.496 0.0000

observed that the majority of the COVID-19 infected participants reported partial or complete loss213
of sense of smell (Table 5). On the other hand, the changes in taste of sweet, salt, bitter and sour214
were also more in the case of COVID-19 participants. This further strengthens the results reported215
earlier regarding the loss of sense of smell and taste being one of the most important symptoms in the216
diagnosis of the COVID-19 disease [Ceron et al., 2020, Parma et al., 2020]. It also strengthens our217
case to delve deeper into identifying which of the home items are better indicators in this case.218

We further set out to model and evaluate machine learning algorithms using a total of 25 statistically219
significant generic features for the prediction task. In this regard, five machine learning models (i.e. Naı̈ve220
Bayes, Decision Trees, Random Forest, Logistic Regression and Support Vector Machines) were trained221
and assessed using the method discussed in the previous section. The performance of all the models on the222
significant generic features of the survey participants is compared (Table 6). Here we have given lower223
bounds as well as the upper bound score for each evaluation metric, with the confidence interval of 95 %.224
Out of the different machine learning classifiers, the random forest model seems to perform comparatively225
better than the other models. The lower bound score is higher for every evaluation metric in the case of226
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Table 6. Performance indices with respect to each of the five machine learning models trained on significant
generic features (LB-Lower Bound and UB-Upper Bound). The scores marked with bold indicates the
maximum value achieved for lower bound or upper bound out of five models.

Model Accuracy Precision Recall F1 Score
LB UB LB UB LB UB LB UB

Naive Bayes 67.12 79.45 68.0 80.82 64.79 78.05 64.16 78.45
Decision Tree 64.24 80.54 66.25 80.26 62.27 80.19 60.54 80.17

Random Forest 70.83 80.99 70.91 81.14 70.78 80.51 70.43 80.43
Logistic Regression 69.65 79.86 69.23 79.71 69.17 79.47 69.11 79.5

Support Vector Machines 69.59 80.88 70.3 80.75 70.42 80.73 69.56 80.57

the random forest model. Even for the upper bound score, the difference between the performance of the227
random forest model and the model with the maximum score is minimal. Another important thing to note228
here is the difference in the lower and upper bound values is also around 10% for random forest classifiers.229
This ensures that the model is highly stable i.e. lesser variations in the prediction performance. The scores230
(lower bound and upper bound) for all four evaluation metrics for the logistic regression model as well as231
support vector machines are close to the random forest model.232

4.2 Can self-administered tests performed at home be used independently to predict233
COVID-19 and which of the item groups of the self-administered tests are significantly234
effective in diagnosing the patient as being COVID-19 positive or negative?235

Out of the several household items used in our study, we are interested in identifying those items that are236
statistically able to differentiate between COVID-19 positive and negative individuals. In this regard, the237
results obtained from the olfactory and gustatory based self-administered tests for all the survey participants238
were used to assess their role in differentiating between COVID-19 positive and negative individuals. As239
the ratings for a given olfactory or gustatory product is in the range from 0 to 100, therefore we compared240
the estimated density distribution of both COVID-19 and Non-COVID-19 participants (Figure 3 and Figure241
4). It can be seen that participants suffering from COVID-19 have a higher probability of experiencing a242
low sense of smell as well as taste as compared to the Non-COVID-19 participants. Similarly, ones not243
infected with the virus mainly observed higher intensity ratings of smell and taste. We also conducted a244
statistical test (α = 0.05) for each of the features for finding significant differences between both categories245
of participants. Since none of the plots (in Figure 3 and Figure 4) follows Gaussian distribution, hence246
Mann Whitney U test was performed. The results of significant analysis for olfactory based tests are given247
in Table 7. In the case of smell, items such as spices and their mixtures were found to have significantly248
different test results or intensities for COVID-19 and Non-COVID-19 participants. In the case of gustatory249
tests, salty, sour and taste irritant items resulted in different test results for COVID-19 and non-COVID-19250
patients (Table 8). Recall that for each category of household items, multiple items were included (Table 1251
and Table 2). Out of all the items in each category, one which was set as the default selection was the one252
used by the majority of the participants. Thus items like detergent powder, clove, garam masala, coriander253
seeds, lemon, milk and coffee were used for smell by the majority of participants. On the other hand, sugar,254
salt, lemon and tea were the key items used for taste by the participants.255

These significantly differentiating household items were then used to design ML models for the diagnosis256
of COVID-19 by generating different subsets of the features. Apart from the generic features (GEN) used257
previously, we used four other feature sets. It includes olfactory based self-administered test (OBSAT),258
gustatory based self-administered test (GBSAT), both olfactory and gustatory based self-administered259
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Figure 3. Probability distribution of ratings obtained from self administered tests using household items
from gustatory based groups.

test (OBSAT+GBSAT) and a combination of all the features (GEN+OBSAT+GBSAT). Similar to generic260
features, all these four feature sets were also used independently for the development and assessment of261
machine learning models for the prediction of COVID-19. The results of the prediction of these four sets are262
presented in Table 9. Overall, the random forest classifier is the best performing machine learning algorithm,263
amongst all five algorithms, for the detection of the disease. The same was observed previously in the case264
of models trained on only generic features (Table 6). We have also compared the prediction capability of265
the overall best performing model (Random forest in our case) on all five feature sets (Figure 5) used in our266
study. It was found that the model trained on the self-administered test results in combination with generic267
features of survey participants outperformed all the other models trained on different feature combinations.268
Thus, olfactory and gustatory based self-administered tests can help in the more efficient prediction of the269
diagnosis for COVID-19. If we look at the performances of the models trained independently on olfactory270
and gustatory based tests ratings, the former surpassed the latter for all the evaluation matrices. On271
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Table 7. Statistical comparison of olfactory ratings for participants with and without COVID-19. Here
bold entries corresponds to significant results.

Olfactory Based Groups ρ Statistic p-value
Scented Detergents 6281.0 0.0769

Spices/Herbs-1 5608.0 0.0034
Spices/Herbs-2 5903.0 0.0162
Spices Mixtures 6005.5 0.0257

Fruits/Vegetables 6699.5 0.2631
Dairy Items 6380.5 0.1081
Other items 6008.5 0.026

Nasal Irritants 5128.0 0.0001

Figure 4. Probability distribution of ratings obtained from self administered tests using household items
from gustatory based groups.

combining the ratings of both self-administered tests results, the model prediction performance improved.272
Thus, both the tests have their importance in the diagnosis of COVID-19. The item groups which have273
come out to be significantly differentiating between participants who reported having COVID-19 and the274
ones not having it, throw some light onto the cultural and biological aspect of the olfaction. First, the use275
of spices is one of the most significant parts of the Indian culture in general and the people are ’trained’276
because of the culinary practices to differentiate spices. Second, since spices are a significant part of the277
culinary practice and most of the default items as described previously(coriander seeds, garam masala,278
clove) affect a broad range of receptors, people reporting these to have been affected seems reasonable.279
While the non-significance of fruits/vegetables and dairy items for differentiating does not seem clear from280
a biological point of view and needs a deeper understanding and further research.281
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Table 8. Statistical comparison of gustatory ratings for participants with and without COVID-19. Here
bold entries corresponds to significant results.

Gustatory Based Groups ρ Statistic p-value
Sweet 6171.5 0.0513
Salty 5574.5 0.0028
Sour 6139.0 0.0449
Bitter 6394.5 0.1128

Taste irritants 6128.5 0.0431

Table 9. Performance indices for the five models trained on different feature sets.
Features Model Accuracy Precision Recall F1 Score

LB UB LB UB LB UB LB UB
Naive Bayes 65.97 74.83 67.56 83.34 62.96 71.75 61.5 71.43

Decision Tree 59.86 75.34 61.12 76.21 60.74 75.55 59.58 75.03
OBSAT Random Forest 66.87 77.86 66.67 79.61 66.45 76.95 66.26 77.12

Logistic Regression 51.39 64.67 49.48 66.03 49.56 63.34 48.15 62.96
Support Vector Machines 65.56 75.36 65.74 81.67 63.13 75.05 61.62 74.96

Naive Bayes 56.03 67.57 54.44 75.29 53.33 63.77 51.32 62.17
Decision Tree 52.45 70.0 52.64 70.31 52.53 69.33 51.97 69.08

GBSAT Random Forest 57.24 71.43 57.2 72.04 56.68 70.12 56.3 70.14
Logistic Regression 48.59 60.42 47.58 59.7 47.61 59.34 47.21 59.35

Support Vector Machines 52.81 69.39 52.79 69.9 52.81 67.97 52.38 68.11
Naive Bayes 65.28 75.17 65.92 82.07 62.46 71.73 61.11 71.8

OBSAT Decision Tree 41.89 71.94 20.95 80.52 50.0 67.9 29.52 66.85
+ Random Forest 67.91 78.91 67.76 80.81 67.25 77.84 66.99 78.05

GBSAT Logistic Regression 50.0 63.31 48.2 63.3 48.31 62.15 47.54 61.8
Support Vector Machines 65.10 75.35 65.06 79.57 63.05 75.34 61.79 75.13

GEN Naive Bayes 67.61 79.17 69.2 81.11 65.3 77.72 64.53 78.13
+ Decision Tree 64.78 79.29 66.94 82.26 62.38 78.98 60.48 78.90

OBSAT Random Forest 72.6 83.45 72.45 84.10 71.83 82.57 71.84 82.99
+ Logistic Regression 68.08 80.14 67.93 80.05 67.92 79.89 67.60 79.83

GBSAT Support Vector Machines 72.72 83.22 72.71 83.41 72.01 82.69 72.09 82.85
LB-Lower Bound, UB-Upper Bound, OBSAT-Olfactory Based Self-Administered Tests, GBSAT-Gustatory Based
Self-Administered Tests and GEN-Generic

5 CONCLUSION

In this work, we conducted an online survey wherein, along with generic information, we conducted282
olfactory and gustatory based self-administered tests using a variety of household items such as spices,283
tea, coffee, lemon and milk. Some of the household items such as clove, garam masala and coffee for284
smell and similarly salt, lemon and tea for taste resulted in statistically significant results for differentiating285
COVID-19 and Non-COVID-19 participants. Further, self-administered tests were shown to improve the286
ability to differentiate between positive and negative participants leveraging machine learning algorithms.287
This hints at the use of customised sniffing sticks or such olfactory tests for different cultures. Our findings288
may open up this field to conduct more such studies and also incorporate data from different nations to289
evaluate the importance of self-administered tests at a global scale. All said the online crowdsourcing based290
survey come with their challenges such as traceability and anonymity. One more limitation of this study is291
the lack of details regarding the quantum of olfactory loss with the variants of the virus. We believe this292
research is a window to the stronger case for customised olfactory tests.293
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Figure 5. Performance of five feature sets in predicting COVID-19. (generic (GEN), olfactory
based self-administered test (OBSAT), gustatory based self-administered test (GBSAT), both olfactory
and gustatory based self-administered test (OBSAT+GBSAT) and a combination of all the features
(GEN+OBSAT+GBSAT). The lower end of the bar denotes Lower Bound (LB) for each evaluation
metric and similarly the upper end of the bar denotes upper bound (UB).
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