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Abstract
Background: Forecasting healthcare demand is essential in epidemic settings, both to
inform situational awareness and facilitate resource planning. Ideally, forecasts should be
robust across time and locations. During the COVID-19 pandemic in England, it is an
ongoing concern that demand for hospital care for COVID-19 patients in England will exceed
available resources.

Methods: We made weekly forecasts of daily COVID-19 hospital admissions for National
Health Service (NHS) Trusts in England between August 2020 and April 2021 using three
disease-agnostic forecasting models: a mean ensemble of autoregressive time series
models, a linear regression model with 7-day-lagged local cases as a predictor, and a scaled
convolution of local cases and a delay distribution. We compared their point and probabilistic
accuracy to a mean-ensemble of them all, and to a simple baseline model of no change from
the last day of admissions. We measured predictive performance using the Weighted
Interval Score (WIS) and considered how this changed in different scenarios (the length of
the predictive horizon, the date on which the forecast was made, and by location), as well as
how much admissions forecasts improved when future cases were known.

Results: All models outperformed the baseline in the majority of scenarios. Forecasting
accuracy varied by forecast date and location, depending on the trajectory of the outbreak,
and all individual models had instances where they were the top- or bottom-ranked model.
Forecasts produced by the mean-ensemble were both the most accurate and most
consistently accurate forecasts amongst all the models considered. Forecasting accuracy
was improved when using future observed, rather than forecast, cases, especially at longer
forecast horizons.

Conclusions: Assuming no change in current admissions is rarely better than including at
least a trend. Using confirmed COVID-19 cases as a predictor can improve admissions
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forecasts in some scenarios, but this is variable and depends on the ability to make
consistently good case forecasts. However, ensemble forecasts can make forecasts that
make consistently more accurate forecasts across time and locations. Given minimal
requirements on data and computation, our admissions forecasting ensemble could be used
to anticipate healthcare needs in future epidemic or pandemic settings.

Keywords
COVID-19; infectious disease; outbreak; healthcare demand; real-time; forecasting;
ensemble
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Background
The sheer volume of SARS-CoV-2 reported cases in England combined with a substantial
case-hospitalisation rate amongst high-risk groups [1, 2], has resulted in an extremely high
demand for hospital care in England. As such, it is an ongoing concern that demand for
hospital care will exceed available resources. This worst-case scenario has seen patients
with COVID-19 receiving lower-quality care [3], as well as cancellations of planned surgeries
or routine services; in the United Kingdom, the National Health Service (NHS) faced a
substantial backlog of patient care throughout the COVID-19 pandemic [4].

Forecasting healthcare requirements during an epidemic is critical for planning and resource
allocation [5–7], and short-term forecasts of COVID-19 hospital activity have been widely
used during the COVID-19 pandemic to support public health policy (e.g. [8–11]). While
national or regional forecasts provide a big-picture summary of the expected trajectory of
COVID-19 activity, they can mask spatial heterogeneity that arises through localised
interventions or demographic heterogeneity in the risk of exposure or severity [12].
Small-scale forecasts have been used to support local COVID-19 responses (e.g. in Austin,
Texas [9]), as well as to forecast non-COVID-19 or more general healthcare demands at the
hospital level [13, 14]. Forecasts of hospital admissions are also an essential step to
forecasting bed or ICU demand (e.g. [11, 14, 15]).

In theory, future admissions are a function of recent cases in the community, the proportion
of cases that require and seek health care (the case-hospitalisation rate (CHR)), and the
delay from symptom onset to hospital admission. However, forecasting admissions from
community cases is challenging as both the CHR and admission delay can vary over time.
The CHR depends on testing effort and strategy (how many symptomatic and asymptomatic
cases are identified), the age-distribution of cases [1], and the prevalence of other COVID-19
risk factors amongst cases [12]. Retrospective studies of COVID-19 patients reported a
mean delay from symptom onset to hospital admission to be 4.6 days in the UK [16] and 5.7
days in Belgium [17], but this varies by age and place of residence (e.g., care-home
residents have a longer average admissions delay than non-residents) [17]. Forecasting
studies have found that cases are predictive of admissions with a lag of only 4 - 7 days [10,
15]. Given the short estimated delay between cases and future admissions, to make
short-term forecasts of admissions therefore also requires forecasts of cases. While some
studies consider mobility and meteorological predictors with longer lags [15], they lack a
direct mechanistic relationship with admissions and may have only a limited benefit. Besides
structural challenges, models are subject to constraints of data availability in real-time and at
the relevant spatial scale (by hospital or Trust (a small group of hospitals) for admissions,
and local authority level for cases and other predictors).

Models need to be sufficiently flexible to capture a potentially wide range of epidemic
behaviour across locations and time, but at the same time should produce results sufficiently
rapidly to be updated in a reasonable amount of time. Autoregressive time series models are
widely used in other forecasting tasks (e.g. [18, 19]), including in healthcare settings [13],
and scale easily to a large number of locations; however, since forecasts are, in the simplest
case, based solely on past admissions, they may not perform well when cases (and
admissions) are changing quickly. Predictors can be incorporated into generalised linear
models (GLMs) with uncorrelated [13] or correlated errors [15]; for lagged predictors, the lag
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(or lags) usually needs to be predetermined. Alternatively, admissions can be modelled as a
scaled convolution of cases and a delay distribution; this method can also be used to
forecast deaths from cases or admissions (e.g. [20]). The forecasting performance of both
GLMs and convolution models beyond the shortest forecast horizon will be affected by the
quality of the case forecasts (or any other predictors), which may vary over time or across
locations.

One way to attempt improving the robustness of forecasts is to combine them into an
ensemble forecast, whereby predictions from several different models are combined into a
single forecast. This reduces reliance on a single forecasting model and, given a minimum
quality of the constituent models, the average performance of ensembles is generally
comparable, if not better than, its best constituent models [8, 21]. Ensemble methods have
been widely used in real-time during the COVID-19 pandemic to leverage the contributions
of multiple modelling groups to a single forecasting task [8, 22, 23], as well as previously
during outbreaks of influenza [19, 24], Ebola virus disease [25], dengue [26] and Zika [27].

In this paper, we make and evaluate weekly forecasts of daily hospital admissions at the
level of NHS Trusts during the period August 2020 - April 2021, including two national
lockdowns and the introduction and spread of the Alpha SARS-CoV-2 variant. We assess
the forecasting performance of three individual forecasting models and an ensemble of these
models, and compare their performance to a naive baseline model that assumes no future
change from current admissions. Forecasts are made using publicly available data on
hospital admissions (by Trust) and COVID-19 cases (by upper-tier local authority (UTLA), a
geographic region of England). For forecasting models that use forecast COVID-19 cases as
a predictor, we consider the value of making perfect case forecasts.

Methods

Data

The majority of hospitalised COVID-19 cases in England are treated at hospitals run by the
NHS. NHS Hospital Trusts are organisational units of NHS England, each comprising a small
number of hospitals (typically between one and three) and providing care to a small
geographical region or for a specialised function [28].

A confirmed COVID-19 hospital patient is any patient admitted who has recently (in the last
14 days) tested positive for COVID-19 following a polymerase chain reaction (PCR) test,
including both new admissions with a known test result and inpatient tests. Data on daily
Trust-level COVID-19 hospital activity, including COVID-19 hospital admissions, COVID-19
and non-COVID-19 bed occupancy, are published weekly by NHS England and were
accessed via the covid19.nhs.data R package [29].

A confirmed COVID-19 case in England is defined as an individual with at least one
confirmed positive test from a PCR, rapid lateral flow tests or loop-mediated isothermal
amplification (LAMP) test. Positive rapid lateral flow test results can be confirmed with PCR
tests taken within 72 hours; if the PCR test results are negative, these are not reported as
cases. Aggregated data by UTLA are published daily on the UK Government dashboard and
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reported totals include both pillar 1 (tests in healthcare settings and for health and care
workers) and pillar 2 (community) tests. These data were accessed via the covidregionaldata
R package [30].

In England, small-scale COVID-19 cases and hospital admissions are reported on different
scales: by UTLA and by Trust, respectively. To use UTLA-level cases to make forecasts of
Trust-level hospital admissions, we needed to estimate cases at the Trust level too. We used
a many-to-many mapping between UTLAs and NHS Trusts that is based on COVID-19
hospital admissions line list data for England. For each Trust-UTLA pair (t,u), the mapping
reports the proportion pt,u of all COVID-19 hospital admissions from UTLA u that were
admitted to trust t. This proportion is based on all COVID-19 hospital admissions in England
that were discharged by 30 September 2020, and is constant (i.e. does not change over
time). For details of how this mapping was constructed, see the Supplementary Information.
This mapping is available in the R package covid19.nhs.data [29].

We estimate the community pressure of COVID-19 cases on Trust t as the expected number
of COVID-19 cases associated with Trust t defined by the Trust-UTLA mapping (rounded to
the nearest integer value):

.
𝑢
∑ ( 𝑝

𝑡,𝑢
 *  𝑐𝑎𝑠𝑒𝑠 𝑖𝑛 𝑈𝑇𝐿𝐴 𝑢 )

Trust characteristics

We estimated Trust size as the average total beds available (sum of occupied COVID-19 or
non-COVID-19 beds, plus unoccupied beds) from 17 November 2020 to 30 April 2021 (data
on non-COVID bed occupancy was not available before 17 November). We calculated total
admissions as the sum of all admissions between 01 August 2020 and 30 April 2021
(inclusive). We defined the size of the Trust-UTLA mapping for a Trust as the number of
UTLAs matched to each Trust in the probabilistic Trust-UTLA mapping. We measured this
with and without a 10% minimum threshold on the proportion of admissions from a UTLA to
a Trust, thereby excluding relatively uncommon Trust-UTLA pairs.

To better understand the heterogeneity in Trust-level admissions, we grouped Trusts based
on the similarity of their weekly hospital admissions time series. We calculated the pairwise
Pearson correlation coefficient between Trusts, excluding Trusts with less than 1000
admissions between August 2020 and April 2021. We then used the complete-linkage
clustering algorithm to divide Trusts into seven groups, matching the seven NHS regions in
England. In short, the complete-linkage algorithm initially assigns each Trust to its own
cluster, then at each step combines the two most similar clusters (as determined by the
pairwise correlation), until the desired number of clusters is reached [31]; this is implemented
in the hclust algorithm in stats 4.1.1.

Forecasting models

We made weekly forecasts of daily hospital admissions from 04 October 2020 to 25 April
2021 (n = 30 forecast dates). We fitted each of the forecasting models (defined below)
independently to each Trust’s unsmoothed and unadjusted Trust-level daily data (admissions
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and, where relevant, estimated cases) on a 6-week rolling window, and made forecasts of
future admissions for 1- through 14-day-ahead horizons. We used a rolling, rather than
increasing, window on which to fit the models as the local trend in admissions and
relationship between cases and admissions was considered likely to change over time. We
summarised forecasts as point and predictive quantiles for 1 through 14-day ahead horizons.
For models using cases as a predictor of future hospital admissions, we used forecasts of
daily UTLA-level COVID-19 cases that were produced and published daily [32].

Hospital admissions forecasting models
The motivation for a baseline model is to give a minimum performance threshold that any
good model should reasonably exceed. Our baseline model comprised a point (median)
forecast equal to the last observed data point for all forecast horizons and Gaussian

uncertainty, with standard deviation at horizon equal to , where is the standardℎ σ
^

ℎ σ
^

deviation of the residuals of the fitted model [18].

In addition, we used three individual forecasting methods, plus two unweighted ensembles of
these three models. The first of the three individual models was a mean-ensemble of three
autoregressive time series models (ARIMA, Exponential Smoothing (ETS) and the baseline
defined above) that use only past observed admissions data to forecast future admissions.
The second model was a regression model with correlated (ARIMA) errors, with Trust-level
cases lagged by days as a predictor. This model uses past observed admissions and past𝑑
estimated Trust-level cases (estimated via the Trust-UTLA mapping) for forecast horizon

, plus forecast Trust-level cases (again, estimated via the Trust-UTLA mapping) forℎ ≤  𝑑
. The third and final individual model is a convolution of estimated Trust-level casesℎ >  𝑑

with the delay from report to admission. This model uses past observed admissions and past
and future Trust-level cases. Further details of the three individual forecasting models can be
found in the Supplementary Information Section 4.

We constructed an unweighted mean-ensemble from the three individual models. The
ensemble quantile forecast was made by taking the mean of the quantile forecasts of the
individual models at each time point; for example, the mean-ensemble point forecast for a
7-day horizon was the mean of the three individual point forecasts for a 7-day horizon, and
the mean-ensemble 90% quantile forecast was the mean of the three individual 90%
quantile forecasts.

Case forecasting models
The ARIMA regression model and convolution model used COVID-19 cases as a predictor
of future hospital admissions, and so we also used forecasts of this quantity. We used daily
forecasts of COVID-19 cases by UTLA (n = 174) via estimates and forecasts of the
time-varying effective reproduction number, Rt, accounting for uncertainty in the delay
distributions, produced and published daily [32]; a summary of this approach, henceforth
called Rt case forecast, is given in the Supplementary Information and full details are given
in [33].

The Rt case forecasts were occasionally missing due to computational issues or deemed
highly improbable due to model errors. As the case forecasts are used as predictors in some
of the admissions forecasting models, this could lead to highly improbable (particularly
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excessively large) admissions forecasts. To address this, we set three criteria by which the
Rt case forecasts would be replaced by an ARIMA + ETS mean-ensemble time series
forecast. We did not expect that this time series ensemble would produce better forecasts
than the Rt model in all scenarios, but rather that they would be better than missing or
implausible forecasts. The three criteria were:

1. The Rt case forecast was missing for the UTLA, or
2. The upper bound of the Rt case forecast 90% prediction interval exceeded the

estimated population size of the UTLA [34], or
3. There was at least one case reported on the forecast date, and the upper bound of

the Rt case forecast 90% prediction interval exceeded 1000 times the number of
cases reported on the forecast date.

We estimated Trust-level case forecasts from the UTLA-level case forecasts using the
Trust-UTLA mapping.

Forecast evaluation

Evaluation metrics

We evaluated forecasts using a number of different metrics that assessed different aspects
of point and probabilistic accuracy.

Calibration. Calibration assesses the ability of the models to correctly quantify predictive
uncertainty. We assessed the calibration of the forecasting models by calculating the
empirical coverage: for a forecast horizon, , and prediction interval width, , theℎ 1 − α
empirical coverage of a model is calculated as the proportion of forecast targets (across all
forecast dates and locations) for which the prediction interval contained the true value; a
well-calibrated model has empirical coverage equal to the width of the nominal prediction
interval. We calculated the empirical coverage for the 50% and 90% prediction intervals.

Sharpness. Sharpness measures the ability of models to make forecasts with narrow
(sharp) prediction intervals. We measured sharpness as the weighted sum of the width of
the 50% and 90% prediction intervals:

.𝑠ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠 =  
𝑘 = 1

𝐾

∑ 𝑤
𝑘
 (𝑢

α
𝑘

− 𝑙
α

𝑘

) =  0. 25 * (𝑢
0.5

− 𝑙
0.5

) +  0. 05 * (𝑢
0.1

− 𝑙
0.1

)

Point forecast error. We measured point forecast accuracy with the absolute error (AE) of
the median forecast, which is simply the absolute difference between the median forecast, 𝑚
, and the true observed value, : .𝑦 |𝑚 − 𝑦|

Probabilistic forecast error. We measured probabilistic forecast accuracy with the
weighted interval score (WIS). The WIS is a proper scoring rule, that is, a rule for which a
forecaster is incentivised to give their honest forecast to obtain the best score [35]. The WIS
comprises a weighted sum of interval scores for quantile forecasts of increasing widths; in
this way, the full forecast distribution is summarised in a single value.

The interval score [36] of the central 100(1-α)% predictive interval of forecast F is given by
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,𝐼𝑆
α
(𝐹,  𝑦) =  (𝑢

α
− 𝑙

α
) +  2

α (𝑙
α

−  𝑦)1
{𝑦 < 𝑙

α
}
 + 2

α (𝑦 −  𝑢
α
)1

{𝑦 > 𝑢
α
}

where and are the lower and upper bounds of the central 100*(1-α)% interval forecast,𝑙
α

𝑢
α

is the true observed value, and is the indicator function (equal to 1 when the expression𝑦 1
{·}

inside is true, and 0 otherwise). The first term measures sharpness, and penalises wider
interval forecasts; the second term penalises forecasts for overprediction (if the true value, ,𝑦
lies below the lower bound ); finally, the third term penalises for underprediction.𝑙

α

Given the point forecast and interval forecasts of width , the WIS is then𝐾 1 − α
𝑘
,  𝑘 = 1,..., 𝐾

calculated as

,𝑊𝐼𝑆
α

0:𝐾

(𝐹,  𝑦) = 1
𝐾+ 0.5  ( 𝑤

0
 |𝑦 − 𝑚| +

𝑘 = 1

𝐾

∑ 𝑤
𝑘
 𝐼𝑆

α
𝑘

(𝐹,  𝑦) )

where the standard choice is and for [36]. In our evaluation,𝑤
0

= 1/2 𝑤
𝑘
 =  

α
𝑘

2 𝑘 = 1,..., 𝐾

we used and , corresponding to the central 50% and 90%𝐾 = 2 α
1

= 0. 5,  α
2

= 0. 1

prediction intervals, respectively.

To summarise and compare forecast performance in different scenarios (see Section
“Forecast comparison” below), we either report the mean value (sharpness and AE), or an
adjusted value that does not scale with the number of admissions (WIS). The latter allows us
to compare a model’s performance over forecast dates or between Trusts (both of which
vary in the number of admissions). Instead of reporting the mean WIS we report two
adjusted WIS values: the relative WIS (rWIS) and the scaled WIS (sWIS), defined as follows
using the notation and naming of [21].

First, the pairwise-relative WIS, , for models and is defined asθ
𝐴,𝐵

𝐴 𝐵

,θ
𝐴,𝐵

=  (𝑚𝑒𝑎𝑛 𝑊𝐼𝑆 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙 𝐴) / (𝑚𝑒𝑎𝑛 𝑊𝐼𝑆 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙 𝐵)

where the mean WIS is the mean in the scenario of interest (e.g. to evaluate models’ overall
performance at a 7-day horizon, the mean is taken over all forecast dates and Trusts).

The rWIS for model A, , is then defined as the geometric mean of the pairwise-relativeθ
𝐴

WIS , excluding the baseline model. If model A has a smaller relative WISθ
𝐴,𝐵

𝑖

,  𝑖 = 1,..., 𝑀

than model B, then forecasts generated by model A are better than those generated by
model B.

The sWIS, , is simply the rWIS normalised by the rWIS for the baseline model:θ
𝐴

*

.θ
𝐴

* = θ
𝐴

 / θ
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
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By this definition, the sWIS of the baseline model is always 1, and if then forecastsθ
𝑥

* < 1

produced by model are better than the baseline, and worse if .𝑥 θ
𝑥

* > 1

Forecast evaluation was implemented using the R package scoringutils 0.1.7.2 [37].

Forecast comparison

We evaluated forecasts made across 7,701 forecast targets, a combination of forecast
horizon (7 or 14 days), forecast date (30 total) and Trust (129 until 24 January 2021; then
128 until 14 March 2021; then 127 until the end of April 2021). To fully evaluate model
performance, we evaluated forecast performance in the following scenarios:

1. Overall:
a. By forecast horizon;
b. By target;

2. By forecast date, split by forecast horizon;
3. By Trust, split by forecast horizon.

In scenario 1a we report empirical coverage by forecast horizon, mean sharpness, mean AE
and rWIS. In scenario 1b we simply report the distribution of model rankings over all 7,701
targets as determined by the rWIS. In scenario 2 and 3 we report the mean AE and rWIS by
forecast date and Trust, respectively. In all scenarios we choose to report rWIS over the
sWIS so that the performance of the baseline model, and how that changes across
horizons/dates/locations, can be explicitly included.

Value of perfect knowledge of future COVID-19 cases

For models that use forecasted COVID-19 cases to forecast hospital admissions, forecast
performance is affected by both the structure of the admissions forecasting model and the
quality of the case forecasts (which are made independently of the admissions forecasts and
do not form part of this study). Models that use forecast cases to forecast admissions are the
ARIMA regression for forecast horizon , and the convolution model andℎ >  7
mean-ensemble for all forecast horizons. To evaluate the performance of the admissions
models only, we conducted a retrospective study where the relevant models (noted above)
used future observed, rather than forecast, COVID-19 cases to forecast hospital admissions;
this represents a best-case scenario for these models, as using future observed cases
throughout is equivalent to making a perfect case forecast with no uncertainty.

These retrospective forecasts were scored using the same metrics and scenarios as the
real-time forecasts. We also directly compare each model’s performance using observed vs.
forecast future COVID-19 cases, where we report the sWIS only.

Analysis code
Analyses in this paper use the following packages developed by the authors during the
COVID-19 pandemic: covidregionaldata (version 0.9.2) [30], covid19.nhs.data (0.1.0) [29],
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EpiNow2 (1.3.3.8) [20], EpiSoon (0.3.0) [38] and scoringutils (0.1.7.2) [37]. Fully reproducible
code is available at https://github.com/epiforecasts/covid19-hospital-activity.

Results

COVID-19 hospital activity August 2020 - January 2021

Figure 1: Summary of COVID-19 hospital admissions in England during August 2020 - April
2021. (A) Daily COVID-19 hospital admissions for England. (B) Weekly COVID-19 hospital
admissions by NHS Trust (identified by 3-letter code) for the top 40 Trusts by total COVID-19 hospital
admissions during August 2020 - April 2021. (C) Daily COVID-19 hospital admissions for top-five
Trusts by total COVID-19 hospital admissions. In all panels, the dashed lines denote the date of the
first (04 October 2020) and last (25 April 2021) forecast date. Data published by NHS England [39].

National and regional context

The number of COVID-19 hospital admissions in England was very low at the start of August
2020: during the week 03 - 09 August 2020, national daily admissions ranged between 49
and 78. From early September onwards, admissions began to increase (Figure 1A),
predominantly in the Midlands and North of England (Figure S1). In response to rising cases
and admissions, the UK Government introduced a three-tier system of restrictions
throughout England on 14 October 2020; by the end of October all major northern cities
(including Manchester and Liverpool) were under the strictest Tier 3 measures, and the
majority of the rest of the North of England, plus the Midlands, London and parts of Essex
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were in Tier 2. A national lockdown was introduced from 05 November - 02 December 2020
and during this time admissions fell or plateaued in all NHS regions (Figure S1). At the end
of lockdown (03 December 2020), the majority of local authorities in England re-entered Tier
3, but hospital admissions continued to increase: national daily admissions increased from
1,178 on 02 December 2020, to 1,437 one week later (09 December 2020), and to 1,880 two
weeks later (16 December 2020) - already exceeding the early-autumn peak of 1,620 daily
admissions. On 19 December 2020 local authorities in the East and South East of England
and all London boroughs entered into yet stricter Tier 4 restrictions, and on 06 January 2021
England was placed under the third national lockdown. National daily admissions peaked at
3,895 on 12 January 2021 and subsequently declined throughout January - April 2021. By
the end of April, average national daily admissions were fewer than 100 (during the week 19
- 25 April 2021, median = 97, IQR = [92, 120]).

Mass vaccination for COVID-19 in England began on 08 December 2020. The rollout was
prioritised by age and risk. The initial rollout was amongst care home residents, their carers
and individuals aged 80 years and over, then subsequently to all aged 70 years and over
and the clinically extremely vulnerable individuals (from 18 January 2021) and then all aged
65 years and over and adults with high-risk underlying health conditions (15 February 2021).
By 30 April 2020, 63% and 27% of adults aged 16 and over had received the first and
second dose of the vaccine, respectively [40].

Trust-level characteristics and hospital admissions

Focusing only on national or regional hospital admissions masks heterogeneity in the
trajectory of local-level hospital admissions (Figure 1). Trusts varied in the daily or weekly
number of patients admitted, as well as in the occurrence and timing of peaks in admissions
(Figure 1B-C). Clusters of Trusts, defined by the pairwise correlation between admissions,
clearly show some spatial clustering (reflecting the geographical spread of COVID-19 in
England at the time) but are not constrained by the NHS region boundaries (Figure S2C).
Instead, clusters are defined by the occurrence and timing of peaks in admissions (Figure
S2D): for example, cluster 1 includes Trusts in London and the South East of England that
had little or no peak in November 2020, while clusters 5-7 comprise Trusts in the North of
England where admissions increased earlier and there are two distinct peaks in admissions
in November 2020 and January 2021 (Figure S2C-D). The variation in Trust-level dynamics
could be driven by Trust capacity, local COVID-19 case incidence and demography (such as
age), pre-existing immunity, and local and/or national restrictions.

Trust-level cases are estimated using the Trust-UTLA mapping. The accuracy of this
mapping for a given Trust depends on a number of factors, including: the spatial distribution
of cases until 30 September 2020; total admissions to the Trust until 30 September 2020;
and the size of the Trust-UTLA mapping. Trusts admit COVID-19 patients from relatively few
UTLAs (median = 3, IQR = [2,4]; Figure S2A), with a small minority of Trusts (typically in
London or other large cities such as Birmingham and Manchester) admitting patients from
more than 10 UTLAs. Trusts admit the majority of their COVID-19 patients from only 1-2
UTLAs (excluding UTLAs contributing less than 10% of admissions: median = 2, IQR = [1,
2.8]).
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Estimated total bed capacity and total admissions vary significantly (estimated capacity:
median = 579, IQR = [414, 831]; total admissions: median = 1,839, IQR = [1,275, 2,588]),
and, unsurprisingly, the two are highly correlated (Pearson’s correlation coefficient r = 0.85)
(Figure S2B).

Forecast evaluation

Figure S4 shows examples of forecasts made for Manchester University NHS Foundation
Trust for the three individual models (time series ensemble, ARIMA regression with 7-day
lagged cases as a predictor, and the case-convolution), plus the mean-ensemble of these,
and the baseline model of no change.

Calibration and sharpness

The empirical coverage of models was generally lower than the nominal coverage of the
prediction intervals (Figure 2A and Table S3); the only exception to this is the 50% prediction
interval of the time series ensemble, which has empirical coverage of 53% and 54% for a 7-
and 14-day horizon, respectively. The ARIMA model has the worst coverage for all forecast
horizons as a result of producing overly sharp (narrow) forecasts (sharpness at a 14-day
horizon of 0.97, compared to 2.85 for the baseline and 1.57 for the mean-ensemble; Table
S3). Although its constituent models are not particularly well-calibrated, the mean-ensemble
still has comparatively good empirical coverage: for a 14-day horizon, it has empirical
coverage of 0.46 and 0.76 for the 50% and 90% prediction intervals respectively.

Overall forecast accuracy

Figure 2: Overall forecasting performance of forecasting models. (A) Empirical coverage of 50%
and 90% prediction intervals for 1-14 days forecast horizon. The dashed line indicates the target
coverage level (50% or 90%). (B) Relative weighted interval score (rWIS) by forecast horizon (7 and
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14 days). (C) Distribution of WIS rankings across all 7,701 targets; for each target, rank 1 is assigned
to the model with the lowest relative WIS (rWIS) and rank 5 to the model with the highest rWIS.

For a 7-day forecast horizon, the time series ensemble and ARIMA regression model use
observed data only (hospital admissions, plus confirmed COVID-19 cases in the ARIMA
regression model). Both models outperformed the baseline (rWIS = 1.06 and 1.05,
respectively, compared to 1.26 for the baseline; Figure 2B, Table S3). The convolution model
uses a combination of true and forecast COVID-19 cases, yet was still the best-performing
individual model at this horizon (rWIS = 1.00). However, the mean-ensemble clearly
outperformed all models and made 29% less probabilistic error than the baseline model
(sWIS = 0.90).

For a 14-day forecast horizon, only the time series ensemble uses exclusively observed data
(hospital admissions); both the ARIMA regression model and the convolution model use
forecast COVID-19 cases. Whilst the relative accuracy of all models decreased (sWIS
increases) over a longer horizon (Table S3), the decline in performance was most substantial
for the convolution model, which now performed worse than baseline (rWIS = 1.23 compared
to 1.13 for the baseline). Despite the worse performance of one of its constituent models, the
mean-ensemble still performed well, making 24% less probabilistic error than the baseline
model (rWIS = 0.86).

The relative WIS rankings over all 7,701 individual targets showed some variability in
forecasting performance (Figure 2C). Interestingly, all individual models (time series
ensemble, ARIMA regression and case-convolution) rank first more frequently than the
mean-ensemble (in 13%, 34% and 43% of targets, respectively, compared to 12% for the
mean-ensemble). However, the mean-ensemble is the most consistent model: it ranks first
or second in over half (57%) of targets, and first through third in over 90% of scenarios. In
comparison, the individual models often rank fourth or fifth (last). The mean-ensemble also
outperforms the baseline in 84% of scenarios, compared to 82% for the time series
ensemble, and 75% for both the ARIMA regression and case-convolution models. There are
also some targets (approximately 5%) where the baseline outperforms all models (Figure
2C).
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Forecast accuracy by date

Figure 3: Forecasting accuracy by forecast date. (A) Relative WIS (rWIS) of the forecasting
models for the 30 forecasting dates. Lower rWIS values indicate better forecasts. (B) Mean absolute
error of the forecasting models. The mean AE is calculated as the mean AE over all Trusts. (C) Mean
daily Trust-level COVID-19 hospital admissions by week, for reference. All panels are for a 7-day
forecast horizon; see Figure S5 for evaluation on a 14-day forecast horizon.

Probabilistic forecasting accuracy and model rankings varied by the date on which forecasts
were made (Figure 3 and S5). For a 7-day horizon, the mean-ensemble was the only model
to outperform the baseline model (as measured by rWIS) across all forecast dates (Figure
3A). Moreover, the mean-ensemble was the first-ranked (best) model by this metric for 14/30
forecast dates, and was first- or second-ranked for 29/30 dates. The performance of the
individual models was more variable. While the time series ensemble outperformed the
baseline for 29/30 forecast dates, it was often only the third- or fourth-ranked model (24/30
forecast dates). On the other hand, the convolution model was the top-ranked model for
14/30 forecast dates, but performed particularly poorly on two dates (03 and 10 January
2021; Figure 3A-B). For all models, the biggest improvement in forecasting performance
compared to the baseline was at times when hospital admissions were rapidly declining:
mid-to-late November 2020 (improvement in rWIS of approximately 30%) and from
mid-January 2021 onwards (improvement of up to 49%) (Figure 3A and Figure S5A).

There was less variation in model MAE by forecast date (Figure 3B). As expected, the MAE
for all models followed the general trend in hospital admissions (Figure 3C), with the
exception of forecasts made by the convolution model on 03 and 10 January 2021; for these
dates, high rWIS and MAE indicates both poor point and poor quantile forecasts.

For a 14-day horizon, each model performed worse than the baseline on at least one
forecast date (Figure S5A). The decline in performance was especially clear for the
convolution model: it only outperformed the baseline on 19/30 forecast dates, and whilst it
was the top-ranked model on 12/30 dates, it was also the last-ranked model on 9/30 dates.
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In particular, the convolution model made noticeably poor forecasts on 08 November, 13 and
27 December 2020, and 03 and 10 January 2021, (Figure S5A-B).

Forecast accuracy by location

Figure 4: Forecasting accuracy by location (Trust). (A) Relative WIS values of each model (y-axis)
compared to the baseline model of no change (x-axis). Ticks on axes show the unilateral distribution
of rWIS values. Dashed grey line shows y=x, for reference: a point below the line indicates that the
model outperformed the baseline model by rWIS for that Trust. (B) Distribution of WIS rankings across
all 129 NHS Trusts; rank 1 is assigned the model with the lowest relative WIS for a given scenario,
and rank 5 to the highest relative WIS. (C) Mean absolute error of each model (y-axis) compared to
the baseline model (x-axis). Ticks on axes show the unilateral distribution of MAE values. Dashed
grey line shows y=x, for reference: a point below the line indicates that the model outperformed the
baseline model by MAE for that Trust. All panels are for a 7-day forecast horizon; see Figure S6
(Supplementary Information) for evaluation on a 14-day forecast horizon.

For a 7-day horizon, all models outperformed the baseline for the majority of Trusts (Figure
4A): the time series ensemble outperforms the baseline for 125/129 Trusts; the ARIMA
regression model for 115/129 Trusts; the convolution model for 118/129 Trusts; and the
mean-ensemble for 128/129 Trusts. On average, the mean-ensemble achieved the lowest
and most consistent rWIS values (median rWIS = 0.92; IQR = 0.93 - 0.90 = 0.04), compared
to median = 1.29, IQR = 0.18 for the baseline. Amongst the individual models, the
convolution model had the best median performance (median rWIS = 0.99), but was also the
least consistent (IQR = 1.07 - 0.91 = 0.16). The variability in rWIS scores was reflected in the
WIS rankings (Figure 4B): the mean-ensemble was best-performing for over half of Trusts
(72/129) and first- or second-ranked for almost all Trusts (127/129). The convolution model

15

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 18, 2021. ; https://doi.org/10.1101/2021.10.18.21265046doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.18.21265046
http://creativecommons.org/licenses/by/4.0/


ranked first through fourth with similar frequency (for 34, 40, 24 and 23/129 Trusts,
respectively). Similarly to evaluation by date, we saw less variation in MAE between models
by Trust, and a higher MAE in models compared to the baseline more frequently than for the
rWIS (Figure 4C).

For a 14-day horizon forecasting accuracy was lower (Figure S6): the convolution model was
particularly badly affected, with a median rWIS equal to that of the baseline model (median
rWIS = 1.12) and outperformed the baseline for only 81/129 Trusts. Despite this, the
mean-ensemble still performed well: the median rWIS was 0.87 (compared to 1.22 for the
baseline), and it was the first- or second- ranked model for 91/129 of Trusts (Figure S6B).

Value of perfect knowledge of future COVID-19 cases

Using future observed COVID-19 cases instead of future forecast cases affects the ARIMA
regression model for a forecast horizon of more than 7 days, and the convolution model and
mean-ensemble for all forecast horizons. Using future observed cases improved the sWIS
by horizon for all affected models (Table S4), especially for the convolution model at a
14-day forecast horizon, where the sWIS decreased by 38% from 1.09 (that is, worse than
the baseline model) to 0.67.

When evaluated by forecast date we see a marked improvement in sWIS, but with some
variability (Figure S7A, S7C). The 14-day forecasts made by the ARIMA regression model
now outperformed the baseline (sWIS < 1) for 26/30 forecast dates (compared to 22/30
when using forecast future cases; Figure S7A), with the biggest improvements on forecasts
made 13 December 2020 (the start of the spread of the Alpha variant B.1.1.7: sWIS
decreased by 26% from 1.33 to 0.99) and 03 January 2021 (just before the third national
lockdown: sWIS decreased by 30% from 1.23 to 0.86). The convolution model also saw
notable improvements, especially for a 14-day forecast horizon (Figure S7C). However, for
both models there were still forecast dates where they were outperformed by the baseline,
indicating that this poor performance was not linked to the case forecasts, but to another
aspect of the models.

We also saw an improvement in performance (on average) when we evaluated forecasts by
Trust (Figure S7B and S7D). The 14-day-ahead forecasts made by the ARIMA regression
model now outperformed the baseline model for 113/129 Trusts (compared to 102/129
previously; Figure S7B). The convolution model now outperformed the baseline model for
123/129 Trusts for a 7-day horizon (compared to 116/129), and for 125/129 Trusts for a
14-day horizon (compared to only 81/129 previously; Figure S7D).

Models using future observed cases as a predictor of future admissions (ARIMA regression,
convolution and mean-ensemble) clearly outperformed simple trend-based models,
especially at longer forecast horizons (Figure S8-9). The mean-ensemble performed
consistently well across horizons, forecast dates and Trusts, and rarely (if ever) performed
worse than the baseline. Conversely, both the ARIMA regression and case-convolution still
encountered scenarios where they performed worse than the baseline, warranting further
investigation.
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Discussion
This paper systematically evaluates the probabilistic accuracy of individual and ensemble
real-time forecasts of Trust-level COVID-19 hospital admissions in England between
September 2020 and April 2021. We found that all models outperformed the baseline model
in almost all scenarios, that is, assuming no change in current admissions was rarely better
than including at least a trend. Moreover, models that included cases as a predictor of future
admissions generally made better forecasts than purely autoregressive models. However,
the utility of cases as a predictor for admissions is limited by the quality of case forecasts:
while perfect case forecasts can improve forecasts of admissions, real-time case forecasts
are not perfect and can lead to worse forecasts of admissions than simple trend-based
models. Unfortunately, making accurate forecasts of COVID-19 cases in a rapidly-evolving
epidemic is challenging [23, 41], especially in the face of changing local restrictions. The
Rt-based case forecasting model used here assumes no change in future Rt, so cannot
anticipate sudden changes in transmission, for example due to a change in policy such as
lockdowns [33].

We found that the mean-ensemble model made the most accurate (as measured by median
rWIS) and most consistently accurate (as measured by rWIS IQR) forecasts across forecast
horizons, forecast dates and Trusts, overcoming the variable performance of the individual
models. This is consistent with other COVID-19 forecast evaluation studies [8, 15, 21, 23]
and other diseases [25, 27, 42].

Besides informing situational awareness at a local level, more robust forecasts of hospital
admissions can improve forecasts of bed or ICU needs [10, 11, 14, 15], although occupancy
forecasts will also depend on patient demographics, patient pathways, ICU requirements
and bed availability and length-of-stay distributions [11].

Our framework for forecasting local-level hospital admissions can be applied in other
epidemic settings with minimal overheads or used as a baseline to assess other
approaches. The models we used are disease-agnostic and only use counts of reported
cases and hospital admissions to forecast future admissions. The only context-specific data
is the Trust to local authority mapping, used to estimate community pressure of COVID-19
cases on Trusts. In other contexts, this could be replaced with an analogous mapping (either
based on admissions data for that disease and/or informed by knowledge of local
healthcare-seeking behaviour in that setting), or a mapping based on mobility models of
patient flows (e.g. [43, 44]).

The mean-ensemble forecast could be further improved in a number of ways, providing
many avenues for future work. First, by improving the forecasting accuracy of the existing
models, for example by: improving the underlying case forecasts; including additional or
more detailed predictors of hospital admissions (e.g. age-stratified cases or mobility). We
showed that perfect case forecasts only reduced the WIS of the mean-ensemble by
approximately 15% for a 14-day horizon, suggesting efforts would be better spent on
identifying better predictors or additional models to include in the ensemble (e.g. other
statistical and machine learning models [13, 15], or mechanistic models [8]). Other ensemble
methods could be considered, such as including a threshold for including models in the
ensemble model pool, or making a weighted ensemble based on past performance [8];
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however, more complex methods do not guarantee any substantial improvement over a
simple mean-ensemble [8, 45], and typically require a history of forecast scores to
implement. Finally, forecasts may be improved by using a time-varying Trust-UTLA mapping,
or by using a mapping with a smaller geographical region (e.g. lower-tier local authorities).

Potential improvements trade off accuracy with data availability (such as: availability in
real-time; at a relevant spatial scale and/or across all target locations; whether the data is
publicly available) and/or computational power (for additional or more complex forecasting
models, or to make reasonable forecasts of additional predictors). During an outbreak, time
required to develop and improve forecasting models is limited and in competition with other
objectives. When forecasting local-level hospital admissions in epidemic settings, assuming
no change in admissions is rarely better than including at least a trend component; including
a lagged predictor, such as cases, can further improve forecasting accuracy, but is
dependent on making good case forecasts, especially for longer forecast horizons. Using a
mean-ensemble overcomes some of the variable performance of individual models and
allows us to make more accurate and more consistently accurate forecasts across time and
locations.

The models presented here have been used to produce an automated weekly report of
hospital forecasts at the NHS Trust level [46] for consideration by policy makers in the UK.
Given the minimal data and computational requirements of the models evaluated here, this
approach could be used to make early forecasts of local-level healthcare demand, and thus
aid situational awareness and capacity planning, in future epidemic or pandemic settings.

Conclusions
Assuming no change in current admissions is rarely better than including at least a trend.
Using confirmed COVID-19 cases as a predictor can improve admissions forecasts in some
scenarios, but this is variable and depends on the ability to make consistently good case
forecasts. However, ensemble forecasts can make forecasts that make consistently more
accurate forecasts across time and locations. Given minimal requirements on data and
computation, our admissions forecasting ensemble could be used to anticipate healthcare
needs in future epidemic or pandemic settings.
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