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Abstract 
Our understanding of the impact of interventions in critical 
care is limited by the lack of techniques that represent and an-
alyze complex intervention spaces applied across heterogene-
ous patient populations. Existing work has mainly focused on 
selecting a few interventions and representing them as binary 
variables, resulting in oversimplification of intervention repre-
sentation. The goal of this study is to find effective representa-
tions of sequential interventions to support intervention effect 
analysis. To this end, we have developed Hi-RISE (Hierar-
chical Representation of Intervention Sequences), an approach 
that transforms and clusters sequential interventions into a la-
tent space, with the resulting clusters used for heterogenous 
treatment effect analysis. We apply this approach to the MIMIC 
III dataset and identified intervention clusters and correspond-
ing subpopulations with peculiar odds of 28-day mortality. Our 
approach may lead to a better understanding of the subgroup-
level effects of sequential interventions and improve targeted 
intervention planning in critical care settings. 
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Introduction 
Healthcare is characterized by multi-dimensional variations 
across patient populations and care interventions that differen-
tially impact healthcare outcomes and costs [1].  Patient varia-
tions arise from differences in characteristics such as age 
groups, gender, socioeconomic status, and comorbidities, and 
have been shown to result in different manifestations of dis-
eases and treatment effects across predefined subpopulations.  
Variations in interventions arise from differences in the type, 
number (single vs. multiple), and longitudinal connectivity 
(concurrent vs. sequential) of interventions used in healthcare. 
In critical care settings, effective analysis of variations of care 
could improve clinical outcomes and decrease the rising costs 
of critical care[2,3]. 
The effective representation of interventions is crucial to dis-
cover their significant impacts across subpopulations. Particu-
larly, this becomes more challenging when multiple interven-
tions are involved that might have different degrees of longitu-
dinal overlapping. Concurrent interventions refer to those shar-
ing a temporal window when they are applied. On the other 
hand, sequential interventions don’t possess significant over-
lapping in their application windows temporally, and one is ap-
plied after the other. In addition, an intervention could be just 
applied once (static) or applied frequently (dynamic). Thus, it 
becomes clear that to underline the impact of the intervention(s) 
on care outcome, it is crucial to have effective representations 

of interventions that are robust to their variations and complex-
ity.   
Existing research in subpopulation-based intervention effect 
analysis is confined to a priorly defined group of interest (e.g., 
for rural community compared to urban) and the intervention is 
limited to a single and static intervention with binary arms (1= 
intervention applied, 0= absence of intervention). The require-
ment of presupposing the group of subpopulations of interest 
limits the discovery of data-driven insights (that were not pri-
orly understood by domain experts). On the other hand, the ex-
isting impact analyses involving single binary interventions 
tend to have the following limitations:  1) in cases of multiple 
interventions, simple binarization for each intervention lacks 
the capability to encode overlapping time-windows of their ap-
plications, i.e., concurrent impact.   2) in addition, binary rep-
resentation could not encode detailed granularities of the inter-
vention(s) applied, e.g., dosage amount, mode of administra-
tion, etc.; 3) existing intervention representation techniques 
also fail to encode long-term temporal dependency of sequen-
tial interventions, e.g., a late side-effect or a long-term correla-
tion with another intervention, which might be overlooked by 
manual intervention selection. Moreover, analysis of sequential 
interventions needs to be flexible to work on different levels of 
intervention resolutions and to provide efficient visualization to 
communicate extracted insights. 
In this paper, we aim to address the challenges associated with 
effective representation of sequential interventions and to ex-
tract insights on the effects of these interventions across sub-
populations without the need of pre-supposing these subpopu-
lations, i.e.,   automatically identify the subpopulations with the 
highest impact by a sequence of interventions.  To overcome 
the problem of sequence learning and representation in a large 
space, we use heuristics derived from empirical analysis and the 
use of autoencoder-based clustering that helps to reduce the 
representation space without losing its intelligibility and aggre-
gates multiple interventions based on their late-based similar-
ity. To summarize, the main contributions of this paper are two-
fold. First, we present an approach to identify and represent se-
quential interventions from a large complex state space to a 
small latent variable state space. This helps in the representation 
of large numbers of interventions, learning correlations be-
tween multiple interventions, and accounting for the interven-
tion order. Second, we present a pipeline to identify the inter-
vention sequence and user subpopulation as anomalous patterns 
of care. We evaluate our approach using a real-world MIMIC-
III dataset and present the findings. 
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Methods 

Approach 

Towards addressing the challenges associated with represent-
ing and analyzing the subgroup-level impact (heterogeneous ef-
fects) of complex intervention sequences, we propose a modu-
lar approach consisting of 4 main steps: data cleaning and 
standardization, hierarchical representation of intervention se-
quences, dimensionality reduction and clustering, and auto-
mated subgroup analysis. 
 
Data cleaning and standardization 

The data cleaning and standardization module takes as input 
raw sequential intervention data captured in longitudinal elec-
tronic health records and provides a standardized representation 
of the care providers and interventions. It is responsible for op-
erations such as dealing with missing values as well as remov-
ing redundant and irrelevant sequential intervention data. It is 
also used to standardize the sequential intervention data through 
operations such as recognition and resolution of different ab-
breviations for the same care provider type, event type, or in-
tervention. 
The module only considers the intervention events in electronic 
health records. For each patient, these events are ordered tem-
porally such that the final output of this module is a clean stand-
ardized sequential intervention dataset which is fed to the next 
module in the pipeline. 
 
Hierarchical representation of intervention sequences 

The main objective of the Hierarchical representation of inter-
vention sequences (Hi-RISE) module is to compactly represent 
preprocessed sequential interventions at multiple intervention 
granularities. Each clinic visit by a patient results in a sequence 
of care provider encounters. Each care provider has a specific 
set of duties and hence generates a set of events such as patient 
registration, vitals measurements, lab tests, medication admin-
istration, a recommendation for other tests, etc.  
The granularity of the intervention representation is governed 
by the application or intervention space usage. Some applica-
tions might need more fine-grained intervention space repre-
sentations that incorporate low-level intervention details such 
as dosage administered, mode of administration, and frequency 
of dosage others might only need care provider encounter se-
quence. To compactly represent events generated during patient 
encounters with care providers in increasing order of granular-
ity for interventions we use a hierarchical representation of the 
space through Hi-RISE. Currently, Hi-RISE is designed to con-
sists of 3 main levels to maintain its simplicity. The levels are 
labeled as “L0”, “L1”, and “L2” as illustrated in Figure 1. 

 
Figure 1. Illustration of Hi-RISE (Hierarchical Representation of In-
tervention Sequences). L0 represents the sequence of provider types 
(T1…Tn), L1 represents the sequences of actual provider encounters 
(𝑃!!…𝑃"#), and L2 represents sequences of interventions (𝐼!!…𝐼$"). 

L0 is the coarsest level of representation in Hi-RISE. Here, we 
aggregate all contiguous interventions from the same type of 
care providers as a supercluster representation of care provider 

type encounters. The entire sequence of care provider encoun-
ters for a patient will be represented as a supercluster sequence 
of care providers based on the care provider type. An example 
of a sequence at L0 is nurses ® doctors ® nurses ® lab tech-
nicians ® nurses ® doctors. 

L1 increases the granularity of L0 by representing the actual 
sequence of care provider encounters in a patient’s care jour-
ney. An example of such an L1 sequence is nurse A ® doctor 
A ® nurse B ® nurse C ® senior nurse A ® lab technician 
A ® nurse B ® doctor B. 

L2 represents actual interventions during individual care pro-
vider encounters. An example of an L2 sequence is interven-
tions [1,2] (nurse A) ® interventions [3,4] (doctor A) ® inter-
vention 5 (nurse B) ® interventions [6,7,8] (nurse B) ® inter-
vention 9 (doctor A). Each caregiver can trigger a series of 
events in any order. However, rather than imposing fixed tem-
poral orders on the events generated by care providers during 
each encounter, we use a “bag-of-interventions” (similar to 
“bag-of-words”[9]) representation of events per care provider. 
The bag-of-interventions representation ensures that the inter-
vention or events noted per care provider per encounter do not 
have any order to them. Each intervention is a one-hot-encoded 
representation, and each bag-of-interventions is computed as 
the sum of all the one-hot-encoded representations of the inter-
ventions administered by a provider at a point in time. The rea-
soning behind using the bag-of-interventions approach is that 
the medicines registered by a care provider at a given point in 
time encounter might not necessarily need to follow an order. 
Mathematically, Hi-RISE can be formulated is as follows:  
If E is a patient that visits a care provider resulting in a sequence 
of care provider encounters represented by 𝑃 =
{𝑃!, 𝑃", … , 𝑃#$!, 𝑃#}, and a sequence of interventions, 𝐼 =
{𝐼!, 𝐼", … , 𝐼#$!, 𝐼#}, 
 

We define: 
𝐿0	 = 	 {𝑇!, 𝑇", 𝑇%, … , 𝑇#$!, 𝑇#},  

where 𝑇& 	¹	𝑇&'!	𝑓𝑜𝑟	1 ≤ 𝑖	 ≤ 	𝑛 
𝐿1	 = 	 {𝑃!!, 𝑃"!, 𝑃%", … , 𝑃($!# , 𝑃(#},  

where "	𝑖, 𝑗	𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑇𝑦𝑝𝑒(𝑃)&) 	= 		 𝑇& 		𝑓𝑜𝑟	1 ≤ 𝑖	 ≤ 	𝑛 
Intervention sequence =  {𝐼!!, 𝐼"!, 𝐼%", … , 𝐼*$!( , 𝐼*(}, 

where "	𝑗, 𝑘	𝐶𝑎𝑟𝑒𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟(𝐼+
)) 	= 		𝑃)&	𝑓𝑜𝑟	1£	𝑗	£	𝑚 

𝐿2	 = 	 @(𝑃!!, 𝑂𝐻𝐸(𝐼!!) + 	𝑂𝐻𝐸(𝐼!!)E, … } 
and 𝐶𝑎𝑟𝑒𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟(𝐼,) 	= 	𝑃- , where 𝑃- ,  is the care provider 
that administered the intervention 𝐼,; 
𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑇𝑦𝑝𝑒(𝑃-) 	= 	𝑇. , where 𝑇. is the care provider type 
of provider 𝑃- . 

𝑂𝐻𝐸(𝐼+
))	 is the One hot encoding of the Intervention 𝐼+. 

 
The multi-level outputs of the Hi-RISE module are critical in 
simplifying care provider interventions observed in longitudi-
nal patient data. However, these outputs are still complex and 
not readily applicable to current approaches needed by sub-
group-level intervention impact analysis. 
 
Dimensionality reduction and clustering 
The outputs of the Hi-RISE module serve as inputs to the di-
mensionality reduction and clustering module. The function of 
this module is to logically identify groups of similar sequences 
across multiple patients per each Hi-RISE level.   The module 
consists of an autoencoder[8] followed by K-Means cluster-
ing[7]. An autoencoder is an unsupervised artificial neural net-
work that learns efficient data encoding to reduce the dimen-
sionality and produce a compact latent space representation of 
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the data aka sequential interventions in our case. The output 
from the autoencoder is fed to a K-Means clustering submod-
ule. K-Means clustering is a vector quantization technique to 
partition the autoencoder latent space representations of the se-
quence interventions into k partitions. The objective of K-
Means clustering is to minimize the intra-cluster variances with 
squared Euclidean distance as the metric. K-Means creates 
clusters of the compact intervention sequences from the auto-
encoder based on representation similarity.  
For each transformed intervention sequence cluster, C, we cre-
ate a binary intervention, Z such that for each patient, Z=1 if the 
patient’s sequence of interventions can be mapped to C, and 
Z=0 otherwise. Next, we model the propensity score (𝑝/) as the 
probability of the intervention conditioned on observed base-
line covariates, i.e., 𝑝/(𝑋) = 𝑝(𝑍 = 1|𝑋), where X is the set of 
covariates. 

Automated subgroup analysis 

The automated subgroup analysis module is to evaluate the het-
erogeneous treatment effects of the transformed intervention 
sequences to identify the subgroups of patients whose outcomes 
are most/least impacted by the interventions.  In addition to the 
transformed intervention sequence clusters, this module takes 
as input covariates (e.g., age, gender, socioeconomic status, 
comorbidities, etc.) and an outcome of interest (e.g., length of 
stay, readmission, etc.). These inputs are analyzed using an al-
gorithm that combines inverse propensity of treatment 
weighting (IPTW)[1] followed by automated subgroup analysis 
via subset scanning[6].  

IPTW eliminates bias due to observable differences between 
the treated and non-treated/comparison groups. Note that the 
IPTW would not be necessary in the case of a randomized 
study. The automated subgroup analysis is used to discover the 
subgroups of patients whose outcomes are most impacted by 
interventions in the unbiased dataset. We frame this as a search 
problem and build our approach upon the Bias Scan algo-
rithm[10]. We use the average treatment effect on the treated 
(ATT) weights and quantify the anomalousness of a subpopu-
lation, 𝑆, as 𝐸[𝑤&𝑌&(1)|𝑋& ∈ 𝑆] < 𝐸[𝑤&𝑌&(0)] for subjects with 
lower than expected outcomes and 𝐸[𝑤&𝑌&(1)|𝑋& ∈ 𝑆] >
𝐸[𝑤&𝑌&(0)] for subjects with high than expected outcomes. 
These subgroups are characterized by a subset of covariates that 
are identified to maximize the outcome divergence score from 
the expected.  

Experiment with MIMIC III 

Dataset and Cohort 
To evaluate our approach, we conducted experiments on the 
MIMIC-III (Medical Information Mart for Intensive Care), a 
publicly available critical care database[4]. The study popula-
tion consisted of 46,520 patients with 57,786 hospital admis-
sions and 61,532 Intensive Care Unit (ICU) stays. Our study 
cohort included adult patients (16 years or older) admitted to 
the ICU for the first time. We excluded patients with a length 
of stay less than 1 day, hospital readmissions, surgical cases, or 
having chart events. The final cohort consisted of 18,761 pa-
tients. 

Covariates, Outcome, and Interventions 
We conducted feature extraction and preprocessing to generate 
a final dataset that consisted of a binary outcome (mortality 
within 28 days), and 13 discrete covariates as follows: age (65 
or older, <65), gender (female, male), ethnicity (Black/Africa, 
Caucasian, other, unknown), marital status (married/partner, 
single, divorced/separated/widowed, unknown), insurance 

(private/self-pay, Medicare/Medicaid), arrhythmia (no, yes), 
chronic pulmonary disease (no, yes), congestive heart failure 
(no, yes), diabetes (no, yes), Angus sepsis (no, yes), urine out-
put (high, low, normal), ventilated (no, yes). Additionally, for 
all patients in the cohort, we extracted and transformed the pa-
tients’ intervention sequences and subsequently generated 78 
binary interventions representing patients with similar interven-
tion sequences. Finally, we filtered out interventions with fewer 
than 20% of the observations and ended up with 10 interven-
tions that were analyzed further. 

Subgroup analysis 
For each of the 10 binary interventions, we trained a logistic 
regression model and used it to predict the likelihood of a pa-
tient having the intervention given his/her covariates. We opted 
for the logistic regression approach due to its simplicity and in-
terpretability. The AUC of the models ranged between 56% and 
72%. Next, for each intervention, we computed the ATT 
weights using the corresponding propensity score model and 
used these to compute the expected weight mean of the out-
come, which served as the counterfactual outcome for each sub-
ject. Finally, we used our automated subgroup analysis ap-
proach to search over the treated subjects in the final dataset to 
identify the treatments and corresponding subpopulations that 
showed the most evidence of having outcomes rates that dif-
fered the most from the weighted mean of the expected outcome 
rate. For each intervention, this search identified the subgroup 
having the highest odds of 28-day mortality (positive direction) 
and the subgroup having the lowest odds of 28-day mortality 
(negative direction). 

Results 

Representation descriptive statistics 

Post preprocessing and data cleaning, we found that on average, 
there are 5442 events generated per hospitalized patient. A 
patient-careprovider Sankey flow graph of the top 31 
interactions between care provider pairs is shown in Figure 2. 

 

 
Figure 2. Sankey plot of top 31 provider-patient interactions pairs. 

The top 2 common patient intervention sequence interactions 
are with Registered Nurse (RN) followed by Rapid Response 
Team (RRT) or Registered Nurse (RN) followed by a Medical 
Doctor (IMD). This helps us realize that few subsequences are 
extremely common but not all subsequences start with an RN 
followed by an RRT or MD. Learning the relationships between 
these infrequent, out-of-order, or non-encounters with the care 
providers could result in a favorable or non-favorable outcome 
based on the patient attributes. 
The total number of patient care provider items in our dataset is 
large so we divide the items as monitoring events or interven-
tions and then use Hi-RISE to compactly represent the interven-
tion sequences. Figure 3 shows the histogram of the number of 
sequence lengths.  
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The mean number of items per intervention sequence in the 
dataset is 2533. Hi-RISE reduces the intervention sequence 
length to 39 for L0, 90 for L1, and 270 for L2 as shown in fig-
ure X. Please note that the order of care provider encounter is 
preserved at each hierarchical level. 
 

 
Figure 3. Histograms of sequence lengths of the original intervention 

sequence and Hi-RISE’s L0, L1, and L2 sequence representations. 

Dimensionality reduction and clustering 

As shown above, the dimensionality of Hi-RISE representation 
is still high. We use an autoencoder for further dimensionality 
reduction. The hyperparameters of the autoencoder are set as 
follows: Adam optimizer, binary cross-entropy loss, 256 train-
ing epochs with a batch size of 256,  Relu and Sigmoid activa-
tion functions for the encoder and decoder, respectively. We 
have also experimented the autoencoder with different latent-
space dimensions.   For clustering the compressed latent space 
representation of the intervention sequence, we select the num-
ber of clusters based on the k-means inertia score, which is a 
measure of the internal cluster coherence. It is measured by the 
sum of squared distances of the points to the nearest cluster cen-
ter. The inertia value plot and clusterings are shown in Figure 
4. 

 
Figure 4.  K-means inertia scores and clustering 

Characteristics of the anomalous subgroups identified 

Table 1 shows the anomalous pattern detection results for the 
different intervention clusters extracted from MIMIC III. Each 
row represents a single cluster of sequential interventions 
generated from a particular Hi-RISE level and a specific 
autoencoder dimension. In the negative direction, we note that 

the search algorithm identified subpopulations of individuals in 
each cluster where the odds of 28-day mortality in the 
subpopulation were much lower than the odds in the overall 
population. Similarly, in the positive direction, the algorithm 
identified subpopulations in which the odds of 28-day mortality 
were up to 2.8 times higher in the subpopulations, whereas the 
odds of the outcome were lower in the overall population. 

Table 1. Anomalous subgroup analysis results 
 Anomalous Subpop Odds Ratio 
Dir L D C P Size Score Pop Subpop 
Neg  0 9 3 0.27 1974 (39%) 151 0.8 0.2 

0 48 3 0.28 2032 (38%) 152.2 0.8 0.2 

1 9 6 0.22 1594 (39%) 124.7 0.8 0.2 

1 48 0 0.29 2119 (38%) 157.7 0.8 0.2 

2 9 6 0.22 1594 (39%) 124.7 0.8 0.2 

2 48 0 0.29 2119 (38%) 157.7 0.8 0.2 
Pos  0 9 3 0.27 621 (12%) 66.1 0.8 2.7 

0 48 3 0.28 644 (12%) 73.1 0.8 2.8 

1 9 6 0.22 513 (12%) 50.8 0.8 2.7 

1 48 0 0.29 670 (12%) 73.8 0.8 2.8 

2 9 6 0.22 513 (12%) 50.8 0.8 2.7 

2 48 0 0.29 670 (12%) 73.8 0.8 2.8 
Dir: Direction of Scanning, L: Hi-RISE level, D: Autoencoder dimension, C: 
cluster, P: proportion in cluster, Pop: Population, Subpop: Subpopulation 

Discussion 

In this work, we proposed Hi-RISE, a simple heuristic approach 
to represent complex sequences of care provider interventions 
at various granularities. We employ an autoencoder to further 
reduce the dimensionality of Hi-RISE sequences and then 
cluster the encoder representations. These clustered sequential 
intervention sequences along with patient covariates are fed to 
an automated subgroup analysis algorithm to identify 
subpopulations with the most positive or negative outcome for 
a sequential intervention. We demonstrate the application of 
our approach to the MIMIC III dataset. 

The key insight is that even small variations in intervention 
sequences can change the outcome of patient care, so we should 
consider interventions as an ordered sequence and not a set of 
few hand-picked variables. Additionally, the task of finding 
similarity between intervention sequences of a large number of 
patients is a computationally expensive and resource-heavy 
task and we overcome this limitation in our computationally 
fast approach that is resource sustainable, and robust to noise 
also. Our current approach of using an autoencoder is not easily 
interpretable design and as a follow-up to this work, we would 
like to research interpretable methods for dimensionality 
reduction while paying attention to the ordering. 

Researchers have previously investigated the heterogeneous 
treatment effects for binary outcomes[1] and interventions[5]. 
To the best of our knowledge, this work is one of the first to 
specifically investigate how complex heterogeneous treatment 
effects of sequential interventions could be studied in a 
simplified manner. However, this work is only preliminary and 
the approach is limited to generating hypotheses about specific 
populations most impacted by certain intervention sequences. 
Furthermore, this paper does not report on the individual 
characteristics of the anomalous subgroups. Additional 
analyses and characterizations of these anomalous subgroups 
are warranted. 
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Conclusions 

This study showed that ordering of intervention events is 
important and that it is possible to succinctly represent the 
intervention space in smaller dimensions to support 
heterogeneous treatment effect analysis. Our next steps are to 
make our approach more interpretable while adhering to 
resource sustainability. We also plan to use our approach in 
other domains such as COVID-19 data analysis, for which 
different sequences of interventions might be applied across 
space and time.  
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