Effects of Glucagon-like Peptide-1 Receptor Agonists on Cardiovascular and Renal Outcomes: A Systematic Review, Meta-analysis, and Meta-regression Analysis

Short title: Cardiovascular and renal efficacy of GLP-1RAs

Satoshi Yoshiji, MD1,2,3,4, Hiroto Minamino, MD1,4, Daisuke Tanaka, MD, PhD1, Shunsuke Yamane MD, PhD1, Norio Harada, MD, PhD1, and Nobuya Inagaki, MD, PhD1

1Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan

2Department of Human Genetics, McGill University, Montréal, Québec, Canada

3Kyoto-McGill International Collaborative Program in Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan

4Japan Society for the Promotion of Science, Tokyo, Japan
Correspondence

Nobuya Inagaki MD, PhD,

Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine,
Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan

E-mail: inagaki@kuhp.kyoto-u.ac.jp

Tel: +81-075-751-3560

Fax: +81-075-751-4244

Abstract: 347 words.

Main text: 2981 words.

Number of Table: 1

Number of Figures: 4.

Supplementary material: 4 Tables and 5 Figures.
Abstract

Background: Cardiovascular and renal effects of glucagon-like peptide-1 receptor agonists (GLP-1RAs) have been inconsistent in cardiovascular outcome trials, and factors associated with the efficacy of GLP-1RAs remain to be clarified.

Objective: To evaluate cardiovascular and renal outcomes with GLP-1RAs and associations between these outcomes and the magnitude of HbA1c or weight reduction.

Data Sources and Study selection: We searched PubMed/MEDLINE for randomized, placebo-controlled trials of GLP-1RAs published until 11 August 2021 and selected trials reporting major adverse cardiovascular events (MACE) as the primary outcome.

Data Extraction and Synthesis: We extracted data of 60,080 individuals from eight studies (ELIXA, LEADER, SUSTAIN-6, EXSCEL, HARMONY, PIONEER 6, REWIND, and AMPLITUDE-O) and conducted a meta-analysis with a random-effects model to calculate pooled hazard ratios (HRs) of primary and secondary outcomes. Furthermore, we performed a univariable meta-regression analysis of these outcomes with HbA1c or weight reduction.

Main outcomes and Measures: The primary outcome was MACE (a composite of cardiovascular mortality, nonfatal stroke, and nonfatal myocardial infarction). Secondary outcomes included components of MACE, all-cause mortality,
hospitalization due to heart failure, and renal outcomes. Safety outcomes were severe hypoglycemia, pancreatitis, pancreatic cancer, and retinopathy.

Results: GLP-1RAs reduced MACE (HR 0.86; 95% CI 0.80, 0.93; P < 0.001) and secondary outcomes including cardiovascular mortality (0.87; 0.80 0.94; P = 0.001), nonfatal myocardial infarction (0.90; 0.83, 0.98; P = 0.020) nonfatal stroke (0.83; 0.76, 0.92; P < 0.001), and the composite renal outcome (0.80; 0.73, 0.87; P < 0.001). No increase in the incidence of safety outcomes was observed with GLP-1RAs. Meta-regression analysis showed that HbA1c reduction was associated with logarithm of HR (log-HR) of MACE (P = 0.045; R² = 0.64) and the composite renal outcome (P = 0.045; R² = 0.80), whereas weight reduction was not associated with any outcome. Every 1.0% HbA1c reduction was associated with a decrease in log-HR of MACE and the composite renal outcome by 0.27 and 0.35, respectively.

Conclusions: GLP-1RAs showed favorable effects on cardiovascular and renal outcomes. Furthermore, reduction in HbA1c, but not body weight, was associated with cardiovascular and renal risk reduction during the treatment with GLP-1RAs.
Introduction

Major adverse cardiovascular events (MACE) and chronic kidney disease are leading causes of morbidity and mortality in individuals with type 2 diabetes. Prevention and management of these disorders play pivotal roles in the treatment of type 2 diabetes1, 2.

To date, a series of randomized, placebo-controlled clinical trials on cardiovascular and renal outcomes with glucagon-like peptide-1 receptor agonists (GLP-1RAs) have been reported, including ELIXA, LEADER, SUSTAIN-6, HARMONY, PIONEER 6, REWIND, and AMPLITUDE-O3-10. These trials evaluated the safety and efficacy of GLP-1RAs on the primary composite MACE outcome (cardiovascular mortality, nonfatal stroke, or nonfatal myocardial infarction) as well as secondary outcomes, including individual components of MACE, hospitalization due to heart failure, all-cause mortality, and renal outcomes. In these trials, GLP-1RAs consistently showed cardiovascular and renal safety, but cardiovascular and renal efficacy were inconsistent across trials: LEADER, SUSTAIN-6, and REWIND reduced MACE compared to placebo, whereas ELIXA and EXSCEL did not reduce MACE. Notably, AMPLITUDE-O reduced MACE for the first time as a trial with an exendin-based GLP-1RA10.

Regarding the mechanism of action for cardiovascular and renal efficacy, it has
been reported that reducing HbA1c or body weight contributes to cardiovascular, renal, and mortality risk reduction11-16. However, although cardiovascular outcome trials of GLP-1RAs reported effective reductions in HbA1c and body weight, it is still unclear whether HbA1c or body weight reduction is associated with the cardioprotective and renoprotective profile.

To examine overall cardiovascular and renal effects as well as safety profiles of GLP-1RAs, we performed a systematic review and meta-analysis of cardiovascular outcome trials of GLP-1RAs, including AMPLITUDE-O. Furthermore, to evaluate whether the magnitude of HbA1c or body weight reduction is associated with cardiovascular and renal outcomes, we conducted a univariable meta-regression analysis of cardiovascular and renal outcomes with HbA1c or weight reduction.

Methods

Data Sources and Searches

We performed a data search in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement17. We searched the PubMed/MEDLINE database for eligible randomized, placebo-controlled trials of GLP-1RAs on MACE in individuals with type 2 diabetes, published until 11 August
2021. We placed no restrictions on the study population or language. The search terms were described in Supplementary Figure 1. The protocol for this study is registered in PROSPERO (CRD42021273058).

Study Selection

We selected studies reporting MACE as the primary outcome. For selected trials, we also evaluated secondary outcomes and safety outcomes. SY and HM independently conducted the search and solved any discordance through discussion.

We selected randomized, placebo-controlled trials of GLP-1RAs reporting major adverse cardiovascular events (MACE) as the primary outcome. We excluded studies not reporting MACE or a design of interest.

Data Extraction and Quality Assessment

We extracted summary statistics of the eligible studies from published articles of the trials and their supplementary materials. We did not seek individual-level data. For primary and secondary outcomes, we obtained relevant hazard ratios (HRs) and 95% confidence intervals (95% CIs). For safety outcomes, odds ratios (ORs) and 95% CIs were obtained. We evaluated the risk of bias for eligible studies with the Cochrane Risk
of Bias Tool. SY and HM conducted the data extraction and quality assessment.

Data Synthesis and Analysis

For the present meta-analysis, the primary outcome was the HR of MACE. The secondary outcomes were the HRs of individual components of MACE, all-cause mortality, hospitalization due to heart failure, composite renal outcome, and renal function outcome. Definitions of the composite renal outcome and the renal function outcome were not standardized across the trials; detailed definitions of these renal outcomes for each trial are provided in Supplementary Table 1. Definitions of the safety outcomes, including severe hypoglycemia, pancreatitis, pancreatic cancer, and retinopathy, are also described in Supplementary Table 2.

For the meta-analysis, we used the inverse variance method with a random-effects model to obtain a weighted average of HRs or ORs with 95% CIs. We used the DerSimonian-Laird estimator for the assessment of between-study variance. We used the I^2 index and Cochran’s Q test to measure the degree of heterogeneity. The degree of heterogeneity based on the I^2 index was defined as low (I^2 index $\leq 25\%$), moderate (I^2 index 26–50%), and high (I^2 index $> 50\%$). P values of < 0.05 for Cochran’s Q test represent significant heterogeneity between the studies.
Regarding meta-regression analysis, normalized HbA1c and body weight reduction of each GLP-1RA were calculated from head-to-head clinical as described previously. We defined HbA1c reduction and body weight reduction of liraglutide as 1.0% and 1.0 kg, respectively, and normalized those of other GLP-1RAs against liraglutide. We delineated liraglutide as a normalizer because liraglutide was compared head-to-head against all the other GLP-1RAs. Using either normalized HbA1c change or body weight change as an independent variable, we conducted univariable meta-regression analyses for cardiovascular and renal outcomes with the log-HR as a dependent variable. *P* values of < 0.05 represented significance.

We performed all statistical analysis with R (version 4.0.2, R Foundation for Statistical Computing, Vienna, Austria) and the R package “meta” version 4.18.2.

Results

Study identification

Among 212 articles screened with the prespecified screening strategy, eight randomized, placebo-controlled cardiovascular outcome trials which defined MACE as the primary outcome were identified. Data from the following eight trials with a total of 60,080 individuals were analyzed in the present meta-analysis: ELIXA, LEADER, SUSTAIN-6,
EXSCEL, HARMONY, PIONEER 6, REWIND, and AMPLITUDE-O (Table 1). The study selection process based on PRISMA is presented in Supplementary Figure 1. According to the Cochrane risk of bias tool, the risk of bias for all included trials was evaluated as low (Supplementary Table 3).

ELIXA, EXSCEL, and AMPLITUDE-O evaluated GLP-1RAs with an exendin-based structural backbone, whereas LEADER, SUSTAIN-6, HARMONY, and PIONEER 6 examined those with a human GLP-1 backbone. For all trials other than ELIXA, the primary outcome was MACE, which was the time to the first occurrence of cardiovascular mortality, nonfatal stroke, or nonfatal myocardial infarction. For ELIXA, the primary outcome was extended MACE, which was MACE with an additional component, i.e., hospitalization due to unstable angina. However, hospitalization due to unstable angina accounted for less than 2.5% of the primary outcome in ELIXA. Given that hospitalization for unstable angina had minimal influence on the primary outcome, we included ELIXA in the meta-analysis. HARMONY and PIONEER 6 did not report renal outcomes and were excluded from the analysis for renal outcomes.

Baseline characteristics

The baseline characteristics of the eight trials are summarized in Table 1. The median
duration of follow-up was the shortest in PIONEER 6 (1.3 years) and the longest in REWIND (5.4 years). The average age ranged from 59.9 years in ELIXA to 66.2 years in REWIND. Of the 60,080 individuals, 21,930 (37%) were women, and 45,640 (76%) were of white ethnicity. Average body mass index varied from 30.1 kg/m² (ELIXA) to 32.8 kg/m² (SUSTAIN-6), and average baseline HbA1c ranged from 7.3% (REWIND) to 8.9% (AMPLITUDE-O), and average estimated glomerular filtration rate (eGFR) from 74 mL/min per 1.73 m² (PIONEER 6) to 80 mL/min per 1.73 m² (LEADER and SUSTAIN-6). The proportion of individuals with previously established cardiovascular disease was 77% (46,105 out of 60,080 individuals) across the eight trials and ranged from 31% (REWIND) to 100% (ELIXA and HARMONY).

Meta-analysis

Overall, GLP-1RAs reduced MACE (HR 0.86; 95% CI 0.80, 0.93; \(P < 0.001 \)) with moderate heterogeneity (\(I^2 = 44.5\% \), \(P = 0.082 \)) (Figure 1). As for the individual components of MACE, GLP-1RAs reduced cardiovascular mortality (HR 0.87; 95% CI 0.80, 0.94; \(P = 0.001 \)) with low heterogeneity (\(I^2 = 12.8\% \), \(P = 0.330 \)), nonfatal myocardial infarction (HR 0.90; 95% CI 0.83, 0.98; \(P = 0.020 \)) with moderate heterogeneity (\(I^2 = 27.4\% \), \(P = 0.210 \)), and nonfatal stroke (HR 0.83; 95% CI 0.76, 0.92;
P < 0.001) with low heterogeneity (*I²* = 0%, *P* = 0.639). Normalized HbA1c and body weight reduction used in the meta-regression analysis were presented in Supplementary Table 4.

As for other secondary outcomes (Figure 2), GLP-1RAs reduced all-cause mortality (HR 0.88; 95% CI 0.82, 0.94; *P* < 0.001) with low heterogeneity (*I²* = 10.5%, *P* = 0.349), hospitalization due to heart failure (HR 0.89; 95% CI 0.82, 0.98; *P* = 0.013) with low heterogeneity (*I²* = 2.5%, *P* = 0.410), composite renal outcome (HR 0.80; 95% CI 0.73, 0.87; *P* < 0.001) with moderate heterogeneity (*I²* = 45.0%, *P* = 0.106), and renal function outcome (HR 0.84; 95% CI 0.73, 0.97; *P* = 0.016) with moderate heterogeneity (*I²* = 31.4%, *P* = 0.200).

Subgroup analysis

In a subgroup analysis of MACE stratified by the prior history of established cardiovascular disease (Supplementary Figure 2), GLP-1RAs reduced MACE in individuals with established cardiovascular disease (HR 0.85; 95% CI 0.79, 0.92; *P* < 0.001) with moderate heterogeneity (*I²* = 48.0%, *P* = 0.060), but not in those without established cardiovascular disease (HR 0.94; 95% CI 0.83, 1.06; *P* = 0.303) with moderate heterogeneity (*I²* = 0.0%, *P* = 0.514).
In another subgroup analysis of MACE stratified by the structural backbones of GLP-1RAs (Supplementary Figure 3), exendin-based GLP-1RAs did not reduce MACE (HR 0.90; 95% CI 0.78, 1.04; \(P = 0.163\)) and had a high and significant heterogeneity among studies (\(I^2 = 67.2\%, \ P = 0.047\)). On the other hand, human GLP-1-based GLP-1RAs reduced MACE (HR 0.84; 95% CI 0.79, 0.90; \(P < 0.001\)) with low heterogeneity (\(I^2 = 0.0\%, \ P = 0.513\)).

Safety outcomes

Regarding safety outcomes (Supplementary Figure 4), GLP-1RAs did not increase ORs for severe hypoglycemia (OR 0.87; 95% CI 0.71, 1.08; \(P = 0.208\)), pancreatitis (OR 1.16; 95% CI 0.90, 1.60; \(P = 0.384\)), pancreatic cancer (OR 0.97; 95% CI 0.64, 1.48; \(P = 0.892\)), or retinopathy (OR 1.07; 95% CI 0.92, 1.25; \(P = 0.400\)).

Meta-regression analysis

The meta-regression analysis of the eight pooled trials showed that normalized HbA1c reduction was associated with the log-HR of MACE (slope -0.27; 95% CI -0.53, -0.01; \(P = 0.045\); \(R^2 = 0.64\)), whereas normalized body weight reduction had no association with the log-HR of MACE (slope = -0.05; 95% CI -0.17, 0.07; \(P = 0.390\); \(R^2 < 0.01\)).
Among secondary outcomes, normalized HbA1c reduction was associated with the log-HR of the composite renal outcome (slope = -0.35; 95% CI -0.69, -0.01; \(P = 0.045; R^2 = 0.80 \)) (Figure 4). Although the associations between normalized HbA1c reduction and other secondary outcomes were not significant, all outcomes except hospitalization due to heart failure showed negative slopes for the regression line, which was directionally concordant with MACE. As for body weight, normalized body weight reduction was not associated with any secondary outcome; the 95% CIs were wide and ranged from negative to positive values (Figure 4 and Supplementary Figure 5).

Discussion

Systematic review and meta-analysis

The present meta-analysis and meta-regression analysis included a total of 60,080 individuals from eight trials of GLP-1RAs, including AMPLITUDE-O. Overall, GLP-1RAs reduced MACE, its components, cardiovascular mortality, nonfatal myocardial infarction, nonfatal stroke, all-cause mortality, hospitalization due to heart failure, composite renal outcome, renal function outcome. Regarding safety outcomes, the occurrence of severe hypoglycemia, pancreatitis, pancreatic cancer, or retinopathy was not increased with GLP-1RAs.
In a subgroup analysis stratified by a prior history of established cardiovascular
disease (Supplementary Figure 2), GLP-1RAs reduced MACE in individuals with
established cardiovascular disease but not in those without established cardiovascular
disease. Taking into account the anti-atherosclerotic properties of GLP-1RAs29, it is
conceivable that cardiovascular benefits of GLP-1RAs were more prominent in
individuals with established cardiovascular disease. Our findings support current
guidelines which recommend GLP-1RAs for the treatment of diabetes in individuals
with established cardiovascular diseases or in those who are at high risk of
cardiovascular diseases2,30,31.

In terms of individual study details, all the studies, except for ELIXA and
EXSCEL, reported a reduction in MACE. Notably, in AMPLITUDE-O, efpeglenatide
reduced MACE for the first time as an exendin-based GLP-1RA. Given the findings
from AMPLITUDE-O, we conducted the subgroup analysis of MACE according to the
structural backbone of GLP-1RAs (Supplementary Figure 3). Whereas human
GLP-1-based GLP-1RAs reduced MACE (HR 0.84; 95% CI 0.79, 0.90; \(P < 0.001 \)) with
low heterogeneity (\(I^2 = 0.0\% , \ P = 0.513 \)), exendin-based GLP-1RAs did not reduce
MACE (HR 0.90; 95% CI 0.78, 1.04; \(P = 0.163 \)). The difference could be due to the
large heterogeneity of exendin-based GLP-1 trials (\(I^2 = 67.2\% , \ P = 0.047 \)). Individually,
ELIXA was different from the other two trials (EXSCEL and AMPMLITUDE-O) in the sense that it recruited individuals with a recent acute coronary syndrome. It should also be noted that EXSCEL reported poor adherence to the drug (around 40% of premature discontinuation of the trial) and that lixisenatide, used in ELIXA, has the shortest half-life of 2–4 hours, which is markedly shorter than that of other GLP-1RAs.

Therefore, in ELIXA and EXSCEL, multiple factors such as study design, adherence to the drug, and half-life could have influenced the cardiovascular outcomes. On the other hand, AMPMLITUDE-O achieved a reduction of MACE and other secondary outcomes despite the shortest follow-up periods of 1.8 years (2.1 years for ELIXA and 3.2 years for EXSCEL), showing that exendin-based GLP-1RAs can also exert cardioprotective and renoprotective effects.

In terms of safety outcomes of GLP-1RAs (Supplementary Figure 4), our meta-analysis showed that the occurrence of severe hypoglycemia, pancreatitis, pancreatic cancer, or retinopathy did not increase, although definitions of safety outcomes were not standardized across trials (Supplementary Table 2). Individually, the incidence of retinopathy was increased in SUSTAIN-6, which may be attributable to the rapid lowering of blood glucose. Currently, a trial on the long-term effects of semaglutide on diabetic retinopathy (FOCUS; ClinicalTrials.gov NCT03811561) is
underway, which is expected to be completed in 2024.

Meta-regression analysis

Regarding the underlying mechanism of GLP-1RA efficacy, factors associated with the cardioprotective and renoprotective profiles of GLP-1RAs remain unclear. Therefore, to evaluate whether reduction in HbA1c or body weight (two key clinical variables decreased by GLP-1RAs) is associated with the cardioprotective and renoprotective effects of GLP-1RAs, we conducted a meta-regression analysis of the log-HR of MACE and other secondary outcomes with normalized reduction of HbA1c or body weight.

As for the primary composite MACE outcome (Figure 4), the results showed that the log-HR of MACE decreased by 0.27 for every 1.0% normalized HbA1c reduction. In contrast, log-HR of MACE was not associated with normalized body weight reduction. In individual studies, albiglutide caused minimal weight reduction but still showed a reduction in log-HR of MACE. On the other hand, lixisenatide, which showed greater normalized body weight reduction than albiglutide and dulaglutide, did not reduce cardiovascular risk.

The present findings that only HbA1c reduction but not body weight reduction is associated with cardiovascular risk were consistent with a recent post-hoc mediation
study of the LEADER trial35. The mediation analysis showed that HbA1c was potentially the largest mediator of cardiovascular efficacy of liraglutide, with percentage mediation being 41–83\%, whereas body weight was calculated to have a much smaller percentage mediation of 4–14\%. Considering findings from our meta-regression analysis and the mediation analysis, it seems likely that HbA1c reduction can be a marker of cardiovascular efficacy of GLP-1RAs. However, whether HbA1c reduction constitutes a direct contributor or represents unmeasured contributors remains to be clarified. From a different standpoint, previous intervention trials, including DCCT/EDIC11,12 and UKPDS13-15, which evaluated the safety and efficacy of intensive glucose-lowering therapies, also supported the association of HbA1c lowering with cardiovascular risk reduction. However, these studies required more than ten years of follow-up to detect cardiovascular risk reduction, which is far longer than those of the trials in the present analysis. These discrepancies indicate that not only HbA1c lowering but pleiotropic effects of GLP-1RAs beyond glucose-lowering, such as amelioration of endothelial damage and chronic inflammation36, 37, may contribute to cardiovascular risk reduction.

As for secondary outcomes, normalized HbA1c reduction was also associated with the composite renal outcome. On the other hand, normalized body weight
reduction had high variability among studies and was not associated with any secondary outcome (Figure 4 and Supplementary Figure 5). Consistent with our findings that reduction in HbA1c but not body weight is associated with the composite renal outcome, another mediation analysis of LEADER and SUSTAIN 6 trials on the composite renal outcome suggested that HbA1c is potentially the greatest mediator of renal benefits, whereas body weight has little to no effect38. In contrast to the association of HbA1c reduction with the renal composite outcome, we did not find a significant association with the renal function outcome (the narrower renal endpoint). This discrepancy may be explained by the definitions of these outcomes: the renal composite outcome included new-onset macroalbuminuria, which is predominantly prevented by GLP-1RAs39, whereas renal function outcome did not (Supplementary Table 1). However, we must note that cardiovascular outcome trials were not designed to detect renal events as the primary outcome. In this regard, FLOW trial (NCT03819153)40, which evaluates the effects of semaglutide on hard renal endpoints as the primary outcome in individuals with chronic kidney disease, is expected to provide more insights into the renal effects of the GLP-1RAs.

Limitations
This study has several limitations. First, we used only summary data for meta-analysis and did not use individual-level data. Second, although heterogeneity between studies was generally low–moderate, some differences between the trials generated notable heterogeneity. For example, the unique recruiting criteria of ELIXA (all individuals had a recent history of acute coronary syndrome) likely contributed to high heterogeneity among studies with exendin-based GLP-1RAs. Third, although we conducted the meta-analysis and meta-regression analysis on various secondary outcomes in addition to the primary outcome, the included trials were not sufficiently powered to detect the differences in the secondary outcomes. This may have reduced the statistical power for meta-regression analysis of the secondary outcomes.

Conclusions

In conclusion, the present systematic review and meta-analysis showed that GLP-1RAs reduce MACE, its components, all-cause mortality, hospitalization due to heart failure, the composite renal outcome, and the renal function outcome. Furthermore, the meta-regression analysis showed that reduction in HbA1c, but not body weight, is associated with cardiovascular and renal risk reduction during the treatment with GLP-1RAs.
Data sharing

All the data were extracted from publicly available sources and included in the present article.

Acknowledgements

SY and HM are supported by the Japan Society for the Promotion of the Science.

Author contributions

SY designed the study and analyzed the data. SY and HM collected and interpreted the data and wrote the first draft of the manuscript. HM and DT verified the analysis. DT, SYM, NH, and NI contributed to data interpretation and critical review of the manuscript. NI is the guarantor of the study.

Funding

None.

Conflict of interests
References

14. UKPDS Group. Effect of intensive blood-glucose control with metformin on

on metformin or drug naive, referenced to liraglutide. *Diabetes Care.* 2019;42:1733-1741.

13. UKPDS Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2

32. Sharma D, Verma S, Vaidya S, Kalia K, Tiwari V. Recent updates on GLP-1

Figure legends

Figure 1. Effects of GLP-1RAs on the primary composite MACE outcome and its components.

GLP-1RAs = glucagon-like peptide-1 receptor agonists. MACE = major adverse cardiovascular events.

Figure 2. Effects of GLP-1 RAs on all-cause mortality, hospitalization due to heart failure, and renal outcomes.

GLP-1RAs = glucagon-like peptide-1 receptor agonists.
Figure 3. Univariable meta-regression analysis of normalized reduction in HbA1c (A) or body weight (B) with the logarithm of hazard ratio (log-HR) for the primary composite MACE outcome.

The size of each trial’s circle is inversely proportional to the variance of hazard ratio.

MACE = major adverse cardiovascular events.

Figure 4. Univariable meta-regression analysis of normalized reduction in HbA1c reduction (A–D) or body weight (E–H) with the logarithm of hazard ratio (log-HR) for all-cause mortality (A, E), nonfatal myocardial infarction (B, F), nonfatal stroke (C, G), and composite renal outcome (D, H).

The size of each trial’s circle is inversely proportional to the variance of hazard ratio.
<table>
<thead>
<tr>
<th>Trial name</th>
<th>ELIXA</th>
<th>LEADER</th>
<th>SUSTAIN-6</th>
<th>EXSCEL</th>
<th>Harmony Outcomes</th>
<th>REWIND</th>
<th>PIONEER 6</th>
<th>AMPLITUDE-O</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLP-1 receptor agonists</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median year of follow-up (years)</td>
<td>2.1</td>
<td>3.8</td>
<td>2.1</td>
<td>3.2</td>
<td>3.2</td>
<td>1.5</td>
<td>5.4</td>
<td>1.3</td>
</tr>
<tr>
<td>Age</td>
<td>59.9 ± 9.7</td>
<td>64.2 ± 7.2</td>
<td>64.6 ± 7.4</td>
<td>62.0 (56.0-68.0)</td>
<td>64.1 ± 8.7</td>
<td>66.2 ± 6.5</td>
<td>66.0 ± 7.0</td>
<td>64.5 ± 8.2</td>
</tr>
<tr>
<td>Sex (%female)</td>
<td>1861 (31%)</td>
<td>3337 (36%)</td>
<td>1295 (39%)</td>
<td>5603 (38%)</td>
<td>2894 (31%)</td>
<td>4589 (46%)</td>
<td>1007 (32%)</td>
<td>1344 (33%)</td>
</tr>
<tr>
<td>Body mass index (kg/m2)</td>
<td>30.1 ± 5.6</td>
<td>32.5 ± 6.3</td>
<td>32.8 ± 6.2</td>
<td>31.8 (28.2-36.2)</td>
<td>32.3 ± 5.9</td>
<td>32.3 ± 5.7</td>
<td>32.3 ± 6.5</td>
<td>32.7± 6.2</td>
</tr>
<tr>
<td>White ethnicity</td>
<td>4576 (75%)</td>
<td>7238 (78%)</td>
<td>2736 (83%)</td>
<td>11175 (76%)</td>
<td>6583 (70%)</td>
<td>7498 (76%)</td>
<td>2300 (72%)</td>
<td>3534 (87%)</td>
</tr>
<tr>
<td>Duration of diabetes (years)</td>
<td>9.2 ± 8.2</td>
<td>12.8 ± 8.0</td>
<td>13.9 ± 8.1</td>
<td>12.0 (7.0-18.0)</td>
<td>14.1 ± 8.7</td>
<td>10.5 ± 7.2</td>
<td>14.9 ± 8.5</td>
<td>15.4 ± 8.8</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>7.7 ± 1.3</td>
<td>8.7 ± 1.6</td>
<td>8.7 ± 1.5</td>
<td>8.0 (7.3-8.9)</td>
<td>8.7 ± 1.5</td>
<td>7.3 ± 1.1</td>
<td>8.2 ± 1.6</td>
<td>8.9 ± 1.5</td>
</tr>
<tr>
<td>Systolic blood pressure (mmHg)</td>
<td>129 ± 17</td>
<td>136 ± 18</td>
<td>136 ± 17</td>
<td>135 (124-145)</td>
<td>135 ± 17</td>
<td>137 ± 17</td>
<td>136 ± 18</td>
<td>135 ± 16</td>
</tr>
<tr>
<td>eGFR (mL/min/1.73 m2)†</td>
<td>78 ± 21</td>
<td>80</td>
<td>80 (61-92)</td>
<td>77 (61-92)</td>
<td>79 ± 25</td>
<td>75 (61-91)</td>
<td>74 ± 21</td>
<td>72 ± 22</td>
</tr>
<tr>
<td>Previous cardiovascular disease (%)</td>
<td>6068 (100%)</td>
<td>7598 (81%)</td>
<td>2735 (83%)</td>
<td>10782 (73%)</td>
<td>9463 (100%)</td>
<td>3114 (31%)</td>
<td>2695 (85%)</td>
<td>3650 (90%)</td>
</tr>
<tr>
<td>Previous heart failure (%)</td>
<td>1358 (22%)</td>
<td>1667 (18%)</td>
<td>777 (24%)</td>
<td>2389 (16%)</td>
<td>1922 (20%)</td>
<td>853 (9%)</td>
<td>288 (12%)</td>
<td>737 (18%)</td>
</tr>
<tr>
<td>Other glucose-lowering therapies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin</td>
<td>2374 (39%)</td>
<td>4169 (45%)</td>
<td>1913 (58%)</td>
<td>6368 (46%)</td>
<td>5597 (59%)</td>
<td>2363 (24%)</td>
<td>1930 (61%)</td>
<td>2560 (63%)</td>
</tr>
<tr>
<td>Metformin</td>
<td>4021 (66%)</td>
<td>7144 (76%)</td>
<td>2414 (73%)</td>
<td>11295 (77%)</td>
<td>6969 (74%)</td>
<td>8037 (81%)</td>
<td>2463 (77%)</td>
<td>2985 (72%)</td>
</tr>
<tr>
<td>Sulfonylurea</td>
<td>2004 (33%)</td>
<td>4733 (51%)</td>
<td>1410 (43%)</td>
<td>5401 (37%)</td>
<td>2725 (29%)</td>
<td>4552 (46%)</td>
<td>1027 (77%)</td>
<td>1036 (25%)</td>
</tr>
<tr>
<td>Thiazolidinedione</td>
<td>95 (2%)</td>
<td>575 (6%)</td>
<td>76 (2%)</td>
<td>579 (4%)</td>
<td>194 (2%)</td>
<td>168 (2%)</td>
<td>118 (4%)</td>
<td>–</td>
</tr>
<tr>
<td>DPP4 inhibitor</td>
<td>–</td>
<td>6 (<1%)</td>
<td>5 (<1%)</td>
<td>2203 (15%)</td>
<td>1437 (15%)</td>
<td>564 (6%)</td>
<td>2 (<1%)</td>
<td>–</td>
</tr>
<tr>
<td>SGLT2 inhibitor</td>
<td>–</td>
<td>–</td>
<td>5 (<1%)</td>
<td>77 (1%)</td>
<td>575 (6%)</td>
<td>620 (6%)</td>
<td>305 (10%)</td>
<td>618(15%)</td>
</tr>
</tbody>
</table>
Continuous variables are presented as mean ± standard deviation (except for EXSCEL), and categorical variables are presented as numbers (%). Continuous data on EXSCEL are presented as median (Interquartile range, IQR).

†eGFR data on SUSTAIN-6, EXSCEL, and REWIND are expressed as median (IQR). The standard deviation of eGFR in LEADER is not available.

GLP-1 = glucagon-like peptide-1, Exenatide QW = Exenatide once weekly, HbA1c = glycated haemoglobin, eGFR = estimated glomerular filtration rate.
Figure 1.

Cardiovascular mortality

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Events/Total (%)</th>
<th>Placebo</th>
<th>Events/Total (%)</th>
<th>Weight</th>
<th>Hazard ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELIXA</td>
<td>156/3034 (5%)</td>
<td>158/3034 (5%)</td>
<td>12.3%</td>
<td>0.98 (0.78-1.22)</td>
<td></td>
</tr>
<tr>
<td>LEADER</td>
<td>219/4668 (5%)</td>
<td>278/4672 (6%)</td>
<td>19.2%</td>
<td>0.78 (0.66-0.93)</td>
<td></td>
</tr>
<tr>
<td>SUSTAIN-6</td>
<td>44/1649 (3%)</td>
<td>46/1649 (3%)</td>
<td>4.0%</td>
<td>0.98 (0.65-1.48)</td>
<td></td>
</tr>
<tr>
<td>EXSCEL</td>
<td>340/7356 (5%)</td>
<td>383/7396 (5%)</td>
<td>24.3%</td>
<td>0.88 (0.76-1.02)</td>
<td></td>
</tr>
<tr>
<td>HARMONY</td>
<td>122/4731 (3%)</td>
<td>130/4732 (3%)</td>
<td>10.5%</td>
<td>0.93 (0.73-1.19)</td>
<td></td>
</tr>
<tr>
<td>PIONEER 6</td>
<td>15/1591 (1%)</td>
<td>30/1592 (2%)</td>
<td>1.8%</td>
<td>0.49 (0.27-0.92)</td>
<td></td>
</tr>
<tr>
<td>REWIND</td>
<td>317/4949 (6%)</td>
<td>346/4952 (7%)</td>
<td>22.8%</td>
<td>0.91 (0.78-1.06)</td>
<td></td>
</tr>
<tr>
<td>AMPLITUDE-O</td>
<td>75/2717 (3%)</td>
<td>69/1359 (4%)</td>
<td>5.1%</td>
<td>0.72 (0.50-1.03)</td>
<td></td>
</tr>
</tbody>
</table>

Overall 1288/30694 (4%) 1440/29386 (5%)

Heterogeneity: $F = 12.8\%, P = 0.330$ \(\text{Favors placebo} \)

Nonfatal myocardial infarction

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Events/Total (%)</th>
<th>Placebo</th>
<th>Events/Total (%)</th>
<th>Weight</th>
<th>Hazard ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELIXA</td>
<td>270/3034 (9%)</td>
<td>261/3034 (9%)</td>
<td>16.6%</td>
<td>1.03 (0.87-1.22)</td>
<td></td>
</tr>
<tr>
<td>LEADER</td>
<td>292/4668 (6%)</td>
<td>339/4672 (7%)</td>
<td>18.2%</td>
<td>0.86 (0.73-1.00)</td>
<td></td>
</tr>
<tr>
<td>SUSTAIN-6</td>
<td>54/1684 (3%)</td>
<td>67/1649 (4%)</td>
<td>5.1%</td>
<td>1.01 (0.57-1.96)</td>
<td></td>
</tr>
<tr>
<td>EXSCEL</td>
<td>483/7356 (7%)</td>
<td>493/7396 (7%)</td>
<td>22.9%</td>
<td>0.97 (0.85-1.10)</td>
<td></td>
</tr>
<tr>
<td>HARMONY</td>
<td>181/4731 (4%)</td>
<td>240/4732 (5%)</td>
<td>13.7%</td>
<td>0.75 (0.61-0.90)</td>
<td></td>
</tr>
<tr>
<td>PIONEER 6</td>
<td>37/1591 (2%)</td>
<td>35/1592 (2%)</td>
<td>3.2%</td>
<td>1.04 (0.66-1.66)</td>
<td></td>
</tr>
<tr>
<td>REWIND</td>
<td>223/4949 (5%)</td>
<td>231/4952 (5%)</td>
<td>14.4%</td>
<td>0.96 (0.79-1.15)</td>
<td></td>
</tr>
<tr>
<td>AMPLITUDE-O</td>
<td>91/2717 (3%)</td>
<td>58/1359 (4%)</td>
<td>5.8%</td>
<td>0.75 (0.54-1.05)</td>
<td></td>
</tr>
</tbody>
</table>

Overall 1631/30694 (5%) 1724/29386 (6%)

Heterogeneity: $F = 27.4\%, P = 0.210$ \(\text{Favors placebo} \)

Nonfatal stroke

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Events/Total (%)</th>
<th>Placebo</th>
<th>Events/Total (%)</th>
<th>Weight</th>
<th>Hazard ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELIXA</td>
<td>67/3034 (2%)</td>
<td>60/3034 (2%)</td>
<td>7.7%</td>
<td>1.12 (0.79-1.58)</td>
<td></td>
</tr>
<tr>
<td>LEADER</td>
<td>173/4668 (4%)</td>
<td>199/4672 (4%)</td>
<td>23.1%</td>
<td>0.86 (0.71-1.06)</td>
<td></td>
</tr>
<tr>
<td>SUSTAIN-6</td>
<td>30/1648 (2%)</td>
<td>46/1649 (3%)</td>
<td>4.4%</td>
<td>0.65 (0.41-0.13)</td>
<td></td>
</tr>
<tr>
<td>EXSCEL</td>
<td>187/7356 (3%)</td>
<td>218/7396 (3%)</td>
<td>24.8%</td>
<td>0.85 (0.70-1.03)</td>
<td></td>
</tr>
<tr>
<td>HARMONY</td>
<td>94/4731 (2%)</td>
<td>108/4732 (2%)</td>
<td>12.4%</td>
<td>0.86 (0.66-1.14)</td>
<td></td>
</tr>
<tr>
<td>PIONEER 6</td>
<td>13/1591 (1%)</td>
<td>17/1592 (1%)</td>
<td>1.8%</td>
<td>0.76 (0.37-1.56)</td>
<td></td>
</tr>
<tr>
<td>REWIND</td>
<td>158/4949 (3%)</td>
<td>205/4952 (4%)</td>
<td>21.4%</td>
<td>0.76 (0.62-0.94)</td>
<td></td>
</tr>
<tr>
<td>AMPLITUDE-O</td>
<td>47/2717 (2%)</td>
<td>31/1359 (2%)</td>
<td>4.5%</td>
<td>0.74 (0.47-1.17)</td>
<td></td>
</tr>
</tbody>
</table>

Overall 769/30694 (3%) 884/29386 (3%)

Heterogeneity: $F = 0\%, P = 0.639$ \(\text{Favors placebo} \)
All-cause mortality

<table>
<thead>
<tr>
<th>Study</th>
<th>Treatment Events/Total (%)</th>
<th>Placebo Events/Total (%)</th>
<th>Weight</th>
<th>Hazard ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELIXA</td>
<td>211/3034 (7%)</td>
<td>223/3034 (7%)</td>
<td>11.2%</td>
<td>0.94 (0.78–1.13)</td>
</tr>
<tr>
<td>LEADER</td>
<td>381/4668 (8%)</td>
<td>447/4672 (10%)</td>
<td>19.3%</td>
<td>0.85 (0.74–0.97)</td>
</tr>
<tr>
<td>SUSTAIN-6</td>
<td>62/1648 (4%)</td>
<td>60/1649 (4%)</td>
<td>3.3%</td>
<td>1.05 (0.74–1.50)</td>
</tr>
<tr>
<td>EXSCEL</td>
<td>507/7356 (7%)</td>
<td>584/7396 (8%)</td>
<td>25.0%</td>
<td>0.86 (0.77–0.97)</td>
</tr>
<tr>
<td>HARMONY</td>
<td>196/4731 (4%)</td>
<td>205/4732 (4%)</td>
<td>10.5%</td>
<td>0.95 (0.79–1.16)</td>
</tr>
<tr>
<td>PIONEER 6</td>
<td>23/1591 (1%)</td>
<td>45/1592 (3%)</td>
<td>1.7%</td>
<td>0.51 (0.31–0.84)</td>
</tr>
<tr>
<td>REWIND</td>
<td>536/4949 (11%)</td>
<td>592/4952 (12%)</td>
<td>25.0%</td>
<td>0.90 (0.80–1.01)</td>
</tr>
<tr>
<td>AMPLITUDE-O</td>
<td>111/2717 (4%)</td>
<td>69/1359 (5%)</td>
<td>4.5%</td>
<td>0.78 (0.58–1.06)</td>
</tr>
<tr>
<td>Overall</td>
<td>2027/30694 (7%)</td>
<td>2225/29386 (8%)</td>
<td>100.0%</td>
<td>0.88 (0.82–0.94)</td>
</tr>
</tbody>
</table>

Heterogeneity: $I^2 = 10.5\%$, $P = 0.349$ $P < 0.001$

Hospitalization due to heart failure

<table>
<thead>
<tr>
<th>Study</th>
<th>Treatment Events/Total (%)</th>
<th>Placebo Events/Total (%)</th>
<th>Weight</th>
<th>Hazard ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELIXA</td>
<td>122/3034 (4%)</td>
<td>127/3034 (4%)</td>
<td>12.6%</td>
<td>0.96 (0.75–1.23)</td>
</tr>
<tr>
<td>LEADER</td>
<td>218/4668 (5%)</td>
<td>248/4672 (5%)</td>
<td>22.8%</td>
<td>0.87 (0.73–1.05)</td>
</tr>
<tr>
<td>SUSTAIN-6</td>
<td>59/1648 (4%)</td>
<td>54/1649 (3%)</td>
<td>5.8%</td>
<td>1.11 (0.77–1.61)</td>
</tr>
<tr>
<td>EXSCEL</td>
<td>219/7356 (3%)</td>
<td>231/7396 (3%)</td>
<td>22.0%</td>
<td>0.94 (0.78–1.13)</td>
</tr>
<tr>
<td>HARMONY</td>
<td>79/4731 (2%)</td>
<td>111/4732 (2%)</td>
<td>9.5%</td>
<td>0.71 (0.53–0.94)</td>
</tr>
<tr>
<td>PIONEER 6</td>
<td>21/1591 (1%)</td>
<td>24/1592 (2%)</td>
<td>2.3%</td>
<td>0.86 (0.48–1.55)</td>
</tr>
<tr>
<td>REWIND</td>
<td>213/4949 (4%)</td>
<td>226/4952 (5%)</td>
<td>21.3%</td>
<td>0.93 (0.77–1.12)</td>
</tr>
<tr>
<td>AMPLITUDE-O</td>
<td>40/2717 (1.5%)</td>
<td>31/1359 (2.3%)</td>
<td>3.5%</td>
<td>0.61 (0.38–0.98)</td>
</tr>
<tr>
<td>Overall</td>
<td>977/30694 (3%)</td>
<td>1052/29386 (4%)</td>
<td>100.0%</td>
<td>0.89 (0.82–0.98)</td>
</tr>
</tbody>
</table>

Heterogeneity: $I^2 = 2.5\%$, $P = 0.410$ $P = 0.013$

Composite renal outcome

<table>
<thead>
<tr>
<th>Study</th>
<th>Treatment Events/Total (%)</th>
<th>Placebo Events/Total (%)</th>
<th>Weight</th>
<th>Hazard ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELIXA</td>
<td>172/2647 (6%)</td>
<td>203/2639 (8%)</td>
<td>12.8%</td>
<td>0.84 (0.68–1.02)</td>
</tr>
<tr>
<td>LEADER</td>
<td>268/4668 (6%)</td>
<td>337/4672 (7%)</td>
<td>17.4%</td>
<td>0.78 (0.67–0.92)</td>
</tr>
<tr>
<td>SUSTAIN-6</td>
<td>62/1648 (4%)</td>
<td>100/1649 (6%)</td>
<td>6.3%</td>
<td>0.64 (0.46–0.88)</td>
</tr>
<tr>
<td>EXSCEL</td>
<td>366/6256 (6%)</td>
<td>407/6222 (7%)</td>
<td>19.3%</td>
<td>0.88 (0.76–1.01)</td>
</tr>
<tr>
<td>REWIND</td>
<td>848/6456 (17%)</td>
<td>970/6458 (20%)</td>
<td>27.1%</td>
<td>0.83 (0.77–0.93)</td>
</tr>
<tr>
<td>AMPLITUDE-O</td>
<td>335/2717 (13%)</td>
<td>250/1359 (18%)</td>
<td>16.8%</td>
<td>0.68 (0.57–0.79)</td>
</tr>
<tr>
<td>Overall</td>
<td>2051/22885 (9%)</td>
<td>2267/21493 (11%)</td>
<td>100.0%</td>
<td>0.80 (0.73–0.87)</td>
</tr>
</tbody>
</table>

Heterogeneity: $I^2 = 45.0\%$, $P = 0.106$ $P < 0.001$

Renal function outcome

<table>
<thead>
<tr>
<th>Study</th>
<th>Treatment Events/Total (%)</th>
<th>Placebo Events/Total (%)</th>
<th>Weight</th>
<th>Hazard ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELIXA</td>
<td>41/3031 (1%)</td>
<td>35/3032 (1%)</td>
<td>8.1%</td>
<td>1.16 (0.74–1.83)</td>
</tr>
<tr>
<td>LEADER</td>
<td>87/4668 (2%)</td>
<td>97/4672 (2%)</td>
<td>16.3%</td>
<td>0.89 (0.67–1.19)</td>
</tr>
<tr>
<td>SUSTAIN-6</td>
<td>18/1648 (1%)</td>
<td>14/1649 (1%)</td>
<td>3.7%</td>
<td>1.28 (0.64–2.58)</td>
</tr>
<tr>
<td>EXSCEL</td>
<td>246/6456 (4%)</td>
<td>273/6458 (4%)</td>
<td>29.6%</td>
<td>0.88 (0.74–1.05)</td>
</tr>
<tr>
<td>REWIND</td>
<td>169/4949 (3%)</td>
<td>237/4952 (5%)</td>
<td>25.9%</td>
<td>0.70 (0.57–0.85)</td>
</tr>
<tr>
<td>AMPLITUDE-O</td>
<td>121/2717 (5%)</td>
<td>76/1359 (6%)</td>
<td>16.2%</td>
<td>0.77 (0.57–1.02)</td>
</tr>
<tr>
<td>Overall</td>
<td>682/22885 (3%)</td>
<td>732/21493 (3%)</td>
<td>100.0%</td>
<td>0.84 (0.73–0.97)</td>
</tr>
</tbody>
</table>

Heterogeneity: $I^2 = 31.4\%$, $p = 0.200$ $P = 0.016$
Figure 3.

(A) Primary composite MACE outcome and HbA1c reduction

Slope = -0.27
(95% CI -0.53, -0.01),
P = 0.045

(B) Primary composite MACE outcome and body weight reduction

Slope = -0.05
(95% CI -0.17, 0.07),
P = 0.390
Figure 4.