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Abstract 

Obesity has been associated with cognition in observational studies; however, whether its effect is 

confounding, reverse causality, or causal remains inconclusive. Using two-sample Mendelian 

randomization (MR) analyses, we investigated the causality of overall obesity, measured by BMI, 

and abdominal adiposity, measured by waist–hip ratio adjusted for BMI (WHRadjBMI), on 

cognition. Using summary data from the GIANT consortium, COGENT consortium, and UK 

Biobank of European ancestry, there was no causal effect of BMI on cognition performance 

(beta[95% CI]=-0.04[-0.12,0.04], p-value=0.35); however, a 1-SD increase in WHRadjBMI was 

associated with 0.07 standardized decrease in cognition performance (beta[95% 

CI]=-0.07[-0.12,-0.02], p=0.006). Using raw data from the Taiwan Biobank of Asian ancestry, 

there was no causal effect of BMI on cognitive aging (beta[95% CI]=0.00[-0.09,0.09], 

p-value=0.95); however, a 1-SD increase in WHRadjBMI was associated with a 0.17 standardized 

decrease in cognitive aging (beta[95% CI]=-0.17[-0.30,-0.03], p=0.02). This trans-ethnic MR 

study reveals that abdominal adiposity impairs cognition.  
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Introduction 

Obesity is an important public health issue owing to its increasing prevalence 1 and adverse health 

effects on cardiovascular disease, diabetes, cancer, and depression 2,3. Mid-life obesity is a risk 

factor for the development of dementia in late life 4. Based on several observational studies, 

obesity is associated with reduced cognitive function in middle-aged adults 5-7. However, some 

studies failed to replicate such associations 8,9. Such an association may also be reverse causality. 

Childhood intelligence may be inversely associated with adult obesity 10,11. Whether the 

association of obesity with cognition is confounded by unmeasured factors or reverse causality 

remains inconclusive 12,13.  

 

Mendelian randomization (MR) adopts the concept of a randomized control trial, and genetic 

variants can be used as instrumental variables for exposure of interest to uncover an observational 

association between an exposure and an outcome that is causal or simply correlated 14. The MR 

approach is not biased by reverse causation or confounding factors. Several studies have applied 

MR to demonstrate the effect of obesity on various physical complications, such as cardiovascular 

disease 15,16, cancer 17, and multiple sclerosis 18. Furthermore, studies have demonstrated a causal 

association between obesity and low gray matter volume 19,20. However, the causal association 

between obesity and cognition has not been examined using the MR approach.  

 

The present study aimed to determine whether cognition is causally affected by genetically 

predicted overall obesity, measured by body mass index (BMI), and abdominal adiposity, 

measured by waist–hip ratio adjusted for BMI (WHRadjBMI), across populations, including 

European and Asian populations. We reported MR in a two-sample approach using genome-wide 

association study (GWAS) summary data for individuals of European ancestry, including BMI 
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(n=322,154) and WHRadjBMI (n=210,088) from the GIANT consortium, and cognition 

performance (n=257,828) from the UK Biobank and COGENT consortium, and using individual 

data of Asian ancestry from Taiwan Biobank to perform GWAS for BMI (n=65,689), 

WHRadjBMI (n=65,683), and cognitive aging as measured by the Mini-Mental State Examination 

(MMSE, n=21,273).  

 

Results 

MR estimation of the causality of obesity on cognitive performance in Europeans 

For the causality of BMI and WHRadjBMI on cognitive performance, a forest plot of the 

causal effect estimation for each instrument and the overall causal effect estimation by inverse 

variance weighted (IVW) is displayed in Figure 1 (a) and (b), respectively, and a scatter plot of 

MR is shown in Figure 1 (c) and (d), respectively. According to the main results using IVW, there 

was no causal effect of BMI on cognition (beta [95% CI] = -0.04 [-0.12, 0.04], p-value = 0.35, 

Figure 2); however, a 1-SD increase in WHRadjBMI was associated with 0.07 standardized score 

decrease in cognition (beta [95% CI] = -0.07 [-0.12, -0.02], p-value = 0.006).  

Heterogeneity was detected across instrument effects in the causality of two obesity-related 

traits on cognitive performance (Supplementary Table S1), and overall pleiotropy was not detected 

using the MR-Egger intercept (Figure 2).  

In the sensitivity analysis using other MR methods for BMI, the weighted median and 

weighted mode methods suggested that higher BMI was casually associated with lower cognition 

(p = 0.0006 and 0.007, respectively). However, after removing nine outliers, MR-PRESSO 

suggested no causality of BMI on cognition (p = 0.07). 
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In the sensitivity analysis for WHRadjBMI, the weighted median estimate suggested 

causality of WHRadjBMI on cognition (p = 0.03); however, MR-PRESSO did not detect any 

outliers and replicated the causality of WHRadjBMI on cognition (p = 0.0087). 

 

MR estimation of the causality of obesity on cognitive aging in Asians 

For the causality of BMI and WHRadjBMI on cognitive aging, measured by MMSE, a forest 

plot and a scatter plot of MR are shown in Figure 3. Based on the main results using IVW, there 

was no causal effect of BMI on MMSE (beta [95% CI] = 0.00 [-0.09, 0.09], p-value = 0.95, Figure 

4); however, a 1-SD increase in WHRadjBMI was associated with a 0.17 standardized score 

decrease in MMSE (beta [95% CI] = -0.17 [-0.30, -0.03], p-value=0.02). 

For the effect of both BMI and WHRadjBMI on cognitive aging, heterogeneity was not 

detected across the instrument effect (Supplementary Table S3), and overall pleiotropy was not 

detected using the MR-Egger intercept (Figure 4).  

  In the sensitivity analysis for BMI, none of the MR estimates supported the causality of BMI 

on cognitive aging. In the sensitivity analysis for WHRadjBMI, MR-PRESSO did not detect any 

outliers and replicated the causality of WHRadjBMI on MMSE (p = 0.003). The weighted median 

and weighted modes had similar causality estimations, although no statistical significance was 

found.  

Discussion  

Our study confirmed a causal relationship, as abdominal adiposity measured by WHRadjBMI was 

found to have an adverse effect on cognition across European and Asian populations. Each SD 

increase in genetically predicted WHRadjBMI was associated with greater than 7% decrease in the 

standardized performance of cognition in Europe and a 17% decrease in the standardized 
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performance of cognitive aging in Asians. However, weak evidence is provided for the causal 

relationship between BMI and cognition in both populations.  

 

Abdominal adiposity, measured by WHRadjBMI, was found to be associated with poor cognition. 

Our findings are consistent with those of previous observational studies 21-24. One cross-sectional 

study assessed the effect of both BMI and WHR on cognition in older adults. This study revealed 

that only individuals with BMI >28 kg·m-2 and high WHR 0.8 had statistically significant 

cognitive impairment 21. Another study revealed no association between BMI and cognition 

among Chinese elderly individuals; however, interactions were found between BMI and WHR on 

cognition performance. In fact, the researchers found that high WHR was associated with 

cognitive impairment only among those with BMI > 25.3 kg·m-2 24. Another study used both BMI 

and WHR as obesity indicators and found that the upper quartile of WHR in midlife predicted 

poor cognitive function 12 years later. However, there was no significant difference between BMI 

> and < 30 kg·m-2 22. The Women’s Health Initiative Memory Study found that women with high 

WHR and normal BMI had a higher risk of developing cognitive impairment than those with BMI 

> 35 kg·m-2 23. In addition to cognition, several studies have demonstrated that WHR might be a 

better tool for assessing cardiovascular disease and other health outcomes 25,26.  

 

In the present study, no association was found between BMI and cognition. Our findings were 

consistent with those of previous studies that failed to demonstrate such an association in the full 

adjustment model. 8,9,22. However, the association between BMI and cognition is inconsistent in 

the literature. Several studies have revealed an association between baseline obesity and poor 

cognitive performance at follow up 5,27,28. BMI is composed of fat, water, muscle, bone, and other 

tissues, which may have different effects on health outcomes. Therefore, BMI might be a 

relatively poor biological tool for the examination of causal pathways in diseases 29. 
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Several MR studies have revealed that obesity causes a low volume of gray matter, which 

indicates that obesity is associated with neurodegeneration 19,20. However, some MR studies did 

not reveal the effect of BMI on the incidence of Alzheimer’s disease 30-32. Among these studies, 

two used BMI as an obesity indicator only 30,31. Only one study included BMI, WHRadjBMI, and 

waist circumference. Although none of these indicators were significantly associated with 

Alzheimer’s disease, the strength of association for WHRadjBMI was higher than that for other 

indicators 32. We hypothesized that the etiology of Alzheimer’s disease is mainly caused by the 

abnormal build-up of neurofibrillary tangles and beta-amyloid plaques 33. However, the adverse 

effect of obesity on cognition might be due to the cardiometabolic system, including 

cerebrovascular diseases. Obesity decreases not only blood supply to the brain, but also increases 

fat cells that damage the brain white matter, leading to loss of cognitive and intellectual behavior 

34. Of note, a meta-analysis of clinical trials demonstrated that intentional weight loss might be 

associated with improvement of executive function and memory in obese individuals 35. However, 

the sample size of all trials was small. Accordingly, the effectiveness of body weight reduction in 

enhancing cognition should be replicated in a large-scale study. 

 

The strengths of this study include the use of the MR approach to overcome confounding and 

reverse causality in conventional observational studies, and the use of large-scale GWAS to 

achieve a well-powered MR analysis, and trans-ethnic analysis to improve generalizability. 

Nonetheless, this study had several limitations. First, similar to all MR studies, the potential 

influence of pleiotropy on the results cannot be ruled out entirely. However, the genetic 

association between obesity and cognition was similar in the sensitivity analyses, and there was no 

evidence of pleiotropy. Second, the effect of modification on the link between obesity and 

cognition was not considered in this study. Thus, we could not assess the association between 
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adiposity and cognition for different age groups and genders, with potentially different fat 

accumulation in different locations. Third, the measures for cognition tests differed across the 

populations in our analyses. Only one representative indicator was included for the given 

population in our analysis. The effect of obesity on specific executive functions could not be 

explored in detail. 

 

In conclusion, the findings from this trans-ethnic MR study indicate that genetically predicted 

abdominal adiposity, as measured by WHR adjusted for BMI, would impair cognition. However, 

the mechanism underlying causality warrants further investigation. Healthcare providers may 

recommend avoiding abdominal obesity to prevent cognitive deficits and resist cognitive aging. 

Further investigations should focus on whether intentional weight reduction can reverse the 

adverse effects on cognition. 

Methods 

Data Source for Europeans 

This study used publicly available GWAS summary meta-analysis statistics for obesity-related 

traits from the GIANT consortium and cognition performance from the UK Biobank and 

COGENT consortium for individuals of European ancestry.  

 

GWAS for exposure: obesity traits 

BMI is the most commonly used measure of overall obesity. However, BMI does not reflect 

the proportion of weight related to muscle or fat within the body. The variation in body fat 

distribution could be high for a given BMI. WHRadjBMI is a surrogate measure of abdominal 

adiposity 36. A GWAS summary for obesity-related phenotypes, including BMI and WHRadjBMI, 

was retrieved from a meta-analysis of the GIANT consortium with approximately 25 million 
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genetic variants. A GWAS for BMI was conducted among 322,154 individuals of European 

descent 37. GWAS for WHRadjBMI was conducted among 210,088 individuals of European 

descent 38. The obesity-related variables underwent a standardized transformation by the inverse 

standard normal function before the association tests. 

 

GWAS for outcome: cognitive performance 

The GWAS summary statistics for cognition performance were retrieved from a meta-analysis 

of the UK Biobank and COGENT consortium 39, with a total of 257,828 individuals. The UK 

Biobank used a standardized score on a verbal-numerical reasoning test. The test contains 13 logic 

and reasoning questions with a two-minute time limit and was designed as a measure of fluid 

intelligence, which indicates the ability to think and reason abstractly and solve problems. Each 

participant took the test four times. The mean scores were used and standardized. The COGENT 

consortium defined cognition phenotype as the first unrotated principal component of performing 

multiple neuropsychological tests, including IQ-test subscales, across 35 studies. In general, the 

test variables measured the overall accuracy or total number of correct responses. The average 

Cronbach's alpha (a measure of internal consistency between test items) was 0.70 across 

component studies. 

 

Data Source for Asians 

This study used individual genotyping and phenotyping data from the Taiwan Biobank, the 

largest government-supported biobank in Taiwan since 2012 40. The Taiwan Biobank collects 

community-based samples for individuals between 30 and 70 years who are cancer-free at 

recruitment. The recruitment and data collection procedures were approved by the internal review 

board of the Taiwan Biobank. Each subject signed an approved informed consent form and 

provided blood samples, underwent physical examinations, and participated in face-to-face 
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interviews. This study was approved by the Central Regional Research Ethics Committee of China 

Medical University, Taichung, Taiwan (CRREC-108-30). 

This study comprised 95,238 individuals, including 34,595 males and 60,643 females, for 

whom genome-wide genotyping was carried out using the custom Taiwan Biobank chips ran on 

the Axiom Genome-Wide Array Plate System (Affymetrix, Santa Clara, CA, USA); 26,274 

participants were genotyped on the TWBv1 chip and 68,964 participants were genotyped on the 

TWBv2 chip. Quality control and imputation of the two chips were conducted separately. Quality 

control included the exclusion of individuals with more than 5% missing variants, exclusion of 

variants with a call rate <5%, minor allele frequency (MAF) <0.001, and deviation from 

Hardy-Weinberg equilibrium with P <1 × 10−6. We used the 504 EAS panel from 1000 Genomes 

Project 41 and the 973 TWB panel from whole-genome sequencing in TWB participants as the 

reference panel to impute the genotypes with IMPUTE2 and then retained the variants with 

imputation info > 0.7 and MAF > 0.5%. We removed multi-allelic variants and variants located in 

long-range LD regions (chr6: 25-35Mb; chr8: 7-13Mb). 

Two independent sample sets were selected for GWAS for cognition and GWAS for obesity, 

one with samples � 60y having information on cognitive aging test and the other with samples < 

60y having information on obesity-related traits. In each sample set, cryptic relatedness was 

removed, and the identity by descent (IBD) sharing coefficients, PI-HAT = probability (IBD = 2) + 

0.5× probability (IBD = 1), between any two participants in KING, and excluded one individual 

from a pair with PI-HAT greater than 0.1875. We performed principal component analyses (PCA) 

to identify population outliers; samples with any of the top 20 principal components (PCs) more 

than 6 SD away from the sample average were removed. 

For each trait, we removed samples with measures that were more than 6 SD away from the 

sample mean. We then normalized each trait by performing an inverse rank-based normal 

transformation. We performed a genetic association test separately for the two chips, and then 
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performed an inverse-variance-weighted fixed-effect meta-analysis in METAL. For each trait, the 

sample size and heritability estimates for each chip, and genetic correlation estimates between the 

two chips are provided in Supplementary Table S2. 

 

GWAS for exposure: obesity traits 

For BMI with a sample size of 65,689, we performed linear regression in PLINK for 

association tests with adjustment for age, age2, sex, age by sex interaction, age2 by sex interaction, 

and top 20 PCs. We performed an association test for WHRadjBMI with a sample size of 65,683. 

Manhattan plots for BMI and WHRadjBMI are shown in Supplementary Figure 1. 

 

GWAS for outcome: cognitive aging 

The Mini-Mental State Examination (MMSE)42, the most commonly used tool for testing 

cognitive aging, was measured using a questionnaire employed during face-to-face interviews 

with subjects > 60 years. The MMSE included tests for orientation, memory attention, calculation, 

and language function. We performed an association test for MMSE with adjustment for age, age2, 

sex, age by sex interaction, age2 by sex interaction, top 20 PCs, and educational attainment with a 

sample size of 21,273. The Manhattan plot for MMSE is shown in Supplementary Figure 1. 

 

Selection of genetic variants for MR 

Genetic instruments for the exposure of interest were selected based on the same processes for 

each obesity-related phenotype. We first mapped the variants from the exposure data to the 

outcome GWAS and preserved those that could be mapped to both. To ensure that the extracted 

variants were independent, linkage disequilibrium (LD) clumping was conducted based on r2 > 

0.0001 within a 1000 kb window. Variants with genome-wide significance (p < 5x10-8) for 

exposure were selected as genetic instruments. After harmonization and removing palindromic 
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variants, the available instrumental variables were 71 for BMI and 39 for WHRadjBMI in the 

European data, and 22 for BMI and 17 for WHRadjBMI in the Asian data. For Asians, information 

on the association of individual genetic instrument with obesity traits and with MMSE estimated 

from the Taiwan Biobank is provided in Supplementary Table S3. 

 

MR approach for causality estimation 

We performed MR analysis using the IVW method for the main results 43 as it is the best 

unbiased estimation if there is no pleiotropy and all instruments are assumed to be valid 44. Several 

different MR methods were used for the sensitivity analysis. Pleiotropy indicates that one gene 

manifests two or more unrelated phenotypes. The association between the gene and the outcome 

might occur through different pathways rather than the phenotype of interest. Therefore, we 

employed MR-Egger 44, weighted median 45, and weighted mode 46 methods to achieve robust and 

more reliable estimations while pleiotropy existed. The MR-Egger regression considers pleiotropy. 

The weighted median provides a consistent estimation even when 50% of the information is 

derived from invalid instrumental variables. The weighted mode is consistent even if most of the 

instruments are invalid. MR PRESSO was also conducted to detect and adjust for possible outliers 

47. R version 3.6.0 and TwoSampleMR version 0.5.3 for Linux were used for the MR analyses. 

We assessed the heterogeneity between individual instrument-cognition on instrument-obesity 

using Cochran’s and Rucker’s Q test 48,49, and examined the overall pleiotropy for each MR 

analysis using the MR-Egger intercept. 
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Figure Legends 

Figure 1. Forest plot of the causal effect estimation for a single instrument and the overall causal 

effect estimation by IVW, and a scatter plot of Mendelian randomization of obesity-related traits 

on cognitive performance in the European population. (a) forest plot for BMI; (b) forest plot for 

WHRadjBMI; (c) scatter plot for BMI; and (d) scatter plot for WHRadjBMI.  

Figure 2. The causal effect estimates of obesity-related traits on cognitive performance in the 

European population using different Mendelian randomization methods.  

Figure 3. Forest plot of the causal effect estimation for a single instrument and the overall causal 

effect estimation by IVW, and a scatter plot of Mendelian randomization of obesity-related traits 

on MMSE in the Asian population. (a) forest plot for BMI; (b) forest plot for WHRadjBMI; (c) 

scatter plot for BMI; and (d) scatter plot for WHRadjBMI. 

Figure 4. The causal effect estimates of obesity-related traits on MMSE in the Asian population 

using different Mendelian randomization methods. 
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