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Abstract 

Background 

Salicylic acid (SA) is a metabolite that can be obtained from the diet via fruit and vegetable ingestion, 

of which increased consumption has observationally been shown to decrease risk of colorectal 

cancer (CRC). Whilst primary prevention trials of SA and CRC risk are lacking, there is strong evidence 

from clinical trials and prospective cohort studies that aspirin (acetylsalicylic acid) is an effective 

primary and secondary chemopreventative agent. Since aspirin is rapidly deacetylated to form SA, it 

follows that SA may have a central role for aspirin chemoprevention. Through a Mendelian 

randomization (MR) approach, we aimed to address whether levels of SA affected CRC risk, and 

whether aspirin intake as a proxy for increased SA levels was required to identify an effect.  

Methods and Findings 

A two sample MR analysis was carried out using genome-wide association study summary statistics 

of SA from INTERVAL and EPIC-Norfolk (N= 14,149) and CRC from Colon Cancer Family Registry 

(CCFR), Colorectal Cancer Transdisciplinary Study (CORECT), Genetics and Epidemiology of Colorectal 

Cancer (GECCO) consortia and UK Biobank (55,168 cases and 65,160 controls). The Darmkrebs: 

Chancen der Verhütung durch Screening (DACHS) study (4,410 cases and 3,441 controls) was used 

for replication and stratification of aspirin-users and non-users. Single nucleotide polymorphisms 

(SNPs) for SA were selected via three methods: (1) Functional SNPs that influence aspirin and SA 

metabolising enzymes’ activity; (2) Pathway SNPs, those that are present in the coding regions of 

genes involved in aspirin and SA metabolism; and (3) genome-wide significant SNPs associated with 

levels of circulating SA.  

No association was found between the functional SNPs and SA levels, therefore they were not taken 

forward in an MR analysis. We identified 2 pathway SNPs (explaining 0.03% of the variance in SA 

levels and with an F statistic of 1.74) and 1 genome-wide independent SNP (explaining 0.05% of the 

variance and with an F statistic of 7.44) to proxy for SA levels. Using the pathway SNPs, an inverse 
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variance weighted approach found no association between an SD increase in SA and CRC risk (GECCO 

OR:1.03, 95% CI: 0.84-1.27 and DACHS OR:1.10, 95% CI:0.58-2.07) and no association was found 

upon stratification between aspirin users and non-users in the DACHS study (OR:0.93, 95% CI:0.23-

3.73 and OR:1.24, 95% CI:0.57-2.69, respectively). Wald ratio results using the genome-wide SNP 

also showed no association between an SD increase in SA and CRC risk (GECCO OR: 1.08, 95% 

CI:0.86-1.34 and DACHS OR: 1.01, 95% CI:0.44-2.31) and no effect was observed upon stratification 

by aspirin use (users OR:0.66, 95% CI: 0.11-4.12 and non-users OR: 1.12, 95% CI: 0.42-2.97).  

Conclusions 

We found no evidence to suggest that an SD increase in genetically predicted SA protects against 

CRC risk in the general population and upon stratification by aspirin use. However, based on the 

calculated variance explained by the SNPs and the F statistic, we acknowledge the possibility of weak 

instrument bias and the need to find better instruments for SA levels.  
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Introduction 

Colorectal cancer (CRC) is the fourth most common cancer in the UK and worldwide (1,2). Although 

incidence rates among the over 50s have remained relatively stable, rates in younger age groups 

have increased in both the UK and US populations (3,4). This highlights a need to find better and 

complementary prevention strategies to reduce risk of cancer.  

Salicylic acid (SA) is a dietary metabolite that can be found in various fruits, vegetables, herbs and 

spices (5–7). Results from a meta-analysis of 19 cohort studies found that combined intake of fruits 

and vegetables reduced the risk of colorectal cancer (summary Relative Risk (RR): 0.90, 95% CI: 0.83-

0.98) (8). Whilst the exact components that elicit this protective effect is unknown, it has been 

suggested that this may be due to levels of SA found to be related to consumption of fruits and 

vegetables (7). In addition, salicylates can be obtained through pharmacological intervention in the 

form of aspirin (acetylsalicylic acid),  a well-known analgesic used to treat fever, inflammation and 

acute pain (9), which is rapidly deacetylated to form SA (10,11) (Figure 1), the active form of the 

aspirin metabolic pathway  (12,13). Whilst SA can be obtained from the diet, the concentrations 

achieved (male and female median intake from diet 4.4mg/day and 3.2mg/day, respectively(6)) are 

much lower than through aspirin ingestion (aspirin doses ranging between 75mg-≥325mg given 

daily/alternate days)(14). Therefore it is unclear whether concentrations achieved from the diet 

alone are sufficient to protect against cancer or whether larger doses obtained through 

pharmacological intervention are required.  
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Figure 1- Aspirin metabolism pathway. 

 Roughly 10% of aspirin remains unchanged and is excreted in the urine as aspirin. Aspirin is broken down into various 

metabolites, the most active of them being salicylic acid (13,15). Various enzymes are involved in the metabolism pathway. 

The percentages indicate how much of the drug is being metabolised in that pathway. Adapted from Agúndez et al (15). 

Abbreviations: BChE, butyrylcholinesterase; PAFAH1b2, platelet- activating factor acetylhydrolase 2; PAFAH1b3, platelet- 

activating factor acetylhydrolase 3; UGT1A6, UDP-glucuronosyltransferase 1-6; ACSM2B, Acyl-CoA Synthetase Medium-

Chain Family Member 2B and CYP450, cytochrome P450. 

 

As of yet, no primary prevention trials have been carried out to assess the effect of SA intervention 

on CRC risk, but the evidence of aspirin as a chemopreventative agent is clear (16). A long-term 

follow up of a randomised controlled trial (RCT) in the Women’s Health Study (WHS) showed that 

alternate day aspirin intake reduced the risk of CRC after a median of 17.5 years follow up (HR:0.80, 

95% confidence intervals (CI):0.67-0.97) (17) and a meta-analysis of observational studies showed 

that aspirin is protective against CRC (relative risk (RR):0.79, 95% CI:0.74-0.85) (18). Further evidence 

comes from RCTs for primary and secondary prevention of vascular events. These showed that 

aspirin reduces the risk of CRC incidence and mortality (HR:0.76, 95% CI:0.60-0.96 and odds ratio 

(OR):0.79, 95% CI:0.68-0.92, respectively) (19,20). Considering aspirin is rapidly deacetylated to form 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 25, 2021. ; https://doi.org/10.1101/2021.10.13.21262206doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.13.21262206
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

12 

 

SA in under 30 mins (21), and that evidence in the form of in vivo and in vitro experiments have 

previously shown SA to be an antiproliferative and antitumour agent(22–24), it may be that 

metabolism of aspirin leading to increased circulating SA levels may partially explain aspirin’s 

chemopreventative mode of action . 

In order to identify the true effect of SA on CRC risk, conducting an RCT would be the ideal study 

design. However, RCTs for cancer primary prevention are lengthy and costly, therefore it would be 

helpful to test this association using statistical methods such as Mendelian Randomization (MR). MR 

uses genetic variants (mostly single nucleotide polymorphisms (SNPs)) related to modifiable factors 

(such as metabolite levels) to investigate the causal role of these factors on risk of disease (25–27). 

Through this method, MR has been likened to RCTs in that genetic variants are randomly allocated at 

conception the same way that an intervention is randomly allocated at the start of a trial (28,29). 

This lends many advantages such as overcoming the issues of confounding and reverse causation, 

which are commonly encountered in observational epidemiology (28). MR has previously been 

useful in predicting trial outcomes such as the case of selenium and prostate cancer in The Selenium 

and Vitamin E Cancer Prevention Trial (SELECT) (30). Results from an MR study mimicked the findings 

of this RCT and may have been useful to inform whether to conduct a trial that cost $114 million and 

that was weakly associated with increasing high-grade prostate cancer risk (31). 

For this reason, we applied an MR approach using genetic “instruments” or proxies for SA to assess 

the causal effect of this metabolite on risk of CRC. Since aspirin is rapidly deacetylated to SA (21) and 

therefore a plausible proxy of increased SA levels, we also stratified our analysis between aspirin 

users and non-users to test the hypothesis of whether diet-derived levels of SA alone would affect 

risk of CRC or whether higher concentrations achieved through pharmacological intervention in the 

form of aspirin was required to identify an effect.  
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Methods 

Genetic variants for salicylic acid  

We applied a two-sample MR study design to test for the association of SA levels (sample 1) with risk 

of CRC (sample 2). GWAS and meta-analysis of salicylate levels were performed using 5,841 

participants from the EPIC-Norfolk study (32) and 8,455 from the INTERVAL study (33). The 

percentage of samples with missing salicylate measurements was low (0.43% and 1.44% in EPIC-

Norfolk and INTERVAL respectively), providing a total sample size of 14,149. Salicylate was measured 

independently in each study as one of many metabolites measured using the Metabolon 

DiscoveryHD4® platform (Metabolon, Inc., Durham, USA), from non-fasted plasma samples 

(predominantly non-fasted samples in EPIC-Norfolk) collected at baseline. Measures that were 

median normalised for run day were natural log transformed, winsorised to 5 standard deviations 

from the mean, before being regressed against age, sex and study-specific variables (measurement 

consignment in EPIC-Norfolk and measurement consignment, INTERVAL centre, plate number, 

appointment month, lag time between blood donation appointment and sample processing, and the 

first 5 ancestry principal components in INTERVAL) using linear regression. Residuals from this 

regression were standardised (mean 0, standard deviation 1) and used for further analysis. 

Genotyping was performed in both studies using the Affymetrix Axiom UK Biobank genotyping array. 

In INTERVAL, genotype imputation was performed using the combined UK10K+1000 Genomes Phase 

3 reference panel. In EPIC-Norfolk, imputation was performed using the Haplotype Reference 

Consortium reference panel, with additional variants imputed using the UK10K+1000 Genomes 

Phase 3 reference panel. Genome-wide association analyses were performed using BOLT-LMM 

(version 2.2) (34) and variants with MAF<0.01% and INFO<0.3 were excluded. Associations from the 

two studies were pooled using inverse variance weighted fixed effect meta-analysis implemented in 

METAL (35), applying a minor allele count threshold in each study of >10.  
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The causal effect of SA on risk of CRC was assessed using 3 sets of genetic variants (SNPs) related to 

SA: (1) Functional SNPs that influence aspirin and SA metabolising enzymes’ activity (derived from 

Figure 1)- termed “functional SNPs”; (2) Pathway SNPs, those that are present in the coding regions 

of genes that are involved in aspirin and SA metabolism (based on the NCBI Build 37/UCSC hg19 

from https://grch37.ensembl.org/index.html, Supplementary Table 1) termed “pathway SNPs”; (3) 

genome-wide significant SNPs associated with levels of circulating aspirin metabolites - termed 

“genome-wide SNPs”. Pathways SNPs were defined as having a Bonferroni threshold of association 

(P value 0.05/2701=1.85x10-5), an MAF≥0.01%.as well as a consistent direction of effect in both Epic-

Norfolk and INTERVAL.Genome-wide signals were defined as having an association P value < 5x10-8 

in the meta-analysis, MAF≥0.01%.consistent direction of effect across the two studies and 

association P value <0.01 in both studies 

To account for genetic correlation, linkage disequilibrium (LD) clumping at an R2<0.001 and 10,000kb 

window was performed to retain the SNP most strongly associated with the metabolite for 

downstream analysis. Since an R2<0.001 is considered highly stringent, we also used an R2<0.8 to 

incorporate more variants while accounting for residual correlation in the model (see Statistical 

Analysis). An F-statistic for each SNP-exposure association was calculated to reflect the strength of 

the genetic instrument and indicate any possibility of weak instrument bias, usually inferred when 

F<10 (36). Power calculations were conducted using the mRnd online calculator to identify the OR in 

both directions that could be detected with the sample size available (37).  

Genetic variants for CRC incidence 

SNP-outcome associations were obtained from the Colon Cancer Family Registry (CCFR), Colorectal 

Cancer Transdisciplinary Study (CORECT) and Genetics and Epidemiology of Colorectal Cancer 

(GECCO) consortia and UK Biobank (55,168 cases and 65,160 controls), hereafter collectively termed 

as GECCO (38–40). Genetic data from a population-based case-control study from southwestern 

Germany (Darmkrebs: Chancen der Verhütung durch Screening (DACHS)) was used to assess 
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replication of the findings, and to run an MR analysis stratifyied by aspirin intake since this study has 

recorded aspirin use (defined as twice per week for at least a year) (41–43). This study comprised 

4,410 cases of which 810 (18.37% of cases) were aspirin-users and 3340 (75.74%) were non-users, 

and 260 cases (5.90%) were excluded as they had reported use of other non-aspirin NSAIDs. This 

study also contained 3,441 controls of which 779 (22.64%) had recorded aspirin use and 2,320 

(67.42%) were recorded as non-users, and 342 controls (9.94%) were excluded has they had 

reported use of other non-aspirin NSAIDs.  

To assess the causal effect of SA on CRC risk, we tested for association in GECCO but also stratified 

the analysis between aspirin users and non-users in DACHS to investigate whether increased SA 

levels via pharmacological intervention is required to see an effect. We obtained summary 

association statistics from GECCO but also conducted logistic regression analyses adjusting for age 

and sex in the DACHS study for all the participants. We then stratified the participants of the DACHS 

study to aspirin users and non-users before repeating the logistic regression analyses again. Genetic 

instruments that had an MAF≤0.01 in both GECCO and DACHS (all participants) were excluded from 

further analyses.  

Statistical analyses  

Analyses were carried out in R version 3.2.3 using the “Two-Sample MR” package (44). This package 

allows the formatting, harmonisation and analysis of summary data from genetic association studies 

in a semi-automated manner. The Two-Sample MR package automatically assigns effect alleles so 

that SNP associations with the exposure are positive i.e. so the effect allele is “metabolite-

increasing”. The SNPs identified as associated with SA can then be extracted from the outcome 

datasets. Allele harmonization ensures that the effect (metabolite-increasing) allele in the exposure 

dataset is also treated as the effect allele in the outcome dataset.  When only one SNP was 

associated with the metabolite, Wald ratios (SNP-outcome estimate ÷ SNP-exposure estimate) were 

calculated to assess the change in log OR per SD increase in the metabolite. When more than one 
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SNP was available, a weighted mean weighted by the inverse variance of the Wald ratio estimates 

(inverse-variance weighted (IVW) method) was used to assess the causal effect of increased 

metabolite levels on risk of CRC incidence (45). To assess the quality of our instruments, we 

calculated the variance in SA levels explained by the SNPs and the F statistic. The variance explained 

for each SNP was calculated using the formula:  
���� �����

	
�
 , where p is the minor allele frequency, b 

is the SNP effect on the exposure (beta) and var is the variance of the exposure. The F statistic was 

calculated using the formula:  
�������
�

�������
�
 where r is the sum of the variance explained by the set of 

SNPs, n is the sample size of the exposure GWAS and k is the number of SNPs used to proxy the 

exposure. In the presence of weak instruments, we conducted an MR robust adjusted profile score 

(MR RAPS), which is a method that provides robust inference when many weak instruments are 

present (46). 

Furthermore, the presence of one invalid instrument, e.g. one that is associated with exposures 

other than the exposure of interest (horizontal pleiotropy), may bias the results from the IVW 

method (47). For this reason, alternative methods that produce an unbiased estimator even when 

some of the genetic instruments are invalid were used as a sensitivity analysis when more than 2 

SNPs were used as exposure instruments (weighted mode, weighted median and MR Egger) (44,48–

50). The MR Egger test is not constrained to pass through an effect size of 0, unlike the IVW method, 

allowing the assessment of the presence of directional pleiotropy through the y intercept (47,50). 

We also measured the Q statistic to measure the presence of pleiotropy between our instruments. If 

all the SNPs are valid instruments, then the individual MR estimates for each SNP will only vary by 

chance. A larger amount of heterogeneity would indicate that one or more of the SNPs are 

pleiotropic (51).  

Due to the presence of a small number of independent SNPs associated with the metabolite, we also 

conducted a weighted generalised linear regression (WGLR) whereby SNPs in LD (R2<0.8) could be 

used with the incorporation of their correlation as weights in the regression analysis (52). This was 
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performed using the “LDlinkR” and “MendelianRandomization” packages in R (version 3.5.1). The 

use of multiple SNPs explains more of the variance in the metabolite levels and therefore improves 

power to detect an effect (52).  

Results 

Functional SNPs and CRC risk 

To interrogate the effect of SA on CRC risk, we used three methods to select our exposure 

instruments (Figure 2). In our first approach, we identified 4 functional SNPs that have been shown 

to affect enzyme efficiency in the aspirin metabolic pathway (Figure 1). For BChE  (rs6445035), the 

presence of an A allele increase has been associated with a decrease in aspirin hydrolysis by around 

1.2 nmol/ml/min (53). The UGT1A6 variants rs2070959 and rs1105879 predict a higher metabolic 

activity of the enzyme than the wild type (54,55). Furthermore, a variant in CYP2C9 (rs1799853) 

encodes an enzyme with reduced activity (56).  
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Figure 2- Instrument selection for functional, pathway and genome-wide SNPs.  

Abbreviations: SA, salicylic acid;; EAF, effect allele frequency; BF, Bonferroni.  

These SNPs were tested for association with SA in the INTERVAL and (EPIC)-Norfolk study, however 

none of the SNPs reached nominal significance with the metabolite (Figure 3 A) (Supplementary 

Table 2). For this reason, these SNPs were therefore not taken forward in an MR analysis.  
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Figure 3- Functional SNP metabolite associations and two-sample pathway MR analysis 

(A) Forest plot of single SNP associations with salicylic acid for the functional SNPs. (B) Forest plot of one SD increase in SA 

and its effect on CRC risk, instrumented by pathway SNPs and applying three methods:  IVW after applying an LD threshold 
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of R
2
<0.001 (black), MR RAPS after applying an LD threshold of R

2
<0.001 (grey), IVW after applying an LD threshold of 

R
2
<0.8 (red) and a WGLR after applying an LD threshold of R

2
<0.8 (green). (C) Forest plot of one SD increase in SA and its 

effect on CRC risk, instrumented by genome-wide SNPs and applying three methods:  WR after applying an LD threshold of 

R
2
<0.001 (black), MR RAPS after applying an LD threshold of R

2
<0.001 (grey), IVW after applying an LD threshold of R

2
<0.8 

(red) and a WGLR after applying an LD threshold of R
2
<0.8 (green). Abbreviations: OR, odds ratio; IVW, inverse variance 

weighted; WGLR, weighted generalised linear regression; WR, Wald ratio; LD, linkage disequilibrium. 

Pathway SNPs and CRC risk 

We investigated genetic variants within the coding regions of the enzymes involved in aspirin and SA 

metabolism (Figure 1). These were BChE, PAFAH1b2, PAFAH1b3, UGT1A6, ACSM2B and CYP450 .  

We obtained summary statistics for 2701 SNPs within the genetic coding regions of the enzymes for 

SA. After applying a Bonferroni threshold of association (P value 0.05/2701=1.85x10-5) for SNPS with 

consistent direction of effects in both studies and a minor allele frequency of ≥0.01 in the exposure 

and outcome studies, we identified 45 SNPs that could be used to instrument SA. These SNPs were 

then clumped at an R
2
<0.001 and 0.8, providing 2 and 6 SNPs, respectively, to instrument SA levels 

(Figure 2). These explained 0.03% and 0.09% of the variance in SA levels and had an F statistic of 

1.74 and 2.16, respectively (Table 1). 
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Table 1- Exposure instruments used in the MR analysis 

SNP set Study 
Outcome 

Sample size 

Percentage cases 

(%) 

N SNPs 

LD R
2
 

Variance 

explained R
2 

(%) 

F statistic 

OR detected at 80% power 

 
Decreased 

risk 

Increased 

risk 

Pathway 

SNPs 

GECCO 120,328 
45.85 

55,168/120,328) 
2 

0.001 0.025 1.74 

0.90 1.11 

DACHS 7,851 
56.17 

(4,410/7,851) 
2 0.68 1.51 

DACHS- aspirin 

users 
1,589 

50.98 

(810/1,589) 
2 0.43 2.38 

DACHS- aspirin 

non-users 
5,660 

59.01 

(3,340/5,660) 
2 0.64 1.64 

GECCO 120,328 
45.85 

(55,168/120,328) 
6 

0.8 0.092 2.16 

0.95 1.06 

DACHS 7,851 
56.17 

(4,410/7,851) 
6 0.81 1.24 

DACHS- aspirin 

users 
1,589 

50.98 

(810/1,589) 
6 0.63 1.58 

DACHS- aspirin 

non-users 
5,660 

62.97 

(1,165/5,660) 
6 0.78 1.30 

Genome-

wide SNPs 

GECCO 120,328 
45.85 

(55,168/120,328) 
1 

0.001 0.053 7.44 

0.93 1.07 

DACHS 7,851 
56.17 

(4,410/7,851) 
1 0.76 1.32 

DACHS- aspirin 

users 
1,589 

50.98 

(810/1,589) 
1 0.55 1.83 

DACHS- aspirin 

non-users 
5,660 

62.97 

(1,165/5,660) 
1 0.73 1.42 

GECCO 120,328 
45.85 

(55,168/120,328) 
4 

0.8 0.090 3.18 

0.95 1.06 

DACHS 7,851 
56.17 

(4,410/7,851) 
4 0.81 1.24 
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DACHS- aspirin 

users 
1,589 

50.98 

(810/1,589) 
4 0.63 1.59 

DACHS- aspirin 

non-users 
5,660 

62.97 

(1,165/5,660) 
4 0.78 1.30 

 

Abbreviations: SA, salicylic acid; LD, linkage disequilibrium; NA, not applicable; OR, odds ratio. 
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After LD clumping at an R2<0.001, 2 SNPs were taken forward in an IVW analysis but no association 

was found between an SD increase in SA and CRC risk (GECCO OR: 1.03, 95% CI: 0.84-1.27 and 

DACHS OR: 1.10, 95% CI: 0.58-2.07) (Figure 3 B). Since aspirin is rapidly deacetylated to form SA (21) 

and therefore a plausible proxy for increased SA levels, we stratified our analysis between aspirin 

users and non-users in the DACHS study. Our power calculations show that after stratification we 

had 80% power to detect an effect of an SD increase in SA on CRC risk with an OR of ≤0.43 and ≥2.38 

in the reciprocal direction for aspirin users (N=1,589). For non-users (N=5,660), we had 80% power 

to detect an OR of ≤0.64 and ≥1.64 in the reciprocal direction (Table 1).However, our MR analysis 

showed no evidence of an association between SA and CRC risk (OR: 0.93, 95% CI: 0.23-3.73 and OR: 

1.24, 95% CI: 0.57-2.69, respectively) (Figure 3 B).  

The variance explained by these 2 instruments and their F statistic indicate the possibility of weak 

instrument bias. For this reason, we conducted MR RAPS, a method that provides robust inference 

even in the presence of weak instruments (46). Through this method, no association was found 

between an SD increase in SA and CRC risk (GECCO OR: 1.04, 95% CI: 0.87-1.23 and DACHS OR:1.10, 

95% CI: 0.57-2.12), even when stratified between aspirin users and non-users (OR: 0.93, 95% CI: 

0.22-3.87 and OR: 1.24, 95% CI: 0.56-2.76). 

Since this LD threshold is known to be very stringent, we used a more relaxed threshold (R2< 0.8) to 

increase the number of SNPs available to instrument the metabolite and therefore explain more of 

the variance in SA levels. This provided 6 SNPs associated with SA (Supplementary Table 3) which 

showed no association between SA and CRC risk (GECCO OR: 1.01, 95% CI: 0.91-1.12 and DACHS 

OR:1.14, 95% CI: 0.77-1.68). Stratification between aspirin use and non-use found no association 

between the metabolite and CRC risk in aspirin users or non-users (OR: 1.02, 95% CI: 0.44-2.40 and 

OR: 1.26, 95% CI: 0.78-2.01, respectively).  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 25, 2021. ; https://doi.org/10.1101/2021.10.13.21262206doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.13.21262206
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

24 
 

Using the alternative MR methods (weighted mode, weighted median and MR Egger), no other 

association between SA and CRC in both GECCO and DACHS was observed, regardless of 

stratification (Supplementary Table 4).  

Since all the SNPs were found to be on chromosome 16 (Supplementary Table 3), a WGLR method 

was carried out to account for the SNP correlations and include them as weights into the regression. 

Through this method, there was no association between SA and CRC risk in DACHS (OR:0.81, 95% 

CI:0.36-1.83) but a positive association in the GECCO sample (OR: 1.11, 95% CI: 1.01-1.21). No 

association was observed between SA and CRC risk in aspirin users or non-users (OR: 0.35, 95% CI: 

0.05-2.47 and OR: 1.10, 95% CI: 0.55-2.16, respectively) (Figure 3 B). As a sensitivity analysis, the 

heterogeneity of the results was appraised through a Q statistic but no evidence of pleiotropy was 

observed- i.e. no evidence that the instruments may also be associated with another phenotype 

(Supplementary Table 5).  

Genome-wide significant SNPs and CRC risk 

Initially, 72 SNPs were associated with SA at genome-wide significance. After applying an MAF 

threshold of ≥ 0.01 in the exposure and outcome studies for SNPs with a consistent direction of 

effect in both studies, 58 SNPs were available to instrument SA. After removing SNPs in LD at an 

R2<0.001 and R2<0.8, 1 SNP and 4 SNPs were available to instrument SA, respectively (Figure 2). 

These explained 0.05% and 0.09% of the variance in SA levels and had an F statistic of 7.44 and 3.18, 

respectively (Table 1).  

Using the 1 independent SNP associated with SA at genome-wide significance, WR results showed no 

association between the genetically predicted metabolite levels and cancer risk (GECCO OR: 1.08, 

95% CI: 0.86-1.34 and DACHS OR: 1.01, 95% CI:0.44-2.31). Our power calculations show that after 

stratification between aspirin users and non-users in the DACHS study, we had 80% power to detect 

an effect of an SD increase in SA on CRC risk with an OR of ≤0.55 and ≥1.83 in the reciprocal direction 

for aspirin users (N= 1,589). For non-users (N=5,660), we had 80% power to detect an OR of ≤0.73 
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and ≥1.42 in the reciprocal direction (Table 1), however, we found no association between SA levels 

and CRC in aspirin users (users OR: 0.66, 95% CI: 0.11-4.12 and non-users OR: 1.12, 95% CI: 0.42-

2.97) (Figure 3 C).  

 Due to the possibility of weak instrument bias, we also conducted an MR RAPS approach, but results 

remained unchanged (GECCO OR: 1.08, 95% CI: 0.86-1.36, DACHS OR: 1.01, 95% CI: 0.44-2.36, 

DACHS aspirin users OR: 0.66, 95% CI: 0.10-4.33 and DACHS aspirin non-users OR: 1.12, 95% CI: 0.41-

3.04).  

To explain more of the variance, we used a less stringent LD threshold of R2<0.8 and therefore 4 

SNPs to instrument SA (Supplementary Table 6). IVW results also showed no association between 

the metabolites and CRC risk (GECCO OR: 1.03, 95% CI: 0.92-1.15 and DACHS OR: 1.06, 95% CI: 0.69-

1.63) and no association was found upon stratification by aspirin use (users OR: 0.99, 95% CI: 0.38-

2.57, non-users OR: 1.10, 95% CI: 0.66-1.84).  

Using the alternative MR methods (weighted mode, weighted median and MR Egger), no association 

between SA and CRC in both GECCO and DACHS was seen, regardless of stratification 

(Supplementary Table 7).  

Since these 4 SNPs were all found on chromosome 16 (Supplementary Table 6), a WGLR method was 

applied to account for their correlation and found a positive association between SA and CRC risk in 

the GECCO sample (OR:1.13, 95% CI:1.05-1.22) but no association in the DACHS sample (OR: 0.51, 

95% CI: 0.16-1.67), DACHS aspirin users (OR: 0.12, 95% CI:0.01-2.67) and DACHS aspirin non-users 

(OR: 0.70, 95% CI: 0.30-1.65)(Figure 3 C). As a sensitivity analysis, the heterogeneity of the results 

was assessed through a Q statistic but no evidence of heterogeneity was seen (Supplementary Table 

8).  
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Discussion 

In this study, we aimed to assess whether increasing levels of  SA affected risk of CRC, using an MR 

approach, and whether higher levels of SA proxied by pharmacological intervention in the form of 

aspirin use was required to identify an effect. Our analysis focused on aspirin since 90% of the drug 

is rapidly deacetylated to form SA (15), which is the active metabolite of the drug (12,13), and 

therefore increases SA levels more than would be achieved through the diet. Three different 

approaches were applied to identify genetic variants (instrument variables) which could serve as 

proxies for SA and understand the causal nature of their role in determining CRC risk. The three 

approaches involved selecting (i) functional, (ii) pathway and (iii) genome-wide SNPs each associated 

with SA. The functional genetic variants were selected through the established role of the genes in 

aspirin metabolism from various sources of evidence. With regards to the pathway and genome-

wide significant SNPs, all were found on chromosome 16, either within or near the coding region for 

the enzyme ACSM2B which is the enzyme involved in breaking down SA into its metabolite salicyluric 

acid, thereby providing a plausible biological link between these SNPs and levels of SA.  

We found no association between the functional SNPs and levels of SA, therefore did not take them 

forward to instrument SA levels. Using pathway and genome-wide SNPs, we identified 2 and 1 

independent SNPs (R2<0.001) to proxy for SA levels, respectively, and found no association between 

increasing metabolite levels and CRC risk using an IVW and MR RAPS approach, regardless of aspirin 

stratification. Furthermore, due to the small number of instruments, we applied a less stringent LD 

threshold (R2<0.8) and identified 6 pathway SNPs and 4 genome-wide SNPs to proxy for an SD 

increase in SA levels. Using these SNPs, we found consistent null results using the IVW method and 

alternative MR methods (weighted median, weighted mode and MR Egger). However, after 

accounting for SNP  correlation using a WGLR method, we found that an an SD increase in SA 

increased the risk of CRC in GECCO (OR:1.11, 95% CI:1.01-1.21, P-value:0.03 and OR:1.13, 95% CI: 
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1.05-1.22, P-value: 1.42x10-3, respectively). Overall, we found little evidence to suggest that SA 

affects risk of CRC, regardless of stratification.   

Whilst we found no association between functional SNPs known to affect aspirin metabolism 

enzymes’ activity and levels of SA, this may be due to a more complex relationship between 

genotype and metabolite levels, rather than the assumed linear additive model. For example, with 

regards to the functional SNPs, Nagar et al. (2004) identified that whilst individuals with homozygous 

mutant alleles of UGT1A6 had the highest metabolic activity, those that were heterozygous for 

alleles in 3 SNPs (including rs1105879 and rs2070959) were actually less active than homozygous 

wildtype enzymes(55), indicating a non-linear association between the alleles and the metabolites 

which is a common assumption made in regression analyses(57). This non-linear association 

between alleles and enzyme activity needs to also be addressed between alleles and metabolite 

levels to derive instrumental variables.  

In order to improve the results and conclusions observed in this study, ideally we would need to 

identify the SNP associations with SA levels stratified between aspirin users and non-users, similar to 

what was carried out in our CRC outcome sample. However, to our knowledge, metabolite, genotype 

and phenotype data (of aspirin use) are not currently large enough to run this analysis. If a stronger 

association exists between the SNPs and SA levels in aspirin users, this would provide more strength 

of the appropriateness of the genetic instruments used to proxy for SA levels.  

We also acknowledge another limitation in this study that the the measurement of metabolites was 

through an untargeted metabolomics approach and so the variables generated are assessed in units 

of measurement called "ion counts" which are calculated from the area under the curve of the 

corresponding peak in the mass spectrum. This means that metabolite measurements are 

quantitative values of relative changes as opposed to the absolute quantification of metabolite 

concentrations that can be achieved through targeted metabolomics (58). For this reason, it is 

important to focus on the direction of effect and strength of association (P-values) in this study as 
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opposed to the magnitude of effect. This may have also impacted on the calculation of variance 

explained and the F statistics, which mostly indicate that the instrumental variables used in the MR 

were weak as they explain little of the variance and the F-statistic is below the conventionally 

applied indicative threshold of 10 (59). However, without carrying out a more targeted metabolomic 

approach and quantifying the exact effect of these SNPs on the metabolite levels, it is difficult to 

draw firm conclusions about the strength of the instruments used for MR.  Furthermore, larger 

sample sizes of recorded aspirin use are required as currently, our study may have been 

underpowered to detect an effect hence explaining the null results using the IVW approach. 

Therefore, it would be useful to repeat this analysis in a larger sample with comprehensive data on 

aspirin use. 

Conclusions 

Overall, the analyses presented have shown that dietary levels of SA as well as increased levels 

proxied by aspirin use may be insufficient at reducing risk of CRC, although based on the variance 

explained in SA levels by our SNPs and the F statistic, we acknowledge that the analysis needs to be 

repeated again with stronger instruments that proxy the metabolite levels. 
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