
rECHOmmend: an ECG-based machine-learning approach for identifying patients at 
high-risk of undiagnosed structural heart disease detectable by echocardiography 
 
Alvaro E. Ulloa-Cerna PhD1, Linyuan Jing PhD1, John M. Pfeifer MD1,2,4, Sushravya Raghunath 
PhD1, Jeffrey A. Ruhl MS1, Daniel B. Rocha MM3, Joseph B. Leader BA3, Noah Zimmerman 
PhD4, Greg Lee BS4, Steven R. Steinhubl MD4,5, Christopher W. Good DO1,6, Christopher M. 
Haggerty PhD1,7, Brandon K. Fornwalt MD1,4,7,8, Ruijun Chen MD1,9  
 

1Department of Translational Data Science and Informatics, Geisinger, Danville, PA, USA. 
2Heart and Vascular Center, Evangelical Hospital, Lewisburg, PA, USA 
3Phenomic Analytics and Clinical Data Core, Geisinger, Danville, PA, USA. 
4Tempus Labs Inc, Chicago, IL, USA. 
5Scripps Research Translational Institute, La Jolla, CA, USA. 
6UPMC Heart and Vascular Institute at UPMC, Hamot, PA, USA. 
7Heart Institute, Geisinger, Danville, PA, USA 
8Department of Radiology, Geisinger, Danville, PA, USA 
9Department of Medicine, Geisinger, Danville, PA, USA 
 
 
Corresponding author: 
Ruijun Chen, MD 
100 North Academy Ave 
Danville, PA, 17822-4400 
570-214-5478 
ruijun.chen@gmail.com 
 
  



Abstract  
Background 
Early diagnosis of structural heart disease improves patient outcomes, yet many remain 
underdiagnosed. While population screening with echocardiography is impractical, 
electrocardiogram (ECG)-based prediction models can help target high-risk patients. We 
developed a novel ECG-based machine learning approach to predict multiple structural heart 
conditions, hypothesizing that a composite model would yield higher prevalence and positive 
predictive values (PPVs) to facilitate meaningful recommendations for echocardiography. 
 
Methods 
Using 2,232,130 ECGs linked to electronic health records and echocardiography reports from 
484,765 adults between 1984-2021, we trained machine learning models to predict the 
presence of any of seven echocardiography-confirmed diseases within one year. This 
composite label included: moderate or severe valvular disease (aortic/mitral stenosis or 
regurgitation, tricuspid regurgitation), reduced ejection fraction <50%, or interventricular septal 
thickness >15mm. We tested various combinations of input features (demographics, labs, 
structured ECG data, ECG traces) and evaluated model performance using 5-fold cross-
validation, multi-site validation trained on one clinical site and tested on 11 other independent 
sites, and simulated retrospective deployment trained on pre-2010 data and deployed in 2010. 
 
Findings 
Our composite “rECHOmmend” model using age, sex and ECG traces had an area under the 
receiver operating characteristic curve (AUROC) of 0.91 and a PPV of 42% at 90% sensitivity at 
a prevalence of 17.9% for our composite label. Individual disease models had AUROCs ranging 
from 0.86-0.93 and lower PPVs from 1%-31%. The AUROC for models using different input 
features ranged from 0.80-0.93, increasing with additional features. Multi-site validation showed 
similar results to the cross-validation, with an aggregate AUROC of 0.91 across our 
independent test set of 11 clinical sites after training on a separate site. Our simulated 
retrospective deployment showed that for ECGs acquired in patients without pre-existing known 
structural heart disease in a single year, 2010, 11% were classified as high-risk, of which 41% 
developed true, echocardiography-confirmed disease within one year.  
  
Interpretation 
An ECG-based machine learning model using a composite endpoint can predict previously 
undiagnosed, clinically significant structural heart disease while outperforming single disease 
models and improving practical utility with higher PPVs. This approach can facilitate targeted 
screening with echocardiography to improve under-diagnosis of structural heart disease.  
 
  



Introduction 
 
Patients with structural heart disease carry a high burden of morbidity and mortality, for whom 
echocardiography holds important evidence-based implications for diagnosis, prognosis, and 
management.1–5 Echocardiography is the primary diagnostic test for many structural conditions, 
including valvular disease, left ventricular (LV) dysfunction, and various cardiomyopathies.6–8 
Early diagnosis of structural heart disease improves patient outcomes, yet despite growing 
indications and availability of echocardiography, these conditions continue to be 
underdiagnosed.9–12 Studies have shown that millions of patients have unrecognized disease, 
including the majority of elderly patients found to have moderate or severe valvular disease on 
community screening and the majority of patients with hypertrophic cardiomyopathy.11,12 
 
Electrocardiogram (ECG)-based machine learning models can help identify undiagnosed 
patients for targeted screening, yet limitations to their practical adoption remain. ECGs are more 
common, inexpensive, and broadly indicated than echocardiograms, and machine learning 
approaches using ECGs have been shown to identify patients at increased risk of individual 
diseases.13–15 However, despite otherwise good performance, these models often suffer from 
low positive predictive values (PPVs) due to the low prevalence of individual target diseases.15,16 
This limits the practical utility of real-world implementations, since many patients identified as 
high-risk would need to undergo screening to diagnose one true case.  
 
We therefore sought to combine multiple models into a single platform to increase diagnostic 
yield. We developed a novel machine learning approach to identify patients at high-risk for any 
of seven structural heart disease endpoints within a single ECG platform, including moderate or 
severe valvular disease (aortic stenosis [AS], aortic regurgitation [AR], mitral stenosis [MS], 
mitral regurgitation [MR], tricuspid regurgitation [TR]), reduced left ventricular ejection fraction 
(EF), and increased interventricular septal (IVS) thickness. Our model generates a composite 
prediction with higher yield/PPV to facilitate a practical clinical recommendation for diagnostic 
echocardiography. Moreover, we simulated the utility of this model on a large retrospective 
dataset to assess expected real-world performance if implemented into clinical care. 
 
Methods 
Data 
The Institutional Review Board approved this study with a waiver of consent. We retrieved and 
processed data from three clinical sources at Geisinger, a large regional US health system 
providing both inpatient and outpatient care, including 2,110,332 patients from the Epic (Epic 
Systems, Madison, WI) electronic health record (EHR), 758,269 echocardiograms from Xcelera 
(Philips, Cambridge, MA), and 3,548,543 ECGs from MUSE (GE Healthcare). We included all 
12-lead ECGs after 1984 from patients ≥ 18 years old, sampled at either 250hz or 500hz, and a 
corresponding Epic medical record, resulting in 2,925,925 ECGs from 631,710 patients. All data 
were collected through July 2021.  
 
We obtained vitals, laboratory results, and patient demographics as of the index ECG 
acquisition date and time (Supplemental Table 1). We used the closest past measurement 



unless the measurement was older than one year, in which case we assigned a missing value. 
We extracted echocardiographic measurements and diagnoses from Xcelera reports and ECG 
structured findings, measurements, and 12-lead traces from MUSE.13,17 Structured ECG 
findings were directly obtained from the final, official interpretation by an attending cardiologist. 
We then labeled ECGs as detailed below. Overall, we included 2,232,130 ECGs with at least 1 
label from 484,765 patients (Figure 1).  
 
Echocardiography-confirmed disease outcome definitions 
We defined 7 outcome labels using echocardiography reports, one for each disease outcome 
(AS, AR, MR, MS, TR, reduced EF, increased IVS thickness). We used regular expressions to 
extract key words and phrases identifying the diagnosis of valvular stenosis or regurgitation and 
its associated severity level, based upon the final interpretation by an attending cardiologist 
(Supplemental Table 2). We labeled each of the valvular conditions of interest as positive if 
moderate or severe and negative if normal or mild in severity. We assigned a missing label 
otherwise.  
 
We defined positive labels for reduced EF as a reported EF of <50% on echocardiography. We 
defined increased IVS thickness as >15mm. These criteria were chosen based on cardiologist 
and clinician consensus and in concordance with existing guidelines for potential diseases of 
interest, such as hypertrophic cardiomyopathy.18 Echocardiograms not meeting those criteria 
were labeled as negative. We assigned a missing label if the measurement was missing.  
 
Outcome labels extracted from echocardiography reports for AS, AR, MR, MS, and TR were 
randomly sampled in sets of 100-200 and validated by manual chart review. 
 
ECG labeling 
For each given disease outcome, an ECG was labeled as positive if it was acquired within one 
year before the patient’s first positive echocardiography report for that disease, or any time after 
the echocardiogram until a censoring event (Supplemental Figure 1). Censoring events were 
defined as death, end of observation in the EHR, or any intervention that directly treated the 
disease and could modify the underlying physiology, such as valve replacement or repair. We 
also used a negative echocardiography report after a positive echocardiography report as a 
censoring event to conservatively eliminate the possibility that such interventions may have 
been performed at outside institutions and therefore not represented in our data. 
 
For each given disease outcome, an ECG could be labeled as negative using 2 sets of criteria, 
depending on whether the patient did or did not have a history of prior echocardiography. 1) For 
patients with a prior history of echocardiography, ECGs acquired more than one year prior to 
the last negative echocardiogram, with confirmed absence of that given disease, were labeled 
as negative (Supplemental Figure 1). 2) In the absence of any patient history of 
echocardiography, an ECG was also labeled as negative if there was at least 1 year of 
subsequent follow-up without a censoring event and without any coded diagnoses for the 
relevant disease (Supplemental Table 3).  
 



For the composite endpoint, we labeled an ECG as positive if any of the seven individual 
outcomes were positive and as negative if all seven outcomes were negative. 

 
Model Development  
We developed 9 models using different combinations of input feature sets from structured data 
(demographics, vitals, labs, structured ECG findings and measurements) and ECG voltage 
traces. For ECG trace models, we developed a low-parameter convolutional neural network 
(CNN) with 18,495 trainable parameters that consisted of six one-dimensional CNN-Batch 
Normalization-ReLU layer blocks.19 The blocks were followed by a two-layer multilayer 
perceptron and a final logistic output layer (Supplemental Table 4). Each CNN layer consisted of 
16 kernels of size 5. We used the same configuration to train one model per clinical outcome, 
resulting in 7 independently trained CNN models (Figure 2). 
 
To form the final model and combine ECG trace-based models with structured data, we 
concatenated the risk scores from the individual CNNs with the structured data. We used the 
concatenated feature vector to train a classification pipeline consisting of a min-max scaler (min 
0, max 1), mean imputation, XGBoost classifier, and calibration (Figure 2).20,21  
 
Model Evaluation 
We evaluated the models using three approaches: 1) a traditional random cross-validation 
partition; 2) a multi-site validation where the model was trained on data from Geisinger Medical 
Center and tested on 11 other independent clinical sites; and 3) a retrospective deployment 
scenario where, using 2010 as the simulated deployment year, we used past data to train and 
future data to test. We measured AUROC, area under the precision-recall curve (AUPRC), and 
other performance metrics (sensitivity, specificity, positive and negative predictive values) at 
multiple operating points. For all experiments, data were split into training, internal validation, 
and test sets with no overlap of patients across these sets. 
 
Cross validation 
We conducted a 5-fold cross validation by randomly sampling 5 mutually exclusive sets of 
patients. We expanded each set to all ECGs from each patient to form the training and test sets. 
When training the CNN models for each individual endpoint, we discarded samples with missing 
labels. We applied the model to all test samples and evaluated performance only on samples 
with complete labels that also satisfied the rECHOmmend labeling criteria, described above. 
Performance statistics were reported as means and 95% confidence intervals (CIs) across five 
folds for a random ECG per patient. 
 
Multi-site validation 
To perform multi-site validation, we created 12 mutually exclusive sets of patients from the 12 
clinical sites in the Geisinger Health System. We assigned each patient to a particular site by 
selecting the most common ECG site of origin for that given patient. We removed any ECGs 
taken outside of the assigned site for each patient.  
 



We trained our model on data from patients at a single site—Geisinger Medical Center, a large 
quaternary teaching hospital in Danville, Pennsylvania. We then tested this model on 11 other 
independent clinical sites, ranging from outpatient centers to small community hospitals to large 
teaching hospitals, at various locations across Pennsylvania.  
 
Retrospective deployment  
We retrospectively simulated a deployment of our model using a cutoff date of January 1, 2010, 
re-labeling all ECGs with information available as of that date. We used this artificially 
constrained dataset to replicate the cross-validation experiments and train a deployment model 
using data prior to 2010. We then applied the deployment model to the first ECG per patient for 
all patients seen from January 1, 2010 through December 31, 2010. We calibrated the XGBoost 
model using earliest ECGs from the at-risk population in 2005 and measured performance 
statistics on all patients at risk in 2010. We determined the true outcomes of the at-risk 
population using information up to July 23, 2021, following the definitions for positive and 
negative outcome labels outlined above.  
 
Sensitivity Analyses 
To account for potential variation in what providers and patients may find to be clinically 
significant disease, we repeated the cross-validation experiment on a different set of labels 
representing severe disease only. These label definitions include severe valvular disease only 
(moderate valvular disease now considered a negative label) and changed the definition for 
reduced EF to be <35%. 
 
To account for the possibility of patients with persistently undiagnosed disease in our definition 
of negative ECGs, we also repeated our cross-validation experiment using only 
echocardiography-confirmed negatives. Patients who never received an echocardiogram were 
excluded. All ECGs labeled ‘negative’ were followed by a negative echocardiogram confirming 
the absence of that given disease outcome. 
 
Results 
We identified 758,269 echocardiography reports from 332,919 patients, of which 191,652 
echocardiograms from 88,093 patients were positive for at least one disease outcome label. 
Disease prevalence ranged from 0.6% for MS to 17.2% for reduced EF (Supplemental Table 5). 
We identified 2,232,130 ECGs from 484,765 patients who met criteria for at least one positive or 
negative individual disease label, of which 1,651,952 ECGs from 434,220 patients qualified for 
the composite label (Supplemental Table 6). At baseline, across 2.23 million ECGs, the median 
patient age was 64 years, 50.1% were male, and 97.1% were white (Table 1). ECGs from 
patients with a positive label as compared to a negative label were generally older with a higher 
proportion of males and smokers. Baseline characteristics among patients with missing or 
undefined labels as compared to patients with at least one defined label were largely similar 
(Supplemental Table 7). 
 
Model Input Feature Evaluation 



Table 2 shows the results of 5-fold cross validation comparing model performance as a function 
of different input features. AUROCs ranged from 0.80 for the model using only age and sex to 
0.93 for the model with all available inputs, including structured ECG findings and 
measurements, demographics, labs, vitals, and ECG traces (Figure 3). While the model with all 
available inputs provided the best performance, we focus the remainder of our results in this 
manuscript on models that include only age, sex, and ECG traces since this input set best 
balances portability, objectivity, and performance, with an AUROC of 0.91. These inputs are all 
directly available from MUSE or other ECG systems, without additional integration with other 
data sources, and do not require waiting for the official cardiologist interpretation, which may be 
subject to inter-rater variability. Complete, detailed results including all other input sets for every 
disease label across all folds and various subgroups are available at: 
http://rechommend.herokuapp.com/.  
 
Cross-validation performance of rECHOmmend model 
The rECHOmmend model using age, sex, and ECG traces for prediction of the composite 
disease label yielded an AUROC of 0.91 [95% CI 0.90, 0.91] and a PPV of 42% at 90% 
sensitivity with 18% disease prevalence (Table 3). As hypothesized, the composite model 
yielded a higher PPV than any of the 7 models trained for an individual component endpoint, 
which ranged from 1% for MS to 31% for reduced EF (Table 3). We found the same trend for 
the AUPRC, 0.71 [95% CI 0.71, 0.72] for the rECHOmmend model, as compared to individual 
model AUPRCs, which ranged from 0.04-0.65 (Supplemental Figure 2). Performance metrics for 
alternate model operating points are presented in Supplemental Table 8. 
 
Multi-site validation performance  
The rECHOmmend model trained on Geisinger Medical Center and validated across 11 other 
clinical sites performed similarly well to our cross-validation experiment, yielding an AUROC of 
0.91 in aggregate across all other sites (Supplemental Table 9). Individual site AUROCs ranged 
from 0.79 at the Viewmont Imaging Center to 0.93 at the Scranton Community Medical Center, 
with 9 out of 11 sites having AUROCs > 0.85 and 8 out of 11 sites having AUROCs ≥ 0.90. The 
prevalence of the composite label for disease among sites varied from 1% at Viewmont to 39% 
at the Geisinger Commonwealth School of Medicine (GCSM). Correspondingly, PPV varied 
from 15% at Viewmont to 54% at GCSM. 
 
Simulated deployment performance 
We identified 692,273 ECGs with a qualifying label for any of the seven clinical outcomes prior 
to 2010, of which 485,469 ECGs qualified for the composite label to train the deployment model. 
A cross-validation experiment for this pre-2010 subset showed similar, yet slightly reduced 
performance as compared with the full dataset (AUROC 0.89; PPV 31% at 90% sensitivity; 
Supplemental Table 10).  
 
The 2010 deployment test set contained ECGs from 69,544 patients (Figure 4A). After 
excluding patients with a known history of disease, we identified 63,459 at-risk patients between 
January 1 and December 31, 2010. Of these patients, outcome labels for 20,395 were 
undefined due to inadequate follow-up or not meeting criteria for the composite label. As 



previously noted, the characteristics of patients with undefined labels were similar to those with 
defined labels. The AUROC among patients with defined labels was 0.86. Using a threshold 
estimated to yield 90% sensitivity based on the pre-2010 training data, the deployment model 
labeled 43.3% of patients as high-risk and obtained a PPV of 15.1% and an NPV of 98.5%.  
 
For a more practical comparison, using a threshold estimated to yield 50% sensitivity, the 
deployment model labeled 10.7% of patients as high-risk for any of the seven disease 
outcomes. Among 2969 predicted high-risk patients with adequate follow-up who met our 
definition for the composite label, 1219 patients were diagnosed with at least one of the disease 
outcomes within a year, a PPV of 41.1%. Of these 1219 patients, 137 (11%) received a 
diagnosis of AS, 86 (7%) of AR, 387 (32%) of MR, 17 (1%) of MS, 375 (31%) of TR, 785 (64%) 
of reduced EF, and 280 (23%) of IVS thickening. Among 40,095 predicted low-risk patients with 
adequate follow-up and defined labels, 38,552 patients did not develop any of the outcomes 
within a year, a NPV of 96.2%.  
 
Overall, at this model threshold, for every 100 at-risk patients who obtained an ECG, our model 
would identify 11 as high-risk, of which 5 would truly have echocardiography-confirmed disease, 
and 89 as low-risk, of which 86 would truly not have disease within 1 year (Figure 4B). 
 
Sensitivity Analyses 
When using severe-only disease labels, AUROCs across input feature combinations for the 
composite endpoint were similar to the primary results (Table 2), ranging from 0.79 for age and 
sex only to 0.94 for all inputs (Supplemental Table 11). AUPRC and PPV at 90% sensitivity 
were lower given the lower prevalence of severe-only disease. Across the individual diseases, 
AUROC of the age, sex, and ECG traces model was again similar, ranging from 0.84-0.96, and 
again with lower AUPRC and PPV due to the lower prevalence (Supplemental Table 12). The 
overall rECHOmmend model using severe-only disease labels attained an AUROC of 0.92 with 
a PPV of 31.2% at 90% sensitivity with 10.6% disease prevalence. 
 
When using echocardiography-confirmed labels only, AUROC was slightly lower than our 
primary results, while AUPRC and PPV at 90% sensitivity was higher (Supplemental Tables 13-
14). This was likely due to the artificially higher prevalence, as the number of negative patients 
decreased with this requirement for echocardiography-confirmed absence of disease. The 
overall rECHOmmend model obtained an AUROC of 0.88 with a 74% PPV at 90% sensitivity 
with 53% disease prevalence. 
 
Discussion 
We developed a machine-learning platform called “rECHOmmend,” which can predict clinically 
significant valvular disease, reduced left ventricular EF, or pathologically increased septal 
thickness with excellent performance (AUROC 0.91) by using only ECG traces, age, and sex. 
Furthermore, we demonstrated that the combination of these distinct endpoints into a single 
platform tied to a recommendation for a singular, practical clinical response—follow-up 
echocardiography—resulted in an overall PPV of 42% for clinically meaningful disease while 
maintaining high sensitivity (90%) and specificity (73%). This suggests that for the millions of 



patients who receive an ECG each year without pre-existing structural heart disease, nearly half 
of patients deemed high-risk by this model would be found to have true disease within a year. 
We confirmed the validity of this approach through a multi-site validation on non-overlapping 
data sets from multiple clinical sites across the Geisinger system. Moreover, we confirmed the 
clinical utility of this approach in our retrospective deployment, as our model trained on pre-2010 
data and deployed on all patients without prior disease who obtained an ECG in 2010 
maintained similarly high performance as compared to the main cross-validation results based 
only on passive observation and standard clinical care. With an active deployment of the 
rECHOmmend platform, even higher yields / PPV are anticipated once clinicians can pursue 
active intervention in the form of follow-up echocardiogram or more detailed history-taking and 
physical examination. 
 
Clinically, this model enables targeted echocardiographic screening to help detect unrecognized 
and underdiagnosed diseases. Currently echocardiography is not used for population screening 
given the low prevalence of disease in the general population, as prior attempts were shown to 
be ineffective.22,23 Therefore, indicated use of echocardiography is typically triggered by a 
symptom, adverse event, physical exam, or incidental finding leading to suspicion of heart 
disease, raising the pretest probability and likelihood of a clinically impactful or actionable 
finding.6,7,24 However, a significant gap remains in that a large number of patients, in meeting 
that triggered indication for suspected disease, will have already suffered an adverse event, a 
symptom affecting their quality of life, or an irreversible pathophysiologic change from their 
undiagnosed disease. For example, in severe AS, the initial presenting symptom is reduced EF 
for 8% of patients, angina for 35-41%, and syncope for 10-11% of patients, which may lead to 
falls, hip fractures, or reduced functional status.25–27 Prior studies have also shown that up to 
half of elderly patients have undiagnosed valvular disease, including 11.3% with moderate or 
severe disease, while the majority of patients with hypertrophic cardiomyopathy may be 
undiagnosed, and nearly 50% of patients with EF <40% are asymptomatic.11,12,28 This 
rECHOmmend model, with both high sensitivity and precision, can help guide the decision to 
obtain an echocardiogram even for asymptomatic patients, shifting the balance to a scenario 
where echocardiography can be an effective screening tool to help clinicians diagnose patients 
at the right time to prevent downstream adverse events, optimize the timing of interventions, 
and better implement evidence-based monitoring or management.  
 
Our findings also suggest a path toward overcoming some of the existing challenges with 
clinical implementation of ECG prediction models. This novel approach of combining multiple 
endpoints which align under the same recommended clinical action enables the model to 
leverage the increased prevalence and probability of any one disease state occurring to improve 
predictive performance for potential clinical implementation. Previous studies have shown that 
CNN-based ECG prediction models can predict a variety of cardiovascular outcomes including 
atrial fibrillation, aortic stenosis, and LV dysfunction with good performance, with AUROCs from 
0.80-0.93.13–16,29 However, concerns often exist around real-world implementation of such 
models due to limitations in precision and recall, concerns regarding the negative impact of false 
positives, and limited actionability or portability.30 Our models compare favorably to those in the 
literature, with similar or higher AUROCs and higher precision or PPV, but also result in a 



clearly actionable recommendation while remaining highly portable. Our featured model results 
of 0.91 AUROC, 42% PPV and 90% sensitivity on cross-validation is based on age, sex, and 
ECG traces alone as inputs, which we believe represents the optimal balance between 
performance and portability, While the addition of EHR data did slightly improve performance, 
there would be a major tradeoff in decreased portability with the need for EHR or clinical data 
warehouse integration. This model uses data readily available from any ECG system, such as 
MUSE, and could be easily deployed across most healthcare systems.  
 
We also find that simulated deployment on large retrospective datasets can shed light on 
important questions and estimate true clinical impact prior to the costly implementation of 
prediction models in practice or clinical trials, where performance may differ from strictly cross-
validation performance of the same models.13,31 In our simulated deployment on ECGs from 
2010, 11% of at-risk patients without history of disease were predicted to be high-risk, of which 
41% with adequate follow-up were truly diagnosed with disease in the following year, through 
only standard clinical care and without any clinician behavior change or active intervention that 
true deployment may elicit. This suggests that this 41% PPV is likely a lower bound for the 
expected real-world performance of the rECHOmmend model. Our simulated real-world 
deployment scenario compares favorably with a recent pragmatic trial for predicting reduced EF 
which identified a real-world PPV of 39% using an EF cutoff of <=50%, of which 24% of patients 
meeting this definition qualified with an EF of exactly 50%.31 Deployment scenarios also 
demonstrate that cross-validation metrics which depend on prevalence likely overestimate real-
world performance as seen in recent studies, including for the above reduced EF trial which 
lagged behind the original cross-validation results (reported PPV of 63%).15,31 We propose that 
simulated retrospective deployment be carried out for future prediction models to better gauge 
feasibility and real-world performance prior to clinical implementation. 
 
Our study has several limitations. Training and evaluation were limited to a regional health 
system where most patients are white, so results may not be generalizable to hospitals or 
regions with more diversity. We are not aware of any physiologic differences across 
race/ethnicity that would lead these ECG-based models to perform differently across groups, 
corroborated by prior studies,32 but results should be confirmed in further research. In addition, 
we used echocardiography-confirmed diagnoses to generate our positive labels, which were 
confirmed on chart review to have a high PPV but there may be additional patients with 
disease—false negatives—who were not captured using this method. However, given the low 
prevalence of each disease in the general population and echocardiography being the 
diagnostic standard, the negatives are likely true negatives, as seen in the retrospective 
deployment where we leveraged up to a decade of follow-up to determine negative outcomes. 
In addition, this machine-learning approach has limited interpretability in identifying feature 
importance. Finally, increased IVS thickness may represent infiltrative diseases, hypertrophic 
cardiomyopathy, or may largely represent concentric remodeling related to longstanding, poorly 
controlled hypertension; however, these conditions are all clinically actionable. 
 
This study demonstrates that a machine-learning model using only ECG-based inputs can 
predict multiple important cardiac endpoints within a single platform with both good performance 



and high PPV, thereby representing a practical tool with which to better target echocardiography 
to detect undiagnosed disease. We confirmed these results through retrospective real-world 
deployment scenarios to show the large impact that such a model can have on patients when 
deployed across a health system. These approaches to both clinical predictions and simulated 
deployment represent practical solutions for existing limitations in the implementation of 
machine learning in healthcare, hopefully bringing this technology one step closer to standard 
clinical practice. 
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Table 1: Baseline characteristics and features at time of index ECG, reported as mean (SD) and 
median [IQR], for continuous values, or percentage, for categorical values. BP, blood pressure. 
BBB, bundle branch block. COPD, chronic obstructive pulmonary disease. MI, myocardial 
infarction. PVC, premature ventricular contractions. SVT, supraventricular tachycardia. 
  Mean 

(SD) / % Median [IQR] 
 

Mean 
(SD) / % Median [IQR] 

Demographics and Vitals ECG Findings and Measurements 
Age (years) 63 (17) 64 [52, 76] R Axis 22 (50) 21 [-10, 54] 
BMI (kg/m2) 31 (9) 30 [25, 35] PR Interval 165 (212) 160 [144, 182] 
Systolic BP mmHg) 129 (20) 128 [116, 140] P Axis 48 (30) 50 [33, 64] 

Diastolic BP (mmHg) 73 (12) 72 [64, 80] QRS Duration 98 (25) 90 [82, 104] 
Heart Rate (bpm) 76 (15) 74 [66, 84] QT 400 (51) 398 [368, 430] 
Height (cm) 168 (11) 168 [160, 178] QTC 445 (54) 440 [418,464] 
Weight (kg) 88 (24) 85 [70, 101] T Axis 52 (53) 46 [23, 71] 
Race (%White) 97.1%  Ventricular Rate 77 (20) 74 [63, 87] 

Sex (%Male) 50.1%  Avg RR Interval 821 (194) 814 [688, 946] 
Smoker (%Ever) 59.7%  Normal 43.8%  
Labs Prior Infarct 18.7%  
A1C (%) 6.9 (3) 6.5 [5.8, 7.5] Non-Specific T-wave Changes 16.0%  

Bilirubin (mg/dL) 0.57 (0.60) 0.5 [0.3,0.7] Sinus Bradycardia 14.1%  
BUN (mg/dL) 20.5 (12.8) 17 [13, 23] Non-Specific ST Changes 10.3%  
Cholesterol (mg/dL) 172 (47) 168 [140, 200] Ischemia 10.0%  
CKMB (ng/mL) 8.9 (32.2) 2.9 [1.9,5] Left Axis Deviation 9.3%  
Creatinine (mg/dL) 1.2 (1.4) 0.9 [0.8,1.2] Atrial Fibrillation 8.5%  

CRP (mg/L) 36.2 (63.9) 9 [2.6,38] Left Ventricular Hypertrophy 8.0%  
D dimer (mcg/mL) 1.5 (2.6) 0.6 [0.3, 1.5] Tachycardia 7.5%  
Glucose (mg/dL) 119 (48) 104 [93, 125] Prior Anterior MI 7.3%  
HDL (mg/dL) 48 (16) 45 [37, 56] PVC 6.8%  

Hemoglobin (g/dL) 14 (34) 13 [11.7, 14.3] First Deg Block 6.3%  
LDH (U/L) 249 (237) 207 [171, 264] Right BBB 6.0%  
LDL (mg/dL) 95 (38) 91 [68,117] Prolonged QT 5.0%  
Lymphocytes (%) 23 (11) 22 [15, 29] Poor Tracing 4.9%  
Potassium (mmol/L) 4.2 (0.7) 4.2 [3.9, 4.5] Premature Atrial Contractions 4.8%  

Pro-BNP (pg/mL) 5002 (10668) 1369[341,4377] Pacemaker 4.6%  
Sodium (mmol/L) 139 (3) 140[137, 141] T-wave Inversion 4.6%  
Troponin I (ng/mL) 1 (13) 0.03 [0.01,0.06] Low QRS voltage 4.4%  
Troponin T (ng/mL) 0.16 (0.84) 0.01 [0.01,0.04] Fascicular Block 3.2%  

Triglyceride (mg/dL) 154 (122) 127 [90, 183] Incomplete Right BBB 3.1%  
Uric Acid (mg/dL) 6.6 (2.4) 6.3 [4.9,7.9] Left BBB 2.8%  
VLDL (mg/dL) 29 (16) 25 [18, 36] Intraventricular Block 2.3%  
eGFR (mL/min/1.73m2) 54 (12) 60 [55, 60] Right Axis Deviation 2.2%  
Other Comorbidities Atrial Flutter 1.3%  

Heart Failure 17.2%  Acute MI 1.0%  
Prior MI 18.8%  Incomplete left BBB 0.4%  
Diabetes Mellitus 23.1%  Supraventricular Tachycardia 0.4%  
COPD 14.0%  Early Repolarization 0.3%  

Renal Failure 8.3%  Complete Heart Block 0.1%  
Prior Echocardiogram 28.4%  Other Bradycardia 0.1%  
Coronary Artery Disease 23.1%  Second-degree AV block 0.1%  
Hypertension 46.4%  Ventricular Tachycardia 0.1%  



Table 2: Performance comparison of cross-validated models across various input features for the composite endpoint (valvular 
disease, reduced EF, increased IVS). All values are shown in percentages with the 95% CI in between brackets. Each model was 
tested based on a random ECG per patient. AUROC, area under receiver operating curve. AUPRC, area under precision-recall 
curve. PPV, positive predictive value. ECG, electrocardiogram. EHR, electronic health record. 
 

Input Features AUROC AUPRC PPV (%) @  
90% Sensitivity 

Specificity (%) @ 90% 
Sensitivity 

A) Age + Sex 0.799 [0.795,0.802] 0.468 [0.462,0.473] 27.5 [27.0,28.0] 48.2 [47.5,49.0] 

B) Demographics, Labs, and Vitals 0.862 [0.860,0.865] 0.651 [0.644, 0.657] 32.3 [31.8,32.8] 58.9 [58.3,59.5] 

C) ECG Structured Findings and 
Measurements 0.879 [0.877,0.881] 0.677 [0.672, 0.683] 34.0 [33.4,34.5] 61.8 [61.0,62.6] 

D) ECG Traces 0.904 [0.902,0.906] 0.719 [0.714, 0.724] 41.1 [40.4,41.9] 71.9 [71.3,72.6] 

Available from ECG system     

Age + Sex + ECG Traces 0.907 [0.905, 0.908] 0.714 [0.707, 0.722] 42.0 [41.4,42.6] 72.9 [72.4,73.4] 

C + D 0.912 [0.910, 0.913] 0.739 [0.733, 0.744] 42.9 [42.0,43.8] 73.9 [73.2,74.6] 

Available from ECG + EHR     

A + B + C 0.917 [0.915, 0.919] 0.762 [0.757, 0.767] 44.2 [43.5,44.9] 75.2 [74.6,75.8] 

A + B + D 0.925 [0.923, 0.926] 0.780 [0.775, 0.784] 46.7 [46.0,47.4] 77.6 [77.0,78.2] 

A + B + C + D 0.928 [0.927, 0.930] 0.787 [0.783, 0.792] 47.8 [47.2,48.4] 78.6 [78.2,79.0] 

 
 
   



Table 3: Age + Sex + ECG traces model results for cross-validation experiments for each individual disease outcome and composite 
rECHOmmend model. Results are shown based on a random ECG per patient and averaged across 5 folds. All values are shown in 
percentages with the 95% CI in between brackets. AUROC, area under receiver operating curve. AUPRC, area under precision-
recall curve. PPV, positive predictive value. 
 

Disease Prevalence (%) AUROC AUPRC PPV (%) @  
90% Sensitivity 

Specificity (%) @ 90% 
Sensitivity 

Aortic Stenosis 2.4 [2.3,2.5] 0.908 [0.900, 0.915] 0.221 [0.204, 0.239] 8.4 [7.7,9.1] 75.7 [73.6,77.7] 

Aortic Regurgitation 1.8 [1.8,1.9] 0.849 [0.844, 0.855] 0.120 [0.114, 0.127] 3.9 [3.6,4.2] 58.9 [57.2,60.7] 

Mitral Regurgitation 4.5 [4.4,4.6] 0.911 [0.908, 0.914] 0.367 [0.347, 0.388] 15.2 [14.7,15.7] 76.4 [75.8,77.0] 

Mitral Stenosis 0.3 [0.2,0.3] 0.918 [0.905, 0.930] 0.039 [0.036, 0.044] 1.1 [1.0,1.3] 79.4 [75.3,82.9] 

Tricuspid 
Regurgitation 4.7 [4.6,4.9] 0.915 [0.909, 0.920] 0.415 [0.393, 0.438] 16.1 [14.7,17.7] 76.9 [74.7,78.9] 

EF<50% 9.2 [9.1,9.2] 0.929 [0.926, 0.931] 0.647 [0.633, 0.662] 31.4 [30.2,32.7] 80.2 [79.1,81.2] 

IVS>15mm 4.0 [3.9,4.1] 0.862 [0.856, 0.868] 0.223 [0.213, 0.234] 9.4 [8.8,10.1] 64.2 [61.7,66.6] 

rECHOmmend 
(composite) 17.9 [17.8,18.0] 0.907 [0.905, 0.908] 0.714 [0.707, 0.722] 42.0 [41.4,42.6] 72.9 [72.4,73.4] 

 
 
  



Figure 1: Flow diagram from source data to the dataset used for all experiments. We processed 
data from research repositories created from electronic health record data from Epic, ECG data 
from MUSE, and echocardiography data from Xcelera. The clinical MUSE database was 
processed to include 12-lead ECGs sampled at either 250hz or 500hz, acquired after 1984 from 
patients older than 18 years of age.  
 
 
 
 
  

EPIC: 

2,110,332 patients 

MUSE:  

3,548,543 ECGs 

Xcelera:  

332,919 patients 

758,269 Echos 

EPIC+MUSE:  

   631,710 patients 

2,925,925 ECGs  

At least one label:  

   484,765 patients 

2,232,130 ECGs 

   640,048 Echos  

693,795 ECGs not meeting 

criteria for any label  

Composite label:  

   434,220 patients 

1,651,952 ECGs 

   573,510 Echos  

580,178 ECGs not meeting 

criteria for composite label  



Figure 2: rECHOmmend model diagram showing the classification pipeline for ECG traces and 
other EHR data. The output (gray triangle) of each convolutional neural network (CNN) applied 
to ECG trace data is concatenated with labs, vitals, and demographics to form a feature vector. 
The vector is the input to the classification pipeline (min-max scaling, mean imputation, 
XGBoost classifier, and calibration), which outputs a composite prediction for the patient. 
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Figure 3. Performance of the rECHOmmend model in cross-validation experiments across 
various inputs. The figure on the left shows the area under the receiver operating curve 
(AUROC) while the figure on the right shows the area under the precision-recall curve 
(AUPRC). 
 

 



Figure 4: Results of retrospective deployment scenario from 2010 for (A) all patients and (B) relative results per 100 at-risk patients. 
These results are based on a threshold yielding 50% sensitivity from the pre-2010 cross-validation experiment, resulting in 41.1% 
PPV, 96.2% NPV, 95.7% specificity, 44.1% sensitivity, and 6.4% prevalence in 2010. For 100 patients without known history of 
disease obtaining an ECG, the rECHOmmend model will identify 11 patients at high-risk of disease, of which 5 are expected to have 
true disease within 1 year. The model will identify 89 patients not at high-risk of disease, of which 86 are not expected to have true 
disease within 1 year. 
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