Model-based meta-analysis to optimise S. aureus-targeted therapies for atopic dermatitis

Short title: Model-based meta-analysis to target S. aureus in eczema

Takuya Miyano¹, Alan D Irvine²,³ and Reiko J Tanaka¹*

¹ Department of Bioengineering, Imperial College London, UK
² Pediatric Dermatology, Children’s Health Ireland at Crumlin, Dublin
³ Clinical Medicine, Trinity College Dublin, Dublin, Ireland

*Corresponding author: Reiko J. Tanaka
Department of Bioengineering, Imperial College London
South Kensington Campus, London, SW7 2AZ, UK
+44 20 7594 6374
r.tanaka@imperial.ac.uk

ORCID ID; TM: 0000-0002-1181-6924; ADI: 0000-0002-9048-2044; RJT: 0000-0002-0769-9382

Conflict of Interest statement
Takuya Miyano reports personal fees from DAIICHI SANKYO CO., LTD., during the conduct of the study, outside the submitted work; Alan D Irvine reports personal fees from Sanofi Regeneron, personal fees from AbbVie, personal fees from Eli Lilly, personal fees from Pfizer, personal fees from UCB Pharma, personal fees from Novartis, personal fees from Dermavant, personal fees from Benevolent AI, personal fees from Menlo Therapeutics, personal fees from Chugai, personal fees from LEO Pharma, personal fees from Arena, during the conduct of the study; Reiko J Tanaka reports grants from British Skin Foundation, during the conduct of the study.

Funding information
This work was funded by the British Skin Foundation (005/R/18).

Acknowledgments
We thank Dr. Elisa Domínguez-Hüttinger for her insightful comments on our manuscript.

Author Contributions
TM and RJT designed the research and wrote the article. TM performed the research and analysed the data. TM, ADI and RJT contributed to reviewing and approving the manuscript.
ABSTRACT

Background: Several clinical trials of *Staphylococcus aureus* (*S. aureus*)-targeted therapies for atopic dermatitis (AD) have demonstrated conflicting results regarding whether they improve AD severity scores. This study performs a model-based meta-analysis to investigate possible causes of these conflicting results and suggests how to improve the efficacies of *S. aureus*-targeted therapies.

Methods: We developed a mathematical model that describes systems-level AD pathogenesis involving interactions between *S. aureus* and Coagulase Negative *Staphylococcus* (CoNS). The model was calibrated to reproduce time course data of *S. aureus* levels, EASI scores, and EASI-75 in response to dupilumab, *S. hominis* A9 (ShA9) and flucloxacillin from published clinical trials. We simulated efficacies of hypothetical *S. aureus*-targeted therapies on virtual patients using the model.

Results: Our model simulation reproduced the clinically observed detrimental effects that application of ShA9 and flucloxacillin had on AD severity and showed that these effects disappeared if the bactericidal activity against CoNS was removed. A hypothetical (modelled) eradication of *S. aureus* by 3.0 log$_{10}$ CFU/cm2, without killing CoNS, achieved comparable EASI-75 to dupilumab. This efficacy was potentiated if dupilumab was administered in conjunction with *S. aureus* eradication (EASI-75 at week 16; *S. aureus* eradication: 66.7%, dupilumab 61.6% and combination: 87.8%). The improved efficacy was also seen for virtual dupilumab poor responders.

Conclusion: Our model simulation suggests that killing CoNS worsens AD severity and that *S. aureus*-specific eradication without killing CoNS could be effective for AD patients, including dupilumab poor responders. This study will contribute to design promising *S. aureus*-targeted therapy.

KEYWORDS: atopic dermatitis, clinical efficacy, model-based meta-analysis, quantitative systems pharmacology, *Staphylococcus aureus*

Word counts: 3635
1. INTRODUCTION

Atopic dermatitis (AD), also called eczema, is the most common inflammatory skin disease\(^1\). The symptoms of AD involve relapsing pruritus and skin pain, impairing patients’ quality of life and work productivity\(^2\). The pathogenesis of AD is characterised by skin barrier damage, Th2-dominant inflammation and skin dysbiosis\(^3\)\(^,\)\(^,\)\(^4\)\(^,\)\(^,\)\(^5\). The skin dysbiosis in AD patients is frequently accompanied by \emph{Staphylococcus aureus} (\emph{S. aureus}) colonisation and decreased commensal bacteria in the skin\(^6\). \emph{S. aureus} skin colonisation is found in 75%-90% of AD patients without clinical signs of superinfection, whereas it is found in only 0%-25% of healthy subjects\(^7\)\(^-\)\(^11\).

\emph{S. aureus} levels on skin lesions correlate with AD severity\(^12\)\(^,\)\(^13\), and \emph{S. aureus} has been considered as a promising target for AD treatment as it induces both skin barrier damage and inflammation by producing various virulence factors, such as phenol-soluble modulins (PSMs), staphylococcal enterotoxins and the toxic shock syndrome toxin-1\(^14\)\(^,\)\(^15\).

Some clinical trials of \emph{S. aureus}-targeted therapies for AD\(^16\) have indeed demonstrated a reduction in \emph{S. aureus}. However, they have shown conflicting efficacies as to whether they improve AD severity scores. For example, in several clinical trials, oral and topical antibiotics whose antibacterial spectrum covers \emph{Staphylococci} were applied to eradicate \emph{S. aureus} at least temporarily on AD skin lesions. But these interventions often failed to improve AD severity: A Cochrane review concluded that antibiotics may make no difference or only slight improvement in AD severity\(^17\). Oral flucloxacillin, one of the antibiotics, worsened AD severity compared to placebo despite a significant reduction of \emph{S. aureus} levels on skin lesion\(^18\). Currently, the use of antibiotics is recommended for AD only in case of overt infection\(^19\).

As another \emph{S. aureus}-targeted therapy, transplant of \emph{S. hominis} A9 (ShA9), a commensal strain of coagulase-negative staphylococci (CoNS) isolated from healthy human skin, has been tested\(^20\). The clinical study showed that ShA9 transplant decreased the \emph{S. aureus} levels on skin lesions and improved AD severity scores in the patients (\(N=21\)) whose skin was colonised with \emph{S. aureus} that is sensitive to the bacteriocins secreted by ShA9. However, ShA9 transplant deteriorated AD severity scores in the patients (\(N=11\)) whose skin was colonised with \emph{S. aureus} that is resistant to the bacteriocins secreted by ShA9\(^20\). ShA9 produces bacteriocins that have bactericidal activity against \emph{S. aureus}\(^21\) and secretes autoinducing peptides (AIPs) that inhibit the accessory gene regulatory (agr) system, which regulates the expression of the virulence factors in \emph{S. aureus}\(^22\).

Some therapeutics that do not target \emph{S. aureus} directly can also reduce \emph{S. aureus} levels.
Dupilumab, an approved biologic for AD, is a monoclonal antibody that inhibits IL-4 and IL-13 signalling. These Th2 cytokines can facilitate *S. aureus* colonisation as they damage the skin barrier by inhibiting epidermal differentiation23,24 and the skin barrier damage induces an increase in skin pH25 that promotes *S. aureus* growth26. In addition, inhibition of IL-4 and IL-13 by dupilumab can reduce *S. aureus* levels since IL-4 and IL-13 inhibit the synthesis of antimicrobial peptides (AMPs) against *S. aureus*27. Dupilumab has reduced *S. aureus* levels and improved AD severity scores in a clinical trial12.

Taken together, all of flucloxacillin, *ShA9* and dupilumab decreased *S. aureus* levels but showed conflicting efficacies as to whether these drugs improve AD severity scores. Understanding of underlying mechanism for the conflicting efficacies will help optimising *S. aureus*-targeted therapies for AD that are consistently effective.

To investigate the causes of the conflicting efficacies of *S. aureus*-targeted therapies, this study applies a quantitative systems pharmacology (QSP) approach. QSP is a framework to describe systems-level pathogenesis and drug effects by integrating data and knowledge into a mathematical model28. A QSP approach facilitates a model-based meta-analysis that integrates data from different clinical trials, as well as knowledge on pathogenesis and mechanism of action (MoA) of drugs, to inform rational drug development29. A QSP model-based meta-analysis is especially suitable for this study which aims to investigate underlying mechanisms for the conflicting efficacies of *S. aureus*-targeted therapies observed in different clinical studies.

We have recently applied a QSP model-based meta-analysis of multiple biologics for AD and identified IL-13 and IL-22 as potential drug targets for dupilumab poor responders30. However, the previous QSP model of biologics is not suitable for this study’s aim as it did not describe the mechanism of *S. aureus*-targeted therapies. This study presents a new QSP model of *S. aureus*-targeted therapies that describes the interactions between *S. aureus* and CoNS in AD pathogenesis by referring to clinical efficacy data of the three drugs described above (flucloxacillin, *ShA9* and dupilumab) to test the following two hypotheses.

The first hypothesis is that the bactericidal effects of *S. aureus*-targeted therapies on CoNS impair their efficacies on AD severity. Decrease in CoNS levels causes reduction in their AIP secretion, thereby upregulating agr expression. Upregulated agr expression promotes production of virulence factors in *S. aureus* that can worsen AD severity. While such a hypothesis has already been implied in several studies20,31,32, there has been no quantitative evaluation on the possible dynamic influences of killing CoNS on clinical efficacies to the best
of our knowledge.

The second hypothesis is that *S. aureus*-targeted therapies are effective for dupilumab poor responders as they have a different MoA from dupilumab. The responder rates for dupilumab were 44%-69% for Eczema Area and Severity Index (EASI)-75 (75% reduction in the EASI score), leaving a significant proportion of dupilumab poor responders. Therapeutic options for dupilumab poor responders are limited to increasing topical corticosteroids and adding additional systemic immunosuppressive agents. However, the dupilumab poor responders are often resistant to these treatments and require monitoring for adverse effects, leaving unmet medical needs for dupilumab poor responders. We propose promising *S. aureus*-targeted therapies for AD patients, especially for dupilumab poor responders, by conducting model simulations on virtual patients.

2. METHODS

Our QSP model explicitly describes causal relationships between drugs, biological factors and an AD severity score using a graphical scheme and ordinary differential equations. The model was developed by 1) selecting drugs and biological factors to be modelled, 2) formulating drug effects and causal relationships between the biological factors and 3) optimising model parameters that define virtual patients. The developed model was used to simulate the clinical efficacies of hypothetical *S. aureus*-targeted therapies in virtual patients.

2.1. Selecting drugs and biological factors

We considered flucloxacillin, ShA9 and dupilumab because they demonstrated a decrease of *S. aureus* levels in a placebo-controlled double-blinded clinical study where AD severity scores were reported (Table 1 and Supplementary Information (SI) Section 1).

We selected six biological factors as model variables: colony density levels of *S. aureus* and CoNS and levels of agr expression, IL-4/IL-13 in the skin and skin barrier integrity and the EASI score. *S. aureus* and CoNS are the core factors in this study. “CoNS” does not include the ShA9 strain applied in the ShA9 treatment. “Agr expression” corresponds to the main mechanism for *S. aureus* to expression virulence factors in *S. aureus* that induce skin barrier damage and skin inflammation. The IL-4/IL-13 represents Th2-cytokines that are targeted by dupilumab. “Skin barrier integrity” is a critical factor in AD pathogenesis as in our previous models. The EASI score represents an endpoint for AD severity. Some biological factors such as AMPs were not described as model variables but were considered implicitly as a rationale for the causal relationships (e.g., IL-4 and IL-13 increase *S. aureus* and CoNS via decreasing AMPs) to make the model simpler yet interpretable.
2.2. Formulating drug effects and causal relationships between biological factors

We developed a mathematical model consisting of six equations corresponding to the six biological factors with 26 parameters to simulate the efficacies of the three drugs (SI Section 3). The effects of flucloxacillin were modelled by increasing the killing rates of both \(S. \text{aureus} \) and CoNS as its antibacterial spectrum covers all Staphylococcus species. The effects of \(S. \text{A9} \) were modelled by increasing the killing rates of \(S. \text{aureus} \) and CoNS and the inhibitory strength against the agr expression because \(S. \text{A9} \) produces bacteriocins against both \(S. \text{aureus} \) and CoNS\(^21\) and AIPs that inhibit the agr expression\(^20\). The effects of dupilumab were modelled by decreasing effective concentrations of IL-4/IL-13 in the skin by 99%. The value of 99% was obtained from a calculation using the published data on \(IC_{50} \) and the mean concentration of drugs in the skin\(^39\) that was estimated from their concentration in the serum measured in clinical trials (SI section 3.2.3). The causal relationships between biological factors were described according to published experimental evidence based on human data (SI section 3.1). The model was implemented in Python 3.7.6 (Python Software Foundation).

2.3. Modelling virtual patients and optimising model parameters

We assumed that the model parameter values (e.g., the recovery rate of skin barrier via skin turnover, \(k_1 \)) vary between AD patients and that a set of 26 parameter values defines pathophysiological backgrounds of each virtual patient (TABLE S3). Each value of the \(i \)-th parameter, \(k_i \), is taken from a log-normal distribution\(^40\) whose probability function, \(f(k_i) \), is defined by

\[
f(k_i) = \frac{1}{\sqrt{2\pi}\sigma_i k_i} \exp\left(-\frac{(\ln k_i - \mu_i)^2}{2\sigma_i^2}\right),
\]

where \(\mu_i \) and \(\sigma_i \) are the distribution parameters that represent the mean and the standard deviation of \(\ln k_i \), respectively.

We optimised the 52 distribution parameters (\(\mu_i \) and \(\sigma_i \), \(i = 1, \ldots, 26 \)) that define distributions of the 26 model parameters so that the model reproduces the reference data derived from published clinical studies (SI Section 4). The reference data consist of baseline levels of \(S. \text{aureus} \), CoNS, IL-4/IL-13 and the EASI scores (TABLE S2) and time courses of \(S. \text{aureus} \) levels, the EASI scores and EASI-75 assessed in clinical trials of the selected drugs (FIGURE 1). The \(S. \text{aureus} \) levels, EASI scores and EASI-75 were normalised to compare the clinical efficacies of different clinical trials (SI Section 2). The agr expression and skin barrier integrity were regarded as latent state variables that have no reference data to be compared with simulated values. Simulated baseline levels were obtained by computing steady-state levels.
of biological factors (at 1000 weeks without drug treatment). All the simulations were conducted on 1000 virtual patients generated by randomly sampling each parameter value from the distribution in Eq. (1).

2.4. Simulating efficacies of hypothetical S. aureus-targeted therapies

We simulated EASI-75 of hypothetical therapies with different strengths for killing of S. aureus and of CoNS and for inhibiting agr expression to explore optimal S. aureus-targeted therapies. Specifically, we examined the efficacies of hypothetical therapies that achieve a maximal reduction of S. aureus level from placebo (reduction of 3.0 log_{10} CFU/cm^{2} achieved in published clinical trials for S. aureus-targeted therapies18, 20, 41, 42, 43, 44, 45), the maximal level of CoNS (no bactericidal effects on CoNS, keeping the baseline level of CoNS), an example level of inhibition of the agr expression (we used 90% as we have no reliable evidence to estimate maximal inhibition rates of agr expression) and their combinations.

We also simulated EASI-75 of hypothetical therapies in virtual dupilumab poor responders, which were defined as the virtual patients who did not achieve the EASI-75 criterion at 16 weeks.

3. RESULTS

3.1. QSP model reproduced clinical efficacies of three drugs

We normalised S. aureus levels, the EASI scores and EASI-75 using the reported results in the clinical trials to compare efficacies of flucloxacillin, ShA9 and dupilumab (FIGURE 1). The efficacies of ShA9 were presented for two groups of patients stratified by the sensitivity of S. aureus to ShA9 bacteriocins, as in the original clinical study20. Hereafter, ShA9 applied to patients colonised with S. aureus that is sensitive to ShA9 bacteriocins is referred as ShA9-sensitive, and those with S. aureus that is resistant to ShA9 bacteriocins is referred as ShA9-resistant.

The normalised efficacies demonstrated that all the drugs decreased S. aureus levels and that ShA9-sensitive and dupilumab improved the EASI scores and EASI-75, whereas ShA9-resistant and flucloxacillin worsened the EASI scores and EASI-75. The results confirmed that the three drugs demonstrated conflicting efficacies regarding whether they improve AD severity scores while they all reduced S. aureus levels.

We revised our previously published QSP model of biolgics30 to include the MoA for the three drugs and the interactions between S. aureus and CoNS (FIGURE 2). The new QSP model of S. aureus-targeted therapies reproduced the baseline levels of the biological factors and
the clinical efficacies of the drugs on *S. aureus* levels, the EASI scores and EASI-75 (FIGURE 3a, b). The root mean square errors of the mean and %CV of *S. aureus* levels, the EASI scores and EASI-75 between the simulated and reference data were 0.3 log_{10} CFU/cm^2, 43%, 1.5 (out of 72 = the maximal EASI score) and 2.9%, respectively.

3.2. Detrimental effects of flucloxacillin and ShA9 on EASI scores disappeared when their bactericidal activity against CoNS was hypothetically removed

Using the new QSP model, we tested the first hypothesis that the bactericidal effects on CoNS impair the efficacies of *S. aureus*-targeted therapies on AD severity.

Our model simulation demonstrated that flucloxacillin and ShA9-resistant decreased CoNS while increasing the agr expression (FIGURE 3c), and that flucloxacillin and ShA9 could achieve better EASI scores and EASI-75 than placebo if they had no bactericidal effects on CoNS (FIGURE 4). In addition, a sensitivity analysis of the model parameters for %improved EASI elucidated that lower rates of CoNS killing by flucloxacillin (d_{fh}) and ShA9 treatments (d_{Sh9}) result in higher %improved EASI (SI section 5). These results suggested that a decrease in CoNS increases the agr expression, thereby worsening the EASI scores.

While CoNS levels were reduced to similar levels in both the ShA9-sensitive and ShA9-resistant groups, agr expression was reduced only in the ShA9-sensitive group (FIGURE 3c). The agr expression decreased due to the stronger decrease of *S. aureus* levels by ShA9-sensitive, compared to ShA9-resistant, even though the decrease in CoNS resulted in a slight increase in the agr expression. These results suggest that the efficacies of *S. aureus*-targeted therapies are determined in some part by the balance of their bactericidal strengths against *S. aureus* vs. CoNS.

3.3. Hypothetical *S. aureus*-targeted therapies achieved better EASI-75 than dupilumab

The QSP model described antimicrobial effects of *S. aureus*-targeted therapies by three parameters: the rate of *S. aureus* killing, that of CoNS killing and the strength of agr expression inhibition (FIGURE 2). The antimicrobial effects result in a decrease of *S. aureus* level, that of CoNS level and an inhibition of agr expression level, respectively (FIGURE 5a). To explore which antimicrobial effects are responsible for improvement in AD severity, we conducted model simulations for hypothetical *S. aureus*-targeted therapies with different values of the three parameters.

Our simulation results demonstrated that lower *S. aureus* levels, higher CoNS levels and stronger inhibition of agr expression resulted in higher EASI-75 after 16 weeks (FIGURE 5b
left). The S. aureus-specific eradication (the maximal reduction of S. aureus level without killing CoNS, yellow arrows in FIGURE 5b) led to comparable EASI-75 to dupilumab (66.7% vs. dupilumab: 61.6%). The EASI-75 of the S. aureus-specific eradication was improved by adding 90% inhibition of the agr expression (70.6%, blue arrows in FIGURE 5b).

Simulations for a combinatorial application of dupilumab and hypothetical S. aureus-targeted therapies elucidated that it can achieve better EASI-75 than an application of either one (FIGURE 5b right). The S. aureus-specific eradication improved EASI-75 (87.8%) when it was combined with dupilumab, which was further improved (91.9%) by adding 90% inhibition of agr expression.

3.4. S. aureus-targeted therapies achieved significant response in virtual dupilumab poor responders

We also simulated EASI-75 of S. aureus-targeted therapies in dupilumab poor responders (FIGURE 5c). Similarly to the results shown above for all virtual patients (FIGURE 5b), lower S. aureus levels, higher CoNS levels and higher inhibition of agr expression showed a better EASI-75 in virtual dupilumab poor responders. The hypothetical S. aureus-targeted therapies achieved a significant EASI-75 in virtual dupilumab poor responders (S. aureus-specific eradication: 43.2% and that with 90% inhibition of agr expression: 61.1%), which were potentiated by simultaneous application of dupilumab (S. aureus-specific eradication: 61.5% and that with 90% inhibition of agr expression: 79.6%).
4. DISCUSSION

4.1. QSP model-based meta-analysis reveals mechanism of conflicting efficacies of S. aureus-targeted therapies

We developed a QSP model that describes the interactions between S. aureus and CoNS in AD pathogenesis (FIGURE 2) by integrating data and knowledge from published experiments using human samples (SI section 3). The model reproduced published data of clinical efficacy for flucloxacillin, ShA9 and dupilumab (FIGURE 1) regarding the EASI scores, EASI-75 and S. aureus levels (FIGURE 3).

The QSP model simulation revealed that S. aureus-targeted therapies can worsen the EASI scores if they kill CoNS. The simulation showed that the application of ShA9 and flucloxacillin had detrimental effects on AD severity, and those effects disappeared if their bactericidal activity against CoNS was hypothetically removed (FIGURE 4). The graphical scheme of the QSP model (FIGURE 2) can explain how a decrease in CoNS impairs the EASI scores. The decreased CoNS levels diminish secreted AIPs, thereby upregulating the agr expression. The upregulated agr expression promotes the production of virulence factors that damage the skin barrier (e.g., by PSMs and enterotoxins) and induce inflammation (e.g., by wall teichoic acid to activate dendritic cells), which can worsen AD severity. These results and interpretation indicate an importance of bactericidal specificity on S. aureus in S. aureus-targeted therapies.

4.2. Model simulation quantifies relationships between profiles of antibacterial effects and responder rates

The QSP model simulation also elucidated relationships between antibacterial effects of S. aureus-targeted therapies (decreases in the S. aureus and CoNS levels and in the inhibition level of agr expression) and their EASI-75 responder rates (FIGURE 5b left). In addition, our simulation suggested that the efficacy of S. aureus-targeted therapies can be potentiated by concomitant use of dupilumab (FIGURE 5b right).

Theoretically, S. aureus-targeted therapies will achieve the best efficacy if they could eradicate S. aureus completely. However, some S. aureus may remain on population average after S. aureus-targeted therapies, presumably due to resistance against antibiotics and bacteriocins. Hence, it is crucial to inhibit agr expression by keeping the AIPs produced by CoNS, in addition to killing S. aureus, to minimise the agr-dependent virulence effects of S. aureus.
The hypothetical *S. aureus*-specific eradication (the maximal reduction of *S. aureus* level without killing CoNS), especially in combination with dupilumab, showed higher responder rates than dupilumab (Simulated EASI-75 at week 16: placebo 26.6%, dupilumab 61.6%, *S. aureus*-specific eradication 66.7% and combination 87.8%. FIGURE 5b right). Recently, JAK inhibitors have demonstrated promising efficacies in AD patients; abrocitinib showed a comparable response to dupilumab (EASI-75 at week 16; abrocitinib 71.0% vs. dupilumab 65.5%, not significant)\(^4^7\), and upadacitinib showed the highest responder rate among Ph3 trials of JAK inhibitors (EASI-75 at week 16. upadacitinib 77.1% vs. placebo 26.4%)\(^4^8\). Our simulation implies that *S. aureus*-specific eradication combined with dupilumab may achieve higher responder rates than JAK inhibitors.

4.3. *S. aureus*-specific eradication is potentially effective for dupilumab poor responders

This study also suggested the effectiveness of *S. aureus*-targeted therapies for dupilumab poor responders. The simulation for virtual dupilumab poor responders showed that *S. aureus*-specific eradication achieved 43.2% EASI-75 (FIGURE 5c left), which is much higher than EASI-75 achieved (up to 33.8%) when we simulated inhibition of all the cytokines considered in the previous QSP model of biologics\(^3^0\). These results imply that *S. aureus*, rather than cytokines, is potentially a promising therapeutic target for dupilumab poor responders.

The model simulation also demonstrated that the efficacy of *S. aureus*-targeted therapies is potentiated by its concomitant use with dupilumab in dupilumab poor responders (FIGURE 5c right). The results suggest that IL-4/IL-13 signalling contributes to the pathogenesis even for dupilumab poor responders and thus needs to be inhibited. Targeting both *S. aureus* and IL-4/IL-13 could be a promising therapeutic approach for AD patients.

4.4. Limitation of the QSP model simulation

This study aimed to interpret clinical data of *S. aureus*-targeted therapies obtained under different study conditions using a model-based meta-analysis. We assumed their efficacies are comparable across clinical trials after normalisation, although the study conditions (e.g., topical and systemic therapies) may influence the reported efficacies. The accuracy of the simulated efficacies of the hypothetical *S. aureus*-targeted therapies needs to be verified by future clinical trials\(^4^9\).

Our model assumed that CoNS has no detrimental effects on the skin barrier and inflammation. However, recent studies have suggested that *S. epidermidis*, one of CoNS,
also has detrimental effects on the skin barrier13. The detrimental effects of \textit{S. epidermidis} may explain the worsened EASI scores in \textit{ShA9} as it increased the proportion of \textit{S. epidermidis} among microbiome in the AD skin lesion20. Explicit modelling of different CoNS strains may deliver further insights into the roles of CoNS in AD pathogenesis, although our model assumed the detrimental effects of \textit{S. epidermidis} are negligible compared to those of \textit{S. aureus} because \textit{S. aureus} has a higher correlation with AD severity scores than \textit{S. epidermidis}6,50.

4.5. Prospect for \textit{S. aureus}-targeted therapies

The results of this study supported the widely accepted idea for \textit{S. aureus} being a promising drug target for AD and suggested the importance of considering antibacterial activities against both \textit{S. aureus} and CoNS when developing \textit{S. aureus}-targeted therapies. How much \textit{S. aureus} killing is required to achieve a certain efficacy for a therapy would depend on how strong the therapy kills CoNS and inhibits agr expression.

This study presents an example of how QSP model can contribute to model-informed drug development51 for precision medicine. For example, our simulation results will contribute to the design of \textit{S. aureus}-targeted therapies because the simulated relationship between EASI-75 responder rates and antibacterial effects (i.e., decreases in the \textit{S. aureus} and CoNS levels and inhibition of agr expression) can be used as a guide to set a target profile of the antibacterial effects to achieve a desirable efficacy (e.g., better EASI-75 than dupilumab). Our simulation results also encourage combinatorial use of \textit{S. aureus}-targeted therapies and cytokine-targeted therapies such as biologics and JAK inhibitors for AD.

The code of the QSP model is available at https://github.com/Tanaka-Group/AD_QSP_model.

References

40. Limpert E, Stahel WA, Abbt M. Log-normal distributions across the sciences: keys and clues: on the charms of statistics, and how mechanical models resembling gambling machines offer a link to a handy way to characterize log-normal distributions, which can provide deeper insight into variability and probability-normal or log-normal: that is the question. BioScience. 2001;51:341-352

TABLE 1 Drugs considered in this study

<table>
<thead>
<tr>
<th>Drugs</th>
<th>Targets</th>
<th>Dose regimen (highest dose)</th>
<th>Reported efficacies</th>
<th>#patients in placebo/drug group (Phase)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. hominis A9</td>
<td>Microbes</td>
<td>2 g (to deliver 1×10⁶ CFU/cm², topical, for 1 week (follow-up until 10 days))</td>
<td>%improved local EASI† S. aureus</td>
<td>17/35 (Ph1). Of 35, 21 and 11 patients were colonised with S. aureus that is sensitive and resistant to ShA9 bacteriocin, respectively. Colonisation status of the remaining 3 patients were not determined.</td>
</tr>
<tr>
<td>Flucloxacillin</td>
<td>Microbes</td>
<td>250 mg 4 times/day, oral, for 4 weeks (follow-up until 12 weeks)</td>
<td>Surface area score‡ Erythema score‡ S. aureus</td>
<td>25/25 (Ph2)</td>
</tr>
<tr>
<td>Dupilumab (anti-IL-4 receptor and subunit α antibody)**</td>
<td>IL-13</td>
<td>400 mg followed by 200 mg weekly, subcutaneous</td>
<td>EASI-75 %improved EASI S. aureus</td>
<td>27/27 (Ph2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>600 mg followed by 300 mg, weekly, subcutaneous, with concomitant use of topical corticosteroids</td>
<td>EASI-75, %improved EASI S. aureus</td>
<td>264/270 (Ph3)</td>
</tr>
</tbody>
</table>

†: We used %improved local EASI for %improved EASI as ShA9 was applied on the ventral forearms locally.
‡: We regarded %improved score of a product of the surface area score and the erythema score as %improved EASI by assuming that the erythema represents the four signs (erythema, induration, excoriations and lichenification) for the EASI score, which is calculated as a product of the area score and the severity score of the four signs. For dupilumab, we adopted S. aureus levels in Ph2 study and %improved EASI and EASI-75 in Ph3 study (SI Section 1).

FIGURE 1 Three drugs (flucloxacillin, ShA9 and dupilumab) reduced S. aureus levels but demonstrated conflicting clinical efficacies regarding EASI scores. S. aureus levels, the EASI score and EASI-75 were normalised using the reported data of each clinical trial (SI Section 1).
2. For ShA9, we evaluated the efficacies for the patients stratified by whether the colonised S. aureus is sensitive to ShA9 bacteriocins (ShA9-sensitive) or is resistant to ShA9 bacteriocins (ShA9-resistant). Horizontal bars on top represent the dosing periods in each clinical trial. Error bars: standard deviation.

![Diagram of QSP model](image)

FIGURE 2 Overview of the QSP model that describes the interactions between S. aureus and CoNS in AD pathogenesis. (a) Schematic diagram. (b) Regulatory pathways of the QSP model. The model comprises of the EASI score (an efficacy endpoint), skin barrier integrity, agr expression, S. aureus, CoNS, IL-4/IL-13 and drugs (ShA9, flucloxacillin, dupilumab). The regulatory pathways between biological factors are described according to published human data (SI Section 3).
FIGURE 3 QSP model-based simulation reproduced the reference data. The distributions of the model parameters were optimised to minimize the difference between simulated and reference data (SI section 4). Simulation was conducted on 1000 virtual patients. (a) Comparison of baseline levels of biological factors between reference (striped bars) and simulated data (filled bars). Error bars: standard deviation. (b) Comparison of clinical efficacies of flucloxacillin, ShA9 and dupilumab between reference (unfilled circles: mean, error bars: standard deviation) and simulated (lines: mean, shaded area: standard deviation) data. (c) Simulated model variables that have no reference data (lines: mean, shaded area: standard deviation). The IL-4/IL-13 levels in dupilumab reflect the 99% inhibition of IL-4/IL-13 by dupilumab. Green lines represent dosing periods. Effects of ShA9 were applied in both dosing and follow-up periods in the simulation because the measured amounts of ShA9 on the skin remained higher than baseline levels during the follow-up periods in the actual
clinical trial, while effects of flucloxacillin and dupilumab were applied only during dosing periods.

![Figure 4](image-url)

FIGURE 4 Detrimental effects of flucloxacillin and ShA9 on EASI scores disappeared if their bactericidal activity against CoNS were hypothetically removed. The EASI scores and EASI-75 of flucloxacillin and ShA9 (yellow, red and purple solid lines) were compared with hypothetical situation where flucloxacillin and ShA9 have no bactericidal effects on CoNS (yellow, red and purple dashed lines). The efficacies of dupilumab (blue solid line), the effects of which were modelled by inhibiting IL-4/IL-13 by 99%, were shown as a reference. Simulation was conducted on 1000 virtual patients (The EASI scores: mean values. EASI-75: responder rates). Without bactericidal effects on CoNS, flucloxacillin and ShA9 achieved better efficacies than placebo (black thin line) in our simulation. The simulation of efficacies of ShA9 was stopped on day 10 because our model was calibrated to reproduce the reported efficacies of ShA9 until day 10.
FIGURE 5 Hypothetical *S. aureus*-targeted therapies achieved better EASI-75 after 16 weeks of treatment than dupilumab in our model simulation. (a) Antimicrobial effects of hypothetical *S. aureus*-targeted therapies are represented by the level of *S. aureus*, that of CoNS and the inhibition level of agr expression after 16 weeks of treatment. Hypothetical *S. aureus*-targeted therapies were represented in our model by varying strengths of *S. aureus* killing, CoNS killing and inhibition of agr expression. (b and c) Antimicrobial effects of hypothetical *S. aureus*-targeted therapies evaluated by EASI-75 after 16 weeks of treatment for all virtual patients (b) and for virtual dupilumab poor responders (c). Lower *S. aureus* levels, higher CoNS levels and stronger inhibition of agr expression achieved a better EASI-75. The hypothetical *S. aureus*-specific eradication (yellow arrows) achieved comparable (b) or better (c) EASI-75 to dupilumab (dotted line in (b) and 0% in (c)), and its EASI-75 was potentiated (triangle) by adding 90% inhibition of agr expression (blue arrows). Their combination application with dupilumab achieved better EASI-75 than an application of either one. The effects of dupilumab were modelled by inhibiting IL-4/IL-13 by 99%. Simulation was conducted on 1000 virtual patients or 1000 virtual dupilumab poor responders (levels of *S. aureus* and CoNS and the inhibition level of agr expression: mean values. EASI-75: responder rates).