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Abstract: 20 

Hypertrophic cardiomyopathy (HCM) causes sudden cardiac death (SCD) due to ventricular 21 

arrhythmias (VA) manifesting from myocardial fibrosis proliferation. Current clinical risk 22 

stratification criteria inadequately identify at-risk patients in need of primary prevention of VA. 23 

Here, we use mechanistic computational modeling of the heart to analyze how HCM-specific 24 

remodeling of the heart promotes arrhythmogenesis and to develop a personalized strategy to 25 

forecast risk of VAs in these patients. We combine contrast-enhanced cardiac magnetic-26 

resonance (CMR) imaging and T1 mapping data to construct digital replicas of HCM patient 27 

hearts that represent the patient-specific distribution of focal and diffuse fibrosis and evaluate the 28 

substrate propensity to VA.  Our analysis indicates that the presence of diffuse fibrosis, which is 29 

rarely assessed in these patients, increases arrhythmogenic propensity. In forecasting future VA 30 

events in HCM patients, the imaging-based computational heart approach achieved 84.6%, 31 

76.9%, and 80.1% sensitivity, specificity, and accuracy, respectively, and significantly 32 

outperformed current clinical risk predictors. This novel VA risk assessment may have the 33 

potential to prevent SCD and help deploy primary prevention appropriately in HCM patients. 34 

  35 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 7, 2021. ; https://doi.org/10.1101/2021.10.04.21264520doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.04.21264520
http://creativecommons.org/licenses/by/4.0/


3 
 

Introduction: 36 

Hypertrophic cardiomyopathy (HCM) is the most common cause of sudden cardiac death 37 

(SCD) in the young and is a significant cause of sudden death in adults.(Maron, 2004) The 38 

disease, with an incidence of 1 in 500, presents with progressive myocardial fibrosis which can 39 

create substrates for ventricular arrhythmias (VA) leading to SCD in patients who are typically 40 

asymptomatic.(Galati et al., 2016; Olivotto et al., 2012) Implantable cardioverter defibrillator 41 

(ICD) deployment, a procedure that carries risk of potential complications and morbidity, is used 42 

as primary prevention of SCD due to VA in patients with HCM.(Lambiase et al., 2016; 43 

Jayatilleke et al., 2004) However, current risk stratification criteria outlined by the American 44 

College of Cardiology Foundation/American Heart Association (ACCF/AHA) and European 45 

Society of Cardiology (ESC) fail to accurately identify all patients at risk for SCD, leading to 46 

suboptimal rates of appropriate ICD implantation.(Gersh et al., 2011; O'Mahony et al., 2014; 47 

Schinkel et al., 2012) Thus, many HCM patients receive ICDs without deriving any health 48 

benefits, while others are not adequately protected.  Development of accurate means to stratify 49 

SCD risk due to VA in HCM patients for guidance of ICD deployment is an important unmet 50 

clinical need.  51 

Cardiac magnetic resonance (CMR) imaging with late gadolinium enhancement (LGE) 52 

has unparalleled capability in the detection and quantification of scar and dense fibrosis(Prakosa 53 

et al., 2014). In HCM, myocardial fibrosis takes the form of both dense (focal) and diffuse 54 

fibrosis, with histopathological evidence showing diffuse fibrosis as the hallmark feature of the 55 

disease.(Galati et al., 2016) Diffuse fibrosis, however, is not well captured by standard LGE-56 

CMR. Instead, post-contrast T1 mapping, a parametric imaging modality, has been used to 57 

visualize diffuse fibrosis in patients with HCM.(Chu et al., 2017; Ellims et al., 2012) We have 58 
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previously developed a computational modeling approach (virtual heart) to predict SCD risk due 59 

to VA in post-infarction patients,(Arevalo et al., 2016) We hypothesized that a new personalized 60 

virtual-heart technology, one that entails constructing fusion electrophysiological models based 61 

on the distribution of both dense and diffuse fibrosis, as acquired by the two different CMR 62 

modalities, would be predictive of the propensity of the HCM-remodeled substrate to VAs and 63 

could thus be used to assess SCD risk due to VA in this patient population.  64 

The goal of this study is to create a personalized virtual-heart approach based on the 65 

combination of post-contrast T1 mapping and LGE-CMR and to employ it 1) to analyze how 66 

HCM-specific remodeling promotes arrhythmogenesis and 2) in a targeted strategy to forecast 67 

risk of VA in HCM patients.  In a proof-of-concept patient cohort, we assess the predictive 68 

capability of the approach as compared to that of other clinical metrics for VA risk prediction in 69 

HCM.  70 

 71 

Results: 72 

The new approach to analyzing arrhythmogenic propensity in HCM patients developed 73 

here involved creating three-dimensional (3D) patient-specific electrophysiological ventricular 74 

models based on fusing data from LGE-CMR and post-contrast T1 mapping. Each model thus 75 

represented the personalized distribution of focal fibrosis (scar) and diffuse fibrosis. VA 76 

inducibility in each HCM patient’s substrate was probed to determine VA risk for the patient and 77 

to understand the mechanisms of arrhythmogenesis, and specifically, the contribution of the 78 

individualized diffuse fibrosis distribution, which is rarely assessed in these patients. Conceptual 79 

overview of our approach to analyzing the arrhythmogenic propensity of HCM patient hearts is 80 

presented in Figure 1A.  81 
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 82 

Figure 1. A. Flowchart summarizing the virtual-heart VA risk stratification approach for HCM 83 

patients. A combination of LGE-CMR and post-contrast T1 mapping is used to construct 84 

personalized LV geometrical models with fibrotic remodeling. Incorporating HCM-specific 85 

electrophysiological properties (action potential kinetics, conduction velocity) completes the 86 

generation of each personalized LGE-T1 virtual heart, which is then used to assess VA 87 

propensity in the substrate via rapid pacing. RV is shown in transparent gray. Dense fibrosis 88 
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(scar) is considered non-conductive. B. Fusing LGE-CMR and post-contrast T1 map information 89 

to generate the personalized, geometrical virtual-heart model. Top left: LV segmentation with in-90 

termediate and high signal intensity thresholds of 3 (yellow) and 5 SD (purple), respectively, on 91 

short-axis LGE-CMR. Bottom left: Mid-ventricular post-contrast T1 map segmentation with re-92 

laxation time thresholds of <350 (blue) and 350-450 ms (gray). Right: The thresholds of the 93 

LGE-CMR signal intensity were adjusted to new, personalized thresholds, TDiffuse and TDense, 94 

based on the T1 map (see text for detail). D: The new personalized signal intensity thresholds in 95 

the matching LGE-CMR slice were then applied to all LGE-CMR short-axis slices. 96 

 97 

 98 

Patient characteristics: 99 

Twenty-six patients with HCM were included in this study. Demographic information for 100 

the cohort is provided in Table 1. All patients were adults (median age 53 years) and our cohort 101 

was 19% female. Thirteen of the 26 HCM patients experienced clinical VAs. Of the clinical pa-102 

rameters that associate with SCD in HCM (FHSCD, unexplained syncope, MWT, Max LVOTG, 103 

Age, LA diameter; see Table 1 for abbreviations), there were no statistically significant differ-104 

ences (P = 0.34, -, 0.65, 0.72, 0.98, 0.26) between patients with and without clinical VA. There 105 

was no statistically significant difference in any of the other common clinical characteristics be-106 

tween the two groups. Clinical data alone was not sufficient to accurately determine VA risk in 107 

this population. 108 

  109 
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Table 1. Patient Characteristics (N=26) 110 

Clinical Characteristic Patients without VA, n=13 Patients with VA, n=13 P 
value 

Male 12 (92) 9 (69) 0.08 

Age at CMR, years 49.7 [19-76] 49.8 [22-78] 0.98 

NYHA III/IV 4 (31) 4 (31) - 

Myectomy 1 (8) 1 (8) - 

ASA 1 (8) 2 (15) 0.34 

Amiodarone 0 (0) 1 (8) 0.34 

Persistent AF 3 (23) 4 (31) 0.34 

LA Diameter, mm 43.8 ± 6.3 38.3 ± 12.7 0.26 

Max LVOTG, mmHg 57.8 [4-154] 50.8 [8-160] 0.72 

MWT, mm 20.5 ± 5.0 19.6 ± 5.6 0.65 

FS, % 38.0 ± 10.2 40.3 ± 10.8 0.40 

FHSCD 3 (23) 4 (31) 0.34 

Unexplained Syncope 3 (23) 3 (23) - 
Values are given as n (%), mean [range], or mean ± SD. P values were calculated using Student t 111 

test (P≤.05 considered statistically significant). VA=ventricular arrhythmia; CMR=cardiac 112 

magnetic resonance; ASA=alcohol septal ablation; AF=atrial fibrillation; LA=left atrium; 113 

LVOTG=left ventricular outflow tract gradient; MWT=maximum wall thickness; FS=fractional 114 

shortening; FHSCD=family history of sudden cardiac death. 115 

 116 

Assessment of HCM Structural Remodeling Using LGE-T1 Geometrical Models: 117 

To reconstruct the geometrical model of each patient’s heart, LGE-CMR and post-118 

contrast T1 mapping images were combined, creating a personalized LGE-T1 fusion model of 119 

HCM ventricular geometry and structural remodeling. Figure 1B presents the “fusing” process, 120 

in which an initial reconstruction of ventricular geometry and scar/fibrosis was performed from 121 
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the LGE-CMR images using standard “one-size-fits-all” thresholds, and then the relaxation times 122 

from the short-axis T1 map were used to define personalized signal intensity thresholds to 123 

delineate areas of diffuse fibrosis and scar (see Methods for detailed description). The 124 

personalized thresholds were unique to each patient. The additional personalization of the 125 

geometrical model furnished by the usage of the T1 mapping data ensured a comprehensive 126 

representation of the individualized structural remodeling in each patient heart. 127 

Once the geometrical models were reconstructed, they were analyzed to determine 128 

whether the level (amount) and/or distribution of structural remodeling discriminate between pa-129 

tients with and without clinical VA. The level of regional hypertrophy was first assessed, as 130 

measured by the wall thickness of the heart models. No statistically significant difference in re-131 

gional hypertrophy was found at the septum (P=0.61), anterior wall (P=0.84), posterior wall 132 

(P=0.94), and apex (P=0.73) between heart models of patients with and without clinical VA, as 133 

shown in Table 2. These results indicated that the level of hypertrophy does not discriminate be-134 

tween arrhythmogenic and non-arrhythmogenic substrates in HCM patients. 135 

 136 

Table 2. LV wall thickness in HCM patients with and without clinical VA 137 

 Patients without VA, 
n=13 

Patients with VA, 
n=13 

P 
value 

Wall Thickness (mean ± SD)     

Septum, mm 11.3 ± 8.4 13.1 ± 9.2 0.61 
Anterior, mm 11.3 ± 7.4 10.7 ± 7.3 0.84 
Posterior, mm 11.1 ± 7.2 11.3 ± 7.3 0.94 
Apex, mm 7.9 ± 5.3 7.2 ± 4.8 0.73 

P values were calculated using Student t test (P≤.05 considered statistically significant). 138 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 7, 2021. ; https://doi.org/10.1101/2021.10.04.21264520doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.04.21264520
http://creativecommons.org/licenses/by/4.0/


9 
 

Figure 2A and B presents a comparison between geometrical heart models of 2 patients 139 

(one with clinical VA and another without) reconstructed by combining LGE-CMR with T1 map-140 

ping, and by using LGE-CMR only. In the latter models, the accepted “one-size-fits-all” thresh-141 

olds of 3 and 5 times the standard deviation (SD) of the low-intensity mean were used to recon-142 

struct dense fibrosis (scar) and diffuse fibrosis distributions (see Methods). In the former models, 143 

patient-specific thresholds from the T1 mapping were used to delineate dense and diffuse fibro-144 

sis. As evident from the figure, using patient-specific signal intensity thresholding from the T1 145 

map resulted in a significantly higher amount of diffuse fibrosis in these two models (42.9 ± 146 

3.4% vs 9.8 ± 0.1%).  147 

For all HCM LGE-T1 fusion models, the average threshold for diffuse fibrosis, TDiffuse, 148 

was 1.1 ± 0.7, significantly different from the corresponding LGE “one-size-fits-all value”, 3 SD. 149 

The average threshold for dense fibrosis, TDense, was 5.1 ± 0.5, not a significant change from the 150 

original 5 SD. The personalized threshold adjustment did not therefore result in a significant 151 

change in the amount of dense fibrosis for LGE-T1 models compared to LGE-only models (aver-152 

ages of 3.8 ± 2.3 vs 3.2 ± 1.3, P=0.30).  However, it resulted in a significant change in diffuse 153 

fibrosis across all models, as illustrated in Fig. 2C (40.5 ± 9.4% for LGE-T1 vs 8.9 ± 1.7% for 154 

LGE only, P<0.0001). 155 

No statistical differences were found in the amounts of diffuse fibrosis between LGE-T1 156 

models with and without clinical VA (P=0.53, confidence interval; CI: [36.8 44]) and between 157 

LGE-only models with and without clinical VA (P=0.94, CI: [8.25 9.53]; Fig.1B); also, no statis-158 

tical difference was found in the amount of scar (3.7 ± 2.2% vs 3.8 ± 2.5, P=0.91 for LGE-T1 159 

and 3.4 ± 1.2% vs 3.0 ± 1.5%, P=0.53 for LGE only models).  These results indicate that the im-160 

aging characteristics of HCM structural remodeling, as visualized by the combination of LGE-161 
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CMR and T1 mapping, cannot be used to discriminate between patients who will and will not de-162 

velop clinical VA. 163 

 164 

 165 

Figure 2. A and B. Examples of HCM personalized LV geometrical models with fibrotic remod-166 

eling (RV shown in transparent gray) reconstructed using LGE-CMR images with personalized 167 

T1-informed fibrosis segmentation thresholds (left) and using LGE-CMR images with one-size-168 

fits-all fibrosis segmentation thresholds of 3 and 5 SD (right). There is significantly more diffuse 169 

fibrosis in the T1-adjusted models. A: Heart model from an HCM patient without clinical VA. B: 170 

Heart model from an HCM patient with clinical VA. C. Boxplot of the amount of diffuse fibrosis 171 

in LGE-T1 and LGE-only HCM geometrical models without clinical VA (LGE-T1: N=13, 172 

IQR=12.54; LGE Only: N=13, IQR=2.41; *P<0.0001) and with clinical VA ((LGE-T1: N=13, 173 

IQR=14.44; LGE Only: N=13, IQR=2.46; **P<0.0001).  174 

Figure 2 – source data 1; Spreadsheet including source data underlying Figure 2. 175 

For each geometrical model used in this study, the amount of diffuse fibrosis in each LGE-T1 176 

and LGE only model. Figure2_SourceData.xlsx 177 
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 178 

Assessment of Propensity to VA in HCM LGE-T1 Virtual Heart Models 179 

Once the geometrical models of all HCM patients were reconstructed, electrophysiologi-180 

cal models were generated and used to assess the individualized propensity to VA by pacing from 181 

distributed ventricular sites, representing potential ectopy. Full detail is in Methods. A total of 182 

182 simulations ([26 patient heart] x [7 pacing locations]) were performed to probe propensity to 183 

VA induction in this cohort. To be able to better understand the role of T1-based diffuse fibrosis 184 

in arrhythmogenesis, we also repeated the simulations with LGE-only models.  185 

Figure 3 presents reentrant arrhythmias induced (from sites marked with stars) in 3 LGE-186 

T1 virtual hearts from patients with known clinical VAs. In all three cases, a single VA morphol-187 

ogy was induced. In Figure 3, left, the VA localized in a region of interdigitated diffuse and dense 188 

fibrosis. In Figure 3 middle, there was a figure-of-eight reentry in a transmural region of diffuse 189 

fibrosis. In Figure 3 right, the VA shown was induced from two different pacing sites, one in the 190 

basal lateral and another in the inferoseptal wall and persisted also in a region of interdigitated 191 

diffuse and dense fibrosis.  192 
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 193 

Figure 3. VAs induced in 3 LGE-T1 virtual hearts from patients with known clinical VAs. A. 194 

Reconstructed patient-specific geometrical models. B. Activation patterns of the reentry induced 195 

from the pacing site(s) marked with star. Black regions did not activate during the timeframe 196 

shown. 197 
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 198 

Figure 4. Relationship between T1-based diffuse fibrosis and VA inducibility in LGE-T1 and 199 

LGE-only personalized virtual heart models of HCM patients. A. Comparison of the number of 200 

unique VA morphologies between inducible LGE-T1 and LGE-only models for all VA-inducing 201 

pacing sites. (LGE-T1: N=14, IQR=1; LGE Only: N=12, IQR=0.75; P=0.0538, CI [1.25, 1.75]) 202 

B. Correlation between amount of T1-based diffuse fibrosis and the number of unique VA mor-203 

phologies induced in LGE-T1 models (R=-0. 3048, P=0.289). C. Distribution of the pacing sites 204 

that induced VAs in LGE-T1 and LGE-only models. 205 

Figure 4 – source data 1; Spreadsheet including source data underlying Figure 4. 206 

For each geometrical model that reentry was induced, the number of unique VA morphologies 207 

and amount of diffuse fibrosis in each LGE-T1 and LGE only model. Figure4_SourceData.xlsx 208 
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 209 

Of the 26 LGE-T1 models, 14 were found inducible for VA in simulations. In contrast, 210 

only 12 LGE-only models were found inducible, indicating that the presence of diffuse fibrosis 211 

leads to increased VA inducibility. Figures 4 and 5 explore the mechanistic contributions to in-212 

creased VA vulnerability in models with T1-based diffuse fibrosis.  213 

Fig. 4A presents the number of unique VA morphologies induced by the pacing protocol. 214 

LGE-T1 models had a total of 24 unique VAs induced in them (out of total 32 VA episodes in-215 

duced in the LGE-T1 models); in each model, there were between 1 and 3 different VA morphol-216 

ogies. LGE-only models had a total of 15 unique VAs (with a total of 17 VA episodes induced in 217 

these models), with only 1 or 2 distinct VA morphologies induced per model. These results indi-218 

cate that the presence of diffuse fibrosis as reconstructed from T1 mapping increases the number 219 

of unique VAs in each substrate. Fig.4B correlates the amount of diffuse fibrosis and the number 220 

of unique VAs (R=-0.3048, P=0.289) in LGE-T1 inducible models. The moderate negative corre-221 

lation indicates that the distribution of diffuse fibrosis is more important than its amount as the 222 

mechanism of VA inducibility in the HCM-remodeled substrate. Figure 4C presents two bullseye 223 

plots with the 7 AHA regions in which pacing sites were located; shown are the number of pac-224 

ing sites in each segment that elicited VAs in LGE-T1 and LGE-only inducible models. In the 225 

LGE-T1 models, out of the 98 pacing sites (7 pacing sites per each of the 14 inducible models), 226 

32 (33%) resulted in VA induction. In contrast, out of 84 pacing sites in the 12 LGE-only induci-227 

ble models, 17 (20%) resulted in VA induction. Thus, the presence of T1-based diffuse fibrosis 228 

renders the substrate inducible from a larger number of ectopic locations, contributing to the 229 

overall increased vulnerability to VA. Interestingly, the sector with the pacing sites that induced 230 

most VAs (mid anteroseptal) and that with least (basal inferolateral) were the same in LGE-T1 231 
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and LGE-only models, indicating that the additional T1-based diffuse fibrosis localizes to the 232 

sectors with arrhythmogenic substrate in the LGE-only models. Overall, the distribution of pac-233 

ing sites is the same (with small exception in the basal regions), but the number of sites per sec-234 

tor increased with the presence of diffuse fibrosis. 235 

Figure 5 explores the contribution of T1-based diffuse fibrosis to VA inducibility by com-236 

paring arrhythmogenesis in individual models. Panel A shows, for the 13 patients with clinical 237 

VAs, the number of distinct VAs per patient model. First, LGE-T1 modeling documented cor-238 

rectly VA occurrence in the digital substrates of 11 of the 13 patients with clinical VAs (com-239 

pared to 9 LGE-only correct VA predictions); thus, the representation of T1-based diffuse fibro-240 

ses increased the fidelity of the HCM virtual heart approach. Second, while the number of unique 241 

VA morphologies per inducible virtual heart increased in LGE-T1 models as compared to LGE-242 

only (consistent with data in Fig. 4A), with LGE-T1 models having maximum 3 unique VAs (vs. 243 

2 in LGE-only) in the cohort, this plot points to interesting VA dynamics in individual substrates. 244 

Patients 5, 6, and 9 had the same level of arrhythmogenicity of the substrate (1 VA induced) re-245 

gardless of the presence of T1-based diffuse fibrosis. An example of VA dynamics in these mod-246 

els is shown in Fig.5B (patient 6). The additional diffuse fibrosis did not alter the location or di-247 

rection of VA reentry; the reentry occurred in a region of dense scar in both types of models. Alt-248 

hough the T1-based diffuse fibrosis (36.2%) in this patient augments the existing diffuse fibrosis 249 

of the LGE-only model (9.6%), there are no additional VA morphologies. However, the activa-250 

tion dynamics were altered, with propagation being less organized. 251 

In the reminder of the clinical-VA patients in Fig. 5A, the presence of T1-based diffuse 252 

fibrosis resulted in the occurrence of additional VA(s), on top of that (those) also present in the 253 

LGE-only model. Furthermore, there was not a strict correspondence between the VAs in the 254 
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LGE-only models and the equivalent ones in the LGE-T1 virtual heart in terms of VA locations 255 

and dynamics. This indicates that the arrhythmogenic substrate changes in a global fashion when 256 

T1-based diffuse fibrosis in considered. An example is presented in Fig. 5C (patient 9). 257 

As VAs in HCM patients can occur under different circumstances and be documented by 258 

different means, there is no invasive clinical mapping data for these patients regarding the loca-259 

tion and morphologies of the clinical VAs. However, two patients in this cohort underwent clini-260 

cal electrophysiology studies that identified episodes of VA. The simulated VAs in the LGE-T1 261 

models matched the locations of the clinical VAs as documented by the chart review. 262 

It remains unclear why patients 1 and 2 had non-inducible LGE-T1 substrates despite 263 

having clinical VAs. The amount of diffuse fibrosis in these 2 substrates (42.4 ± 12.2%) was sim-264 

ilar to that in the 11 inducible substrates (41.2 ± 10.9%); similar was the finding regarding dense 265 

scar. Additionally, the maximum wall thickness and the thickness distribution fall into the same 266 

ranges as the averages of the cohort. It is possible that there have been other factors, including 267 

electrophysiological remodeling that the fusion substrate-based modeling approach presented 268 

here cannot capture. Despite incorrect prediction in 2 out of 26 patients in the HCM cohort, the 269 

VA risk prediction capabilities of the LGE-T1 virtual-heart approach significantly surpassed 270 

those of any current clinical risk assessment approaches, as detailed in the next section. 271 
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 272 

 273 
Figure 5. Comparison of arrhythmogenesis in HCM models of patients with clinical VAs. A: 274 

Plot of the number of unique VA morphologies for patients with clinical VA using LGE-T1 LGE- 275 

only models. B and C: Comparison of VAs in corresponding LGE-T1 and LGE-only models. 276 

Pacing site(s) are marked with stars. Bullseye plots show the pacing site location (star) and the 277 

location of the reentrant pathway in LGE-T1 (blue) and LGE-only (purple) models. 278 

Figure 5 – source data 1; Spreadsheet including source data underlying Figure 5. 279 
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For each geometrical model with clinical VA, the number of unique VA morphologies in each 280 

LGE-T1 and LGE only model. Figure5_SourceData.xlsx 281 

 282 

Assessment of the Capability of the HCM Virtual Heart VA Risk Prediction:  283 

After examining the mechanistic underpinning of arrhythmogenesis and the role of T1-284 

based diffuse fibrosis in the HCM substrate, we conducted a comparison of our VA risk predictor 285 

capability with the clinical risk assessment guidelines of the American College of Cardiology 286 

Foundation (ACCF)/American Heart Association (AHA) and European Society of Cardiology 287 

(ESC). Results are presented in Table 3, illustrating that both existing clinical approaches were 288 

significantly inferior in predicting VA risk in this cohort. Of the 13 HCM patients with clinical 289 

VAs, the ACCF/AHA model predicted correctly 6 of the patients, while the ESC model predicted 290 

correctly 7 patients; the LGE-T1 virtual heart approach predicted correctly 11 patients. Overall, 291 

our LGE-T1 virtual heart technology exhibited higher accuracy and greater sensitivity and speci-292 

ficity (80.1%, 84.6%, and 76.9%) as compared to the best performing corresponding metrics of 293 

the clinical risk assessment methodologies (46.2%, 53.9%, and 46.2% for accuracy, sensitivity, 294 

and specificity). 295 

For completeness, data at the bottom of Table 3 quantifies the predictive capability of the 296 

substrate arrhythmogenesis approach when using LGE-only models (9 patients predicted cor-297 

rectly out of 13). Interestingly, even without the additional T1 personalization (i.e. without ac-298 

counting for T1-based diffuse fibrosis), the LGE-only virtual-heart technology outperformed the 299 

clinical risk stratifiers in this HCM cohort. This finding indicates that assessing the arrhythmo-300 

genic propensity of the substrate is of paramount importance to HCM VA risk stratification, even 301 

when the distribution of diffuse fibrosis may not be accurately represented. 302 
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 303 

Table 3. Predictive Capability of HCM Virtual-Heart Technology 304 

 Sensitivity Specificity PPV NPV Accuracy 

ACCF/AHA Risk Model 46.2 46.2 46.2 46.2 46.2 

ESC Risk Model 53.9 38.5 46.7 45.5 46.2 

Virtual Heart Technology: LGE-T1 84.6 76.9 78.8 83.3 80.1 
      
Virtual Heart Technology: LGE Only 69.2 76.9 75.0 71.4 73.1 

ACCF=American College of Cardiology Foundation, AHA=American Heart Association, 305 

ESC=European Society of Cardiology. 306 

 307 

Discussion: 308 

In this study, we presented a new personalized virtual heart approach for assessing 309 

arrhythmia risk in patients with HCM, which could be used in guiding clinical decisions for 310 

prophylactic ICD implantation. Our technology uses multiscale computational models of 311 

patients’ hearts reconstructed on the basic of the fusion of imaging data from LGE-CMR and T1 312 

mapping. With the inclusion of information from post-contrast T1 mapping, a quantitative and 313 

parametric imaging modality, extensive diffuse fibrotic remodeling, which is a hallmark of 314 

HCM, is adequately represented. Here, this is done by adjusting the diffuse fibrosis intensity-315 

based thresholds in model construction based on the T1 maps, while preserving the identification 316 

of dense scar from LGE-MRI. These are the first personalized heart models created with data 317 

from different types of CMR; previous personalized modeling approaches for VA assessment 318 

have utilized LGE-MRI scans in reconstructing model geometry/structure(Prakosa et al., 2014; 319 

Cartoski et al., 2019; Arevalo et al., 2016). Once constructed, the mechanistic personalized 320 

electrophysiological models were used to analyze how HCM-induced remodeling, and 321 
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specifically the presence of diffuse fibrosis promotes arrhythmogenesis. Finally, the capability of 322 

our approach to forecast future VA events was assessed in the cohort of 26 HCM patients. 323 

Presence of diffuse fibrosis has been suggested previously as a potential factor in 324 

increased risk of VA, in addition to focal scar. Previous studies have found associations between 325 

diffuse fibrosis and VA in non-ischemic dilated cardiomyopathies(Nakamori et al., 2018) and 326 

mitral valve prolapse(Bui et al., 2017). Additionally, diffuse ventricular fibrosis has been found 327 

to increase left atrial pressure, and may be a marker of atrial fibrillation recurrence post-328 

ablation(Begg et al., 2020). However, its contribution to arrhythmogenic propensity in HCM 329 

patients has never been assessed before. This study found that the presence of T1-based diffuse 330 

fibrosis resulted in the occurrence of new VAs, in addition to those arising from scar (as assessed 331 

by signal heterogeneities in LGE-MRI).  Furthermore, T1-based diffuse fibrosis distribution 332 

rendered the substrate inducible from a larger number of ectopic locations, contributing to the 333 

overall increased vulnerability to VA. 334 

In this retrospective proof-of-concept HCM study, the personalized LGE-T1 virtual heart 335 

technology demonstrated excellent performance in forecasting future VA events in HCM 336 

patients, achieving 84.6%, 76.9%, and 80.1% sensitivity, specificity, and accuracy, respectively. 337 

It outperformed both risk models used in current clinical practice, the ACCF/AHA and ESC 338 

models. Indeed, all 26 HCM patients in our study were deemed at high risk for SCD by the 339 

ACCF/AHA criteria and received ICDs for primary prevention, but only 13 patients, i.e. 50% of 340 

the cohort, actually experienced VA (appropriate ICD firing). Should our LGE-T1 virtual heart 341 

technology be proven to be a superior risk predictor in larger clinical studies, it would advance 342 

the management of patients with this complex disease, helping to ensure that those at high risk 343 
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for VA are adequately protected by ICDs and that unnecessary ICD implantations and the 344 

associated device complications are minimized.  345 

The HCM virtual-heart technology’s ability to comprehensively evaluate substrate 346 

arrhythmogenicity, as probed by rapid pacing delivered at a number of uniformly-distributed 347 

ventricular locations, is paramount to its superior performance. Even when using only LGE-348 

CMR in model construction, which reliably detects focal scar (dense fibrosis) but underestimates 349 

the amount of non-ischemic fibrotic remodeling, our technology still offers VA risk assessment 350 

that is superior to the clinical risk models. However, the use of T1 maps in model construction 351 

confers a higher level of personalization in each patient heart model as compared to LGE only 352 

(i.e. personalized thresholds for segmentation), which ultimately translates into superior 353 

predictive capability.  354 

HCM is a genetic disease that progresses throughout the life of the patient, and a cardiac 355 

event might be a phenotypic expression of the disease at any point of time. Therefore, we 356 

envision that in the clinical application of our technology, patients would be re-imaged at 357 

different time points and risk assessment repeated to account for changes in arrhythmia 358 

susceptibility over time as the diseased heart remodels. 359 

The technology developed here charts a new direction in the use of biophysically-detailed 360 

heart modeling in the prognosis of rhythm disorders. A number of different imaging modalities 361 

used in patient assessment such as positron emission tomography (PET) or single-photon 362 

emission computerized tomography (SPECT) could also be integrated with LGE-CMR to 363 

construct hybrid heart computational models. Combining such computational approaches with 364 

machine learning techniques(Shade et al., 2020a; Shade et al., 2021) will enable the 365 

incorporation of additional patient clinical data, such as genetic information, phenotypic 366 
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characterization, as well as time series, such as electrocardiography (ECG), in the diagnosis and 367 

treatment of complex cardiac diseases.  368 

 369 

Study Limitations: 370 

Our study has a small sample size, limited by the fact that a number of LGE-CMR scans 371 

of HCM patients had imaging artifact, which prevented us from reconstructing a larger number 372 

of virtual hearts. Specifically, aliasing and motion artifacts were main causes for excluding 373 

patient data as well as incomplete scans (operator did not scan the entire LV). Further, in some 374 

patients there were discrepancies between the post-contrast T1 map and the matching LGE-CMR 375 

short axis scan as the in-plane resolution and slice thickness. However, these discrepancies were 376 

mitigated by binning the regions of fibrotic remodeling and electrophysiogical changes instead of 377 

using a continuum. 378 

 379 

Methods: 380 

Study Overview:  381 

The methodology for assessing VA risk in HCM patients involves creating three-382 

dimensional (3D) patient-specific electrophysiological ventricular models with data from LGE-383 

CMR and post-contrast T1 mapping. Each model represents the personalized distribution of both 384 

focal fibrosis (scar) and diffuse fibrosis, both of which contribute to the formation of the 385 

arrhythmogenic substrate. VA inducibility in each HCM patient’s substrate is probed to 386 

understand the mechanisms of arrhythmogenesis, and specifically the contributions to it of the 387 

focal and diffuse fibrosis distributions, and to determine VA risk for the patient. Conceptual 388 

overview is presented in Figure 1.  389 
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The predictive capabilities of the virtual-heart HCM VA risk stratifier were evaluated ret-390 

rospectively in a proof-of-concept study using data from 26 HCM patients. We chose a cohort 391 

that was balanced between patients with VAs based on appropriate ICD firings (13 patients) and 392 

without arrhythmic events (the other 13 patients). All patients underwent implantation of clini-393 

cally indicated ICDs. Virtual-heart predictions of VA risk, executed blindly, were compared to 394 

clinical outcomes.   395 

 396 

Study Population:  397 

The 26 patients were diagnosed with HCM based on the presence of left-ventricular (LV) 398 

wall thickness ≥15 mm on 2-dimensional echocardiography in the absence of other ventricular 399 

diseases, including hypertrophy of the right ventricle (RV), between 2011 and 2016 at Johns 400 

Hopkins Hospital.(Chu et al., 2017) All patients were clinically referred for prophylactic ICD 401 

implantation, being deemed at high risk for VA based on clinician assessment. T1 maps and 402 

LGE-CMR were obtained pre-ICD implantation. Patients were followed for the primary end 403 

point of appropriate ICD firing due to VA. As stated above, of the 26 HCM patients, 13 (50%) 404 

had known VA episodes based on appropriate ICD firing. Patient clinical characteristics are 405 

shown in Table 1. 406 

 407 

Imaging Data: 408 

Patients whose imaging data was retrospectively used in this study had cardiac CMR 409 

examinations using a 1.5-T scanner (MAGNETOM Avanto; Siemens Healthcare, Erlangen, 410 

Germany) prior to ICD implantation. Short-axis LGE-CMR images were acquired as previously 411 

described.(Chu et al., 2017) In addition, a single mid-ventricular short-axis post-contrast T1 map 412 
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was acquired 25 minutes after gadolinium injection using a MOLLI sequence.(Chu et al., 2017) 413 

All patient imaging data for model generation was obtained under IRB approval. 414 

 415 

Geometrical Reconstruction of Patients’ Hearts from T1 Maps and LGE-CMR Images:  416 

In generating HCM patients’ virtual hearts, a geometrical model of each patient’s heart 417 

was first reconstructed by combining the patient’s LGE-CMR and post-contrast T1 mapping 418 

images. The LV myocardium was segmented from short-axis LGE-CMR as previously 419 

described.(Arevalo et al., 2016) The RV was not reconstructed due to blood pool artifacts and the 420 

lack of hypertrophy and fibrotic substrate in HCM patients. The LGE-CMR was processed in the 421 

standard manner for reconstructing LV geometrical models of patients with ischemic(Arevalo et 422 

al., 2016) or non-ischemic cardiomyopathy,(Shade et al., 2020b; Cartoski et al., 2019) which 423 

incorporate the distribution of scar and surrounding gray (border) zone. Specifically, as LGE-424 

CMR is an image of relative intensity, the mean of the low signal intensity region in each image 425 

was determined, the latter representing myocardium without detectable fibrosis. The standard 426 

deviation (SD) of that mean value was used to threshold regions of intermediate (>3 SD above 427 

the mean) and high (>5 SD above the mean) signal intensity in the LV, representing fibrotic gray 428 

zone and focal scar. Figure 1B, top left, shows these thresholds applied to one LGE-CMR image. 429 

The same SD thresholds were used for all models. 430 

Information from the patient’s post-contrast T1 mapping was next incorporated in each 431 

geometrical heart model. As only a single short-axis mid-LV post-contrast T1 map (Fig.1B) was 432 

acquired for each patient, the matching slice (Fig.1B, top left) in the LGE-CMR stack was first 433 

found. The relaxation times from the short-axis T1 map were used to define new, personalized 434 

signal intensity thresholds (different from the “one-size-fits-all” thresholds of 3 and 5 SD of the 435 
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low-intensity mean) to delineate areas of intermediate and high signal intensities in the 436 

corresponding LGE slice. Specifically, regions in the LGE-CMR slice corresponding to short 437 

(<350ms) and intermediate (350-450ms) relaxation times in the T1 map were thresholded 438 

(Fig.1B). Based on evidence in histopathological studies(Ellims et al., 2012; Iles et al., 2008; 439 

Mewton et al., 2011; Ellims et al., 2014), these regions in the T1 map represent dense fibrosis 440 

(scar) and diffuse fibrosis.  441 

The thresholds in the LGE-CMR slice, originally 3 and 5 SD of the mean signal intensity 442 

of the normal myocardium, were changed to new values (TDiffuse and TDense, in units of SD, 443 

Fig.1B, bottom left) such that the amount and distribution of tissue of mid- and high signal 444 

intensity in the LGE-CMR slice matched those in the T1 map. The new personalized signal 445 

intensity thresholds in the matching LGE-CMR slice were then applied to all LGE-CMR short-446 

axis slices (Fig.1B, right) for the given patient to complete the generation of the LGE-T1 447 

geometrical heart model (Fig.1A, middle); the personalized thresholds were unique to each 448 

patient. Using T1 mapping provided additional personalization of the model geometrical 449 

reconstruction and ensured a comprehensive representation of the individualized structural 450 

remodeling in each patient heart. 451 

High resolution finite-element tetrahedral meshes, with an average resolution of 355 ± 69 452 

μm, were constructed directly from the ventricular segmentations using finite element analysis 453 

software (Mimics Innovation Suite; Materialise, Leuven, Belgium). Fiber orientations were 454 

applied to each mesh using a previously validated approach.(Bayer et al., 2012; Prassl et al., 455 

2009)  456 

 457 

Electrophysiological Properties in the HCM Virtual Hearts:  458 
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The personalized 3D virtual hearts of HCM patients incorporated electrical functions 459 

from the cellular scale to the whole heart. Electrophysiological remodeling was incorporated in 460 

each virtual heart based on the reconstruction of heterogeneously distributed structural 461 

remodeling.  462 

At the cellular level, in regions of non-fibrotic myocardium, the human ventricular 463 

myocyte model by ten Tusscher et al(ten Tusscher and Panfilov, 2006) was used, with added 464 

representation of INaL(O’Hara et al., 2011), as done in our previous studies.(Shade et al., 2020b; 465 

Cartoski et al., 2019; Arevalo et al., 2016; Prakosa et al., 2018) For regions of diffuse fibrosis, 466 

we modified the ionic conductances of the ten Tusscher model based on data reported by Coppini 467 

et al.(Coppini et al., 2013) In the latter study, prolonged action potential duration and notch 468 

elevation following depolarization were observed in experimental recordings from myocytes in 469 

hyperthrophied regions acquired via myectomy. As regions of hypertrophy in the HCM heart are 470 

also characterized with diffuse fibrotic remodeling, as per histopathological evidence,(Galati et 471 

al., 2016) in the absence of experimental reports of specific ionic changes in regions of diffuse 472 

fibrosis, we used those reported by Coppini et al.(Coppini et al., 2013) Figure 1A, middle, shows 473 

the action potentials implemented in regions of fibrotic and non-fibrotic myocardium. 474 

At the tissue level, conductivity values along the longitudinal and transverse fiber 475 

directions in fibrotic and non-fibrotic myocardium were the same as previously implemented for 476 

non-ischemic patient heart models.(Shade et al., 2020b) Dense fibrosis was considered 477 

electrically inexcitable. Once completed, the patient-specific HCM electrophysiological heart 478 

models were used to assess the patient’s risk of arrhythmia. 479 

 480 

Assessing VA Risk in the Personalized HCM Computational Models:  481 
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Full details regarding the simulation of electrical activity in the virtual hearts can be 482 

found in previous publications.(Plank et al., 2008; Prakosa et al., 2018; Vigmond et al., 2008) 483 

Briefly, these were finite element heart models, where simulation of electrical activity was 484 

performed in a monodomain representation of the myocardium using the software package 485 

CARP (https://carp.medunigraz.at/). Each virtual heart was paced sequentially from seven 486 

uniformly distributed endocardial LV locations using a validated rapid pacing protocol described 487 

in detail in previous studies.(Prakosa et al., 2018; Arevalo et al., 2016; Cartoski et al., 2019) 488 

Similar to our work on VA risk stratifications for patients with ischemic 489 

cardiomyopathy,(Arevalo et al., 2016) simulation results were analyzed to determine whether 490 

reentrant VA was induced in the LV HCM models following rapid pacing from any of the sites. If 491 

VA was induced from at least one pacing site in a given personalized HCM virtual heart, the 492 

patient was then considered at risk of VA. Simulation results were blind to clinical outcome. 493 

 The capability of our HCM virtual heart technology to predict VA risk was compared to 494 

risk scores for prophylactic ICD implantation developed by ACCF/AHA(Gersh et al., 2011) and 495 

ESC(O'Mahony et al., 2014) using the patient clinical data.  496 
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