Humoral immune responses to COVID-19 vaccination in people living with HIV on suppressive antiretroviral therapy

Zabrina L. Brumme1,2*, Francis Mwimanzi1, Hope R. Lapointe2, Peter Cheung1,2, Yurou Sang1, Maggie C. Duncan1,2, Fatima Yaseen3, Olga Agafitei1, Siobhan Ennis1, Kurtis Ng1, Simran Basra1,2,4, Li Yi Lim1,3, Rebecca Kalikawé1, Sarah Speckmaier2, Nadia Moran-Garcia2, Landon Young5, Hesham Ali6, Bruce Ganase7, Gisele Umviligihozo1, F. Harrison Omondi1,2, Kieran Atkinson2, Hanwei Sudderuddin2,8, Junine Toy2, Paul Sereda2, Laura Burns9, Cecilia T. Costinuk10, Curtis Cooper11,12, Aslam H. Anis13,14,15, Victor Leung5,16, Daniel Holmes9,16, Mari L. DeMarco9,16, Janet Simons9,16, Malcolm Hedgcock17, Marc G. Romney5,16, Rolando Barrios1,2,13, Silvia Guillemi2,18, Chanson J. Brumme2,8, Ralph Pantophlet1,3, Julio S.G. Montaner2,8, Masahiro Niikura1, Marianne Harris2,18, Mark Hull2,8, Mark A. Brockman1,2,3*

*ZLB and MAB contributed equally

1 Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada;
2 British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada;
3 Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada;
4 Department of Chemistry, Simon Fraser University, Burnaby, Canada;
5 Division of Medical Microbiology and Virology, St. Paul's Hospital, Vancouver, Canada;
6 John Ruedy Clinic, St. Paul's Hospital, Vancouver, Canada
7 AIDS Research Program, St. Paul's Hospital, Vancouver, Canada
8 Department of Medicine, University of British Columbia, Vancouver, Canada;
9 Department of Pathology and Laboratory Medicine, Providence Health Care, Vancouver, Canada;
10 Division of Infectious Diseases and Chronic Viral Illness Service, McGill University Health Centre and Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
11 Department of Medicine, University of Ottawa, Ottawa, Canada
12 Ottawa Hospital Research Institute, Ottawa, Canada
13 School of Population and Public Health, University of British Columbia, Vancouver, Canada
14 CIHR Canadian HIV Trials Network, University of British Columbia, Vancouver, Canada
15 Centre for Health Evaluation and Outcome Sciences, Vancouver, Canada
16 Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
17 Spectrum Health, Vancouver, Canada
18 Department of Family Practice, Faculty of Medicine, University of British Columbia, Canada

Running title: COVID19 vaccine in people with HIV

Corresponding Author Contact Information:
Zabrina L. Brumme, Ph.D.
Professor, Faculty of Health Sciences
Simon Fraser University
8888 University Drive
Burnaby, BC, Canada, V5A 1S6
Tel: 778 782-8872
Fax: 778-782-5927
email: zbrumme@sfu.ca; zbrumme@bccfe.ca

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

Background. Our understanding of COVID-19 vaccine immune responses in people living with HIV (PLWH) remains incomplete.

Methods. We measured circulating antibodies against the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and ACE2 displacement activities after one and two COVID-19 vaccine doses in 100 adult PLWH and 152 controls.

Results. All PLWH were receiving suppressive antiretroviral therapy, with median CD4+ T-cell counts of 710 (IQR 525-935) cells/mm³. Median nadir CD4+ T-cell counts were 280 (IQR 120-490) cells/mm³, and ranged as low as <10 cells/mm³. After adjustment for sociodemographic, health and vaccine-related variables, HIV infection was associated with 0.2 log₁₀ lower anti-RBD antibody concentrations (p=0.03) and ~7% lower ACE2 displacement activity (p=0.037) after one vaccine dose. Following two vaccine doses however, the association between HIV and weaker responses no longer remained. Rather, older age, a higher burden of chronic health conditions, and having received two ChAdOx1 doses (as opposed to a heterologous or dual mRNA vaccine regimen) were the most significant correlates of weaker humoral responses. No significant association was observed between the most recent or nadir CD4+ T-cell counts and responses to COVID-19 vaccination in PLWH following two vaccine doses.

Conclusions. These results suggest that PLWH whose viral loads are well-controlled on antiretroviral therapy and whose CD4+ T-cell counts are in a healthy range will generally not require a third COVID-19 vaccine dose as part of their initial immunization series, though other factors such as older age, co-morbidities, type of initial vaccine regimen and durability of vaccine responses will influence when this group may benefit from additional doses. Further
studies of PLWH who are not receiving antiretroviral treatment and/or who have low CD4+ T-cell counts are needed.

Key words: COVID-19, vaccine, humoral responses, HIV, antibodies, ACE2 displacement
INTRODUCTION

As people living with HIV (PLWH) may be at increased risk for severe COVID-19, possibly as a result of immunosuppression, higher rates of multi-morbidity and social determinants of health [1-4], COVID-19 vaccination is expected to benefit this group [5]. Our understanding of immune responses to COVID-19 immunization in PLWH however remains limited, in part because relatively few PLWH were included in the clinical trials for the COVID-19 vaccines that have now been widely administered in Canada and Europe (~196 for the BNT162b2 mRNA vaccine [6, 7], 176 for the mRNA-1273 mRNA vaccine [8] and 54 and 103 PLWH respectively in the UK and South Africa for the ChAdOx1 viral vectored vaccine [9]). Furthermore, immune response data from PLWH in these trials are currently only available for ChAdOx1 [10, 11]. "Real-world" COVID-19 vaccine immune response data from PLWH are also limited. While all three of these vaccines have shown effectiveness following their initial mass rollouts [12-14], and while clinical trial and observational data have shown robust vaccine-induced humoral immune responses in the general population [15-17], impaired responses have been reported in certain immuno-compromised groups including solid organ transplant recipients [18, 19], cancer patients [20-22], and individuals on immunosuppressive or immune-depleting therapies [23-25].

Antiretroviral therapy durably suppresses HIV to undetectable levels in plasma, restores CD4+ T-cell numbers, and can reverse HIV-induced immune dysfunction to a substantial extent [26-29], but persistent immunopathology can nevertheless lead to blunting of immune responses to vaccination in PLWH [30-32]. Though "real world" COVID-19 vaccine immunogenicity data in PLWH are emerging [33-36], these studies have featured limited numbers of PLWH and/or controls, and none have adjusted for chronic health conditions that may blunt immune responses.
Here, we characterize SARS-CoV-2-specific humoral immune responses after immunization with one and two doses of a COVID-19 vaccine in 100 PLWH and 152 control participants ranging from 22 to 88 years of age.

METHODS

Participants and sampling. A total of 100 adult PLWH were recruited through three HIV care clinics in Vancouver, British Columbia (BC), Canada and through community outreach. A total of 152 control participants without HIV included 24 adults <65 years of age recruited for the present study, along with 39 community-dwelling adults >65 years of age and 89 health care workers who were recruited for a parallel study of COVID-19 vaccine immune responses across the adult age spectrum [38]. HIV-negative status of control participants was determined by self-report. Serum and plasma were collected prior to COVID-19 vaccination (where possible), one month after the first COVID-19 vaccine dose, and at one month after the second dose. Specimens were processed on the day of collection and frozen until analysis. COVID-19 convalescent individuals were identified at study entry by the presence of serum antibodies against the SARS-CoV-2 nucleoprotein (N).

Ethics approval. This study was approved by the University of British Columbia/Providence Health Care and Simon Fraser University Research Ethics Boards. All participants provided written informed consent.

Data sources and immune assessments. Sociodemographic data, chronic health conditions and COVID-19 vaccination information were collected by self-report and confirmed through medical
records where available. We assigned a score of 1 for each of the following 11 chronic health conditions: hypertension, diabetes, asthma, obesity (defined as having a body mass index ≥30), chronic diseases of lung, liver, kidney, heart or blood, cancer, and immunosuppression due to chronic conditions or medication, to generate a total score ranging from 0-11. Clinical information for PLWH was recovered from the BC Centre for Excellence in HIV/AIDS Drug Treatment Program Database, which houses clinical records for all PLWH receiving care in BC. For PLWH, having a recent CD4+ T-cell count <200 cells/mm³ was classified as "immunosuppression" in the chronic health conditions score.

Binding antibody assays. We measured total binding antibodies against SARS-CoV-2 nucleocapsid (N) and spike receptor binding domain (RBD) in serum using the Roche Elecsys Anti-SARS-CoV-2 and Elecsys Anti-SARS-CoV-2 S assays, respectively. Post-infection, both anti-N and anti-RBD assays should be positive, whereas post-mRNA vaccination only the anti-RBD should be positive, enabling identification of convalescent samples. Both assays are electro-chemiluminescence sandwich immunoassays, and report results in arbitrary units (AU)/mL, calibrated against an external standard. The measurement range for the S assay is from 0.4 - 25,000 AU/mL, which the manufacturer indicates can be considered equivalent to international binding antibody units (BAU) as defined by the World Health Organization [39].

ACE2 displacement assay. We assessed the ability of plasma antibodies to block the interaction between RBD and the ACE2 receptor using the V-plex SARS-CoV-2 Panel 11 (ACE2) kit on a MESO QuickPlex SQ120 instrument (Meso Scale Discovery) at the manufacturer's recommended 1:20 dilution. ACE2 displacement was calculated as 100 - [AU of ACE2 binding
in the presence of plasma / AU of ACE2 binding in the absence of plasma] and is reported as a percentage.

Statistical analysis. Comparisons of binary variables between groups were performed using Fisher’s exact test. Comparisons of continuous variables between groups were performed using the Mann-Whitney U-test (for unpaired data) or Wilcoxon test (for paired data). Correlations between continuous variables were performed using Spearman's correlation. Multiple linear regression was employed to investigate the relationship between sociodemographic, health and vaccine-related variables and humoral outcomes. Analyses performed following one dose included age (per decade increment), sex at birth (female as reference group), ethnicity (non-white as reference group), number of chronic health conditions (per number increment), sampling date following vaccine dose (per day increment), and type of vaccine received (mRNA vaccine as reference group). Analyses performed following two doses additionally included the interval between doses (per week increment) and having received two ChAdOx1 doses (versus having received a heterologous or dual mRNA vaccine regimen). All tests were two-tailed, with p=0.05 considered statistically significant. Analyses were conducted using Prism v9.2.0 (GraphPad).

RESULTS

Cohort characteristics and COVID-19 vaccine rollout in British Columbia, Canada

Characteristics of the 100 PLWH and 152 controls are shown in Table 1. All PLWH were receiving antiretroviral therapy; the most recent plasma viral load, measured a median of 32 (Interquartile range [IQR] 7-54) days before enrolment, was <50 copies HIV RNA/mL for 95
PLWH, and between 71-162 copies /mL for the remaining 5 PLWH, though prior values were <50 copies/mL in all 5 of these cases. The most recent CD4+ T-cell count, measured a median of 44 (IQR 18-136) days before enrolment, was 710 (IQR 525-935; range 130-1800) cells/mm³. The estimated nadir CD4+ T-cell count, recorded a median of 8 (IQR 3.4-15) years before enrolment, was 280 (IQR 120-490; range <10-1010) cells/mm³.

PLWH and controls were similar in terms of age, but were different in terms of sex and ethnicity, with the PLWH group including more males and white ethnicity (Table 1). PLWH and controls had similar numbers of chronic health conditions (median 0; IQR 0-1; range 0-3 in both groups); the most common conditions were hypertension and asthma. At study entry, 8% of PLWH and 10% of controls were identified as COVID-19 convalescent based on the presence of anti-N antibodies. An additional one (1%) PLWH and two (1.5%) controls developed anti-N antibodies during follow-up consistent with SARS-CoV-2 infection after one vaccine dose; these participants were retained in the "COVID-19 naive at study entry" group (as excluding them did not affect results; not shown).

All participants received two COVID-19 vaccine doses between December 2020 and August 2021, with 97% of controls receiving an mRNA vaccine for their first dose compared to 83% of PLWH (Table 1). This is because health care workers, who represent 59% of controls, were eligible for vaccination before ChAdOx1 was approved in Canada, while members of the public, including PLWH, received the vaccine(s) recommended for their age group during the mass rollout. More PLWH received heterologous (ChAdOx1/mRNA) regimens compared to controls (7% and 1.3%, respectively); this is because mRNA vaccines were recommended as second doses for all Canadians [40] after reports of rare thrombotic events associated with the ChAdOx1 vaccine emerged [41]. The between-dose interval was also longer for the controls
(median 89 days, vs. 58 for PLWH). This is because BC extended the interval to 112 days beginning on March 1, 2021 due to limited vaccine supply [42], which meant that health care workers who were vaccinated around that time waited the longest for their second doses, while those vaccinated later waited a shorter time, as supplies increased. Samples were collected prior to vaccination where possible (66% of PLWH and 97% of controls), one month after the first vaccine dose (98% of both PLWH and controls) and one month after the second dose (96% of PLWH and 99% of controls).

Anti-RBD binding antibody responses after first and second vaccine doses

Among participants naive to COVID-19 at study entry, all but three (one PLWH and two controls) developed anti-RBD antibodies after one dose, though overall concentrations in PLWH were a median ~0.4 log$_{10}$ lower than controls (Mann-Whitney p=0.0001) ([Figure 1A and Supplemental Figure 1A](https://doi.org/10.1101/2021.10.03.21264320)). In contrast, anti-RBD antibody concentrations in COVID-19 convalescent participants (analyzed as a group, as there was no statistically significant difference between PLWH and controls in this category, Mann-Whitney p=0.17) were >2 log$_{10}$ higher than in the COVID-19 naive participants (both p<0.0001), consistent with prior studies demonstrating robust immune responses after a single vaccine dose in previously infected individuals [43, 44].

In multivariable analyses controlling for sociodemographic, health and vaccine-related variables, the strongest independent predictors of lower antibody responses after one dose were older age (every decade of age associated with an adjusted ~0.1 log$_{10}$ lower response; p=0.0002), and higher number of chronic health conditions (every additional condition associated with an adjusted 0.14 log$_{10}$ lower response; p=0.005) ([Table 2](https://doi.org/10.1101/2021.10.03.21264320)). HIV infection was associated with an
adjusted 0.2 log\(_{10}\) lower antibody response after one vaccine dose (p=0.03). Prior COVID-19 was associated with an adjusted 1.9 log\(_{10}\) higher response after one dose (p<0.0001).

The second vaccine dose substantially boosted anti-RBD binding antibody concentrations in all but two participants, one PLWH with immunodeficiency due to a chronic blood disorder, and one control participant in their 80s with three chronic health conditions (Figure 1B). Overall, the second dose boosted anti-RBD levels in COVID-19 naïve individuals (both PLWH and controls) by a median of >2 log\(_{10}\) compared to those measured one month after the first dose, but marginal increases (median 0.14 log\(_{10}\)) were seen in COVID-19 convalescent participants (Supplemental Figure 1B). Overall, after two doses, median antibody concentrations in COVID-19 naïve PLWH were only ~0.1 log\(_{10}\) lower than those in naïve controls (median 3.9 [IQR 3.64-4.09] versus median 4.0 [IQR 3.75-4.21] log\(_{10}\) respectively; Mann-Whitney p=0.04), and only ~0.2 log\(_{10}\) lower than those found in convalescent participants (Figure 1B).

In multivariable analyses, HIV infection was no longer associated with antibody concentrations after two vaccine doses (p=0.8, Table 2). Rather, older age, a greater number of chronic conditions and having received two ChAdOx1 doses were independently predictive of lower responses, with every 10 years of older age, each additional chronic condition, and having received ChAdOx1 only being associated with 0.05 log\(_{10}\), 0.12 log\(_{10}\) and 0.64 log\(_{10}\) decreases in response, respectively (all p<0.02). A longer dose interval was also associated with a marginally higher antibody response (0.02 log\(_{10}\) per additional week, p=0.057). After two doses, there was no longer a significant association between prior COVID-19 infection and antibody response (p=0.54).

Among PLWH who were naïve to COVID-19 at study entry, we observed a weak positive correlation between most recent CD4+ T-cell count and antibody concentration after one
dose (Spearman's $\rho=0.18$, $p=0.09$), but no correlation after the second dose (Figure 1C).

Similarly we observed a weak positive correlation between nadir CD4+ T-cell count and antibody concentration after one dose (Spearman's $\rho=0.19$, $p=0.07$) but no correlation after the second dose (Supplemental Figure 2A).

ACE2 receptor displacement activities after first and second vaccine doses

We next assessed the ability of plasma to block the RBD-ACE2 interaction, which represents a higher throughput approach to estimate potential viral neutralization activity (also referred to as a surrogate viral neutralization test, sVNT [45]). After one vaccine dose, PLWH and controls who were COVID-19 naive at study entry exhibited median 44% and 58% ACE2 displacement activities, respectively, indicating lower function among PLWH ($p<0.0001$) (Figure 2A). In contrast, convalescent participants exhibited a median 99.7% ACE2 displacement activity after one vaccine dose ($p<0.0001$ compared to both naive groups). In multivariable analyses, HIV infection remained significantly associated with an adjusted \sim7% lower ACE2 displacement activity after one vaccine dose ($p=0.037$), with older age (adjusted \sim1.8% lower activity per every decade increment, $p=0.034$) and having received ChAdOx1 as the first dose (adjusted 17.5% lower activity compared to an mRNA vaccine as first dose, $p=0.0003$) remaining additional independent predictors of lower ACE2 displacement activity. Prior COVID-19 infection remained associated with an adjusted 37% higher ACE2 displacement activity following one vaccine dose ($p<0.0001$).

Following two vaccine doses, the median ACE2 displacement activity in COVID-19 naive PLWH and controls rose to $>95\%$ and there was no longer a statistically significant difference between them (Mann-Whitney $p=0.4$) (Figure 2B). Furthermore, while the median
ACE2 displacement activity in convalescent individuals remained statistically significantly higher compared to both naïve groups (both p<0.02), the magnitude of this difference was marginal. In fact, the second dose boosted ACE2 displacement activities in PLWH to a slightly greater extent than in controls (Supplemental Figure 1C, D). Consistent with this, multivariable analyses identified older age, a larger number of chronic conditions, and dual ChAdOx1 vaccination – but not HIV – as being independently associated with lower ACE2 displacement function after two vaccine doses (adjusted ~1.7% lower ACE2 displacement function for every decade of older age, 2.7% lower function for every additional health condition, and 29% lower function for dual ChAdOx1 vaccination; all p<0.02) (Table 2). Among PLWH who were naïve to COVID-19 at study entry, we observed weak positive correlations between both most recent and nadir CD4 + T-cell counts and ACE2 displacement activity after one dose, but these associations did not remain following two doses (Figure 2C; Supplemental Figure 2B).

Humoral response against the SARS-CoV-2 delta variant

Given recent concerns that certain SARS-CoV-2 variants may be more transmissible or evade aspects of host immunity [46, 47], we examined the ACE2 displacement activity in plasma against the widespread B.1.617.2 (Delta) variant. After one vaccine dose, plasma from all groups was impaired in its ability to block ACE2 receptor engagement by the Delta RBD compared to the original (Wuhan) RBD, where the magnitude of this impairment was a median of ~8%, ~19% and ~1% for COVID-19 naïve PLWH, naïve controls and convalescents, respectively (Wilcoxon matched pairs signed rank test, all p≤0.0001) (Figure 3A). After two vaccine doses, these impairments remained, albeit at a much lower magnitude (a median of ~2%, ~8% and ~1% for naïve PLWH, naïve controls and convalescents, respectively, all p<0.0001). These results
suggest that vaccine-elicited humoral responses may be less able to prevent infection by the Delta variant, which is consistent with a recent report showing reduced ability of plasma from convalescent and vaccinated individuals to neutralize this strain [48].

DISCUSSION

Our results add to a growing body of evidence that adult PLWH receiving stable antiretroviral therapy, who have suppressed plasma HIV loads and who have CD4+ T-cell counts in a healthy range generally mount robust humoral immune responses to COVID-19 vaccines [10, 33-35]. Though HIV infection was associated with marginally (0.2 log10) lower overall anti-RBD antibody concentrations and ~7% lower ACE2 displacement activities following a single vaccine dose after adjustment for sociodemographic, health and vaccine-related variables, the effect of HIV infection no longer remained after two vaccine doses. Rather, older age and a higher burden of chronic health conditions were independently associated with weaker humoral responses after two vaccine doses, consistent with previous reports [37, 49-52]. In addition, having received a dual ChAdOx1 vaccine regimen, as opposed to a heterologous or autologous mRNA vaccine regimen, was associated with significantly lower humoral responses, also consistent with previous reports [53, 54]. A longer interval between doses (where the maximum dose interval among study participants was 122 days) was also associated with marginally higher binding antibody concentrations, though not ACE2 displacement activities, which is partially consistent with reports of improved neutralizing antibody and T-cell responses using extended dosing intervals of the BNT162b2 mRNA vaccine [55].

Notably, among PLWH in our study, all of whom were receiving suppressive antiretroviral therapy, we observed only a very weak positive correlation between the most
recent CD4+ T-cell count and humoral responses after the first vaccine dose. Importantly, this association disappeared following the second vaccine dose. While CD4+ T-cell counts <250 cells/mm³ have been associated with lower antibody levels following one COVID-19 vaccine dose [36], we were unable to confirm this finding as only two PLWH in the present study had CD4+ T-cell counts in this range, and both of them mounted strong vaccine responses. Moreover, although we found weak positive correlations between nadir CD4+ T-cell counts (which were as low as <10 cells/mm³ in our cohort) and humoral responses following one dose, these associations also disappeared following the second dose. This indicates that, for PLWH currently receiving suppressive antiretroviral therapy, having had low CD4 T+ cell counts in the past will not necessarily compromise immune responses to COVID-19 vaccines presently.

We also observed that the ability of vaccine-induced plasma antibodies to disrupt the ACE2/RBD interaction was modestly yet significantly reduced against the RBD of the now widespread SARS-CoV-2 Delta variant compared to the original strain for all participant groups. Given the ability of SARS-CoV-2 variants to evade at least some aspects of vaccine-elicited immunity [46], this suggests that all individuals, regardless of HIV status, will remain more susceptible to infection by this variant, even after vaccination.

Our study has several limitations. Our results may not be generalizable to individuals with untreated HIV and/or who have CD4+ T-cell counts <200 cells/mm³. Our study did not include children or adolescents living with HIV. As the precise immune correlates of protection for SARS-CoV-2 transmission and disease severity remain incompletely characterized [56], the implications of our results on individual-level protection from SARS-CoV-2 infection and COVID-19 remain uncertain. The relationship between vaccine-induced antibody concentrations in blood and at mucosal sites, which may be a better correlate of protection, is also incompletely
understood, though a recent study identified anti-RBD IgG antibodies in saliva in 100% of participants following a two-dose COVID-19 vaccine series [57]. We did not investigate vaccine-induced T-cell responses, though two recent studies have demonstrated comparable anti-spike T-cell responses in PLWH compared to controls [10, 34]. Due to power considerations, we did not investigate potential differences in immune responses between the two mRNA vaccines [58, 59]. The latest time-point we analyzed was one month after the second vaccine dose, so analyses of COVID-19 vaccine durability are also needed.

Taken together with existing data [10, 33-35], our results indicate that, one month after having received two COVID-19 vaccine doses, adults with HIV on suppressive antiretroviral therapy with CD4+ T-cell counts in the healthy range mount broadly comparable humoral immune responses to individuals without HIV. Furthermore, we found no evidence that a low nadir CD4+ T-cell count negatively influenced the response to COVID-19 vaccination in this group. Rather, our results identified older age, additional chronic health conditions, and having received a dual ChAdOx1 regimen (as opposed to a heterologous or dual mRNA vaccine regimen) – but not HIV – as negative modulators of humoral responses following COVID-19 vaccination in this population.

These results suggest that PLWH whose viral loads are well-controlled on antiretroviral therapy and whose CD4+ T-cell counts are in a healthy range will generally not require a third COVID-19 vaccine dose as part of their initial immunization series, though other factors such as older age, co-morbidities, type of initial vaccine regimen and durability of vaccine responses will influence when this group may benefit from additional doses. Further studies of PLWH who are not receiving antiretroviral treatment and/or who have low CD4+ T-cell counts are needed.
FUNDING

This work was supported by funding from Genome BC, the Michael Smith Foundation for Health Research, and the BCCDC Foundation for Public Health through a rapid SARS-CoV-2 vaccine research initiative in BC award (VAC-009 to MAB, ZLB). It was also supported by the Public Health Agency of Canada through a COVID-19 Immunology Task Force COVID-19 Award (to MAB, ZLB), the Canada Foundation for Innovation through Exceptional Opportunities Fund – COVID-19 awards (to CJB, MAB, MN, MLD, RP, ZLB), a British Columbia Ministry of Health–Providence Health Care Research Institute COVID-19 Research Priorities Grant (to CJB) and the National Institute of Allergy and Infectious Diseases of the National Institutes of Health (R01AI134229 to RP). LYL was supported by an SFU Undergraduate Research Award. GU and FHO are supported by Ph.D. fellowships from the Sub-Saharan African Network for TB/HIV Research Excellence (SANTHE), a DELTAS Africa Initiative [grant # DEL-15-006]. The DELTAS Africa Initiative is an independent funding scheme of the African Academy of Sciences (AAS)’s Alliance for Accelerating Excellence in Science in Africa (AESA) and supported by the New Partnership for Africa’s Development Planning and Coordinating Agency (NEPAD Agency) with funding from the Wellcome Trust [grant # 107752/Z/15/Z] and the UK government. The views expressed in this publication are those of the authors and not necessarily those of AAS, NEPAD Agency, Wellcome Trust or the UK government. MLD and ZLB hold Scholar Awards from the Michael Smith Foundation for Health Research.
ACKNOWLEDGEMENTS

We thank the leadership and staff of Providence Health Care, including long-term care and assisted living residences, for their support of this study. We thank the phlebotomists and laboratory staff at St. Paul's Hospital, the BC Centre for Excellence in HIV/AIDS and Simon Fraser University for assistance. Above all, we thank the participants, without whom this study would not have been possible.
REFERENCES

42. National_Advisory_Committee_on_Immunization_(NACI). An Advisory Committee Statement (ACS) National Advisory Committee on Immunization (NACI); Extended dose intervals for COVID-19 vaccines to optimize early vaccine rollout and population protection in Canada in the context of limited vaccine supply: Public Health Agency of Canada, 2021.
Table 1: Participant characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>PLWH (n=100)</th>
<th>controls (n=152)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV-related variables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Receiving antiretroviral therapy, n (%)</td>
<td>100 (100%)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Most recent plasma viral load in copies /mL, median [IQR] (range)</td>
<td><50 [<50 - <50]</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Most recent CD4+ T-cell count in cells/mm3, median [IQR]</td>
<td>710 [525-935]</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nadir CD4+ T-cell count in cells/mm3, median [IQR]</td>
<td>280 [120-490]</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sociodemographic and health variables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age in years, median [IQR]</td>
<td>54 [40-61]</td>
<td>47 [35-70]</td>
<td>0.38</td>
</tr>
<tr>
<td>Male sex at birth, n (%)</td>
<td>88 (88%)</td>
<td>50 (33%)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Ethnicity, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>white/Caucasian</td>
<td>69 (69%)</td>
<td>78 (51%)</td>
<td>0.0042</td>
</tr>
<tr>
<td>Black</td>
<td>5 (5%)</td>
<td>1 (0.7%)</td>
<td>-</td>
</tr>
<tr>
<td>Asian</td>
<td>10 (10%)</td>
<td>56 (37%)</td>
<td>-</td>
</tr>
<tr>
<td>Latin American</td>
<td>8 (8%)</td>
<td>4 (2.6%)</td>
<td>-</td>
</tr>
<tr>
<td>Middle Eastern/Arab</td>
<td>3 (3%)</td>
<td>0 (0%)</td>
<td>-</td>
</tr>
<tr>
<td>Mixed ethnicity</td>
<td>3 (3%)</td>
<td>8 (5.3%)</td>
<td>-</td>
</tr>
<tr>
<td>Not disclosed</td>
<td>2 (2%)</td>
<td>5 (3.3%)</td>
<td>-</td>
</tr>
<tr>
<td>COVID-19 convalescent (anti-N Ab+) at entry, n (%)</td>
<td>8 (8%)</td>
<td>15(10%)</td>
<td>0.68</td>
</tr>
<tr>
<td>Number of chronic health conditions, median [IQR]</td>
<td>0 [0-1]</td>
<td>0 [0-1]</td>
<td>0.18</td>
</tr>
<tr>
<td>Vaccine related variables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mRNA vaccine for first dose, n (%)</td>
<td>83 (83%)</td>
<td>148 (97%)</td>
<td><0.0001</td>
</tr>
<tr>
<td>First dose type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BNT162b2, n (%)</td>
<td>60 (60%)</td>
<td>133 (87.5%)</td>
<td>-</td>
</tr>
<tr>
<td>mRNA-1273 a, n (%)</td>
<td>23 (23%)</td>
<td>15 (10%)</td>
<td>-</td>
</tr>
<tr>
<td>ChAdOx1, n (%)</td>
<td>17 (17%)</td>
<td>4 (2.6%)</td>
<td>-</td>
</tr>
<tr>
<td>mRNA vaccine for second dose, n (%)</td>
<td>89 (92%)</td>
<td>150 (99%)</td>
<td>0.0063</td>
</tr>
<tr>
<td>Complete regimen details</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mRNA - mRNA</td>
<td>83 (83%)</td>
<td>148 (97%)</td>
<td>-</td>
</tr>
<tr>
<td>ChAdOx1 - mRNA (heterologous)</td>
<td>7 (7%)</td>
<td>2 (1.3%)</td>
<td>-</td>
</tr>
<tr>
<td>ChAdOx1- ChAdOx1</td>
<td>8 (8%)</td>
<td>1 (0.7%)</td>
<td>-</td>
</tr>
<tr>
<td>ChAdOx1 - not disclosed</td>
<td>2 (2%)</td>
<td>1 (0.7%)</td>
<td>-</td>
</tr>
<tr>
<td>Time between doses in days, median [IQR]</td>
<td>58 [53-68]</td>
<td>89 [65-98]</td>
<td><0.0001</td>
</tr>
<tr>
<td>Specimen related variables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specimen collected pre-vaccine, n (%)</td>
<td>66 (66%)</td>
<td>148 (97%)</td>
<td>-</td>
</tr>
<tr>
<td>Specimen collected one month after first dose, n (%)</td>
<td>98 (98%)</td>
<td>149 (98%)</td>
<td>-</td>
</tr>
<tr>
<td>Day of collection one month after first dose, median [IQR]</td>
<td>30 [29-32]</td>
<td>30 [28-32]</td>
<td>0.026</td>
</tr>
<tr>
<td>Specimen collected one month after second dose, n (%)</td>
<td>96 (96%)</td>
<td>151 (99%)</td>
<td>-</td>
</tr>
<tr>
<td>Day of collection one month after second dose, median [IQR]</td>
<td>30 [29-30]</td>
<td>30 [29-32]</td>
<td>0.06</td>
</tr>
</tbody>
</table>
Table 2: Multivariable analyses of the relationship between sociodemographic, health and vaccine-related variables on immunogenicity outcomes after first and second COVID-19 doses

<table>
<thead>
<tr>
<th>Immunogenicity outcome</th>
<th>Variable</th>
<th>1 month after 1st dose (V2)</th>
<th>1 month after 2nd dose (V3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Estimate 95% CI p</td>
<td>Estimate 95% CI p</td>
</tr>
<tr>
<td>Log_{10} anti-RBD Abs</td>
<td>HIV</td>
<td>-0.20 -0.39 to -0.019 0.030</td>
<td>-0.022 -0.19 to 0.15 0.80</td>
</tr>
<tr>
<td></td>
<td>Age (per decade increment)</td>
<td>-0.095 -0.14 to -0.046 0.0002</td>
<td>-0.052 -0.093 to -0.010 0.014</td>
</tr>
<tr>
<td></td>
<td>Male sex</td>
<td>-0.13 -0.31 to 0.045 0.15</td>
<td>0.011 -0.14 to 0.16 0.88</td>
</tr>
<tr>
<td></td>
<td>White Ethnicity</td>
<td>-0.11 -0.27 to 0.050 0.18</td>
<td>0.049 -0.085 to 0.18 0.47</td>
</tr>
<tr>
<td></td>
<td># Chronic conditions (per # increment)</td>
<td>-0.14 -0.24 to -0.043 0.005</td>
<td>-0.12 -0.20 to -0.033 0.0063</td>
</tr>
<tr>
<td></td>
<td>ChAdOx1 as first vaccine</td>
<td>-0.24 -0.51 to 0.036 0.089</td>
<td>- - - - - - - - - - - -</td>
</tr>
<tr>
<td></td>
<td>Dual ChAdOx1 regimen</td>
<td>- - - - - - - - - - - -</td>
<td>-0.64 -0.99 to -0.30 0.0003</td>
</tr>
<tr>
<td></td>
<td>Dose interval (per week increment)</td>
<td>- - - - - - - - - - - -</td>
<td>0.0224 -0.00070 to 0.046 0.57</td>
</tr>
<tr>
<td></td>
<td>Days since vaccine</td>
<td>0.023 -0.0011 to 0.047 0.061</td>
<td>-0.0035 -0.026 to 0.019 0.76</td>
</tr>
<tr>
<td></td>
<td>COVID-19 convalescent</td>
<td>1.89 1.63 to 2.13 <0.0001</td>
<td>0.067 -0.15 to 0.28 0.54</td>
</tr>
<tr>
<td>ACE2 displacement (%)</td>
<td>HIV</td>
<td>-6.71 -13.02 to -0.4071 0.037</td>
<td>0.50 -3.79 to 4.79 0.82</td>
</tr>
<tr>
<td></td>
<td>Age (per decade increment)</td>
<td>-1.83 -3.52 to -0.1398 0.034</td>
<td>-1.68 -2.73 to -0.62 0.0019</td>
</tr>
<tr>
<td></td>
<td>Male sex</td>
<td>-5.84 -11.95 to 0.2643 0.061</td>
<td>-1.55 -5.32 to 2.21 0.43</td>
</tr>
<tr>
<td></td>
<td>White Ethnicity</td>
<td>-4.22 -9.708 to 1.277 0.13</td>
<td>1.56 -1.86 to 4.97 0.37</td>
</tr>
<tr>
<td></td>
<td># Chronic conditions (per # increment)</td>
<td>-0.80 -4.246 to 2.642 0.65</td>
<td>-2.73 -4.84 to -0.62 0.01</td>
</tr>
<tr>
<td></td>
<td>ChAdOx1 as first vaccine</td>
<td>-17.49 -26.90 to -8.092 0.0003</td>
<td>- - - - - - - - - - - -</td>
</tr>
<tr>
<td></td>
<td>Dual ChAdOx1 regimen</td>
<td>- - - - - - - - - - - -</td>
<td>-29.25 -38.11 to -20.38 <0.0001</td>
</tr>
<tr>
<td></td>
<td>Dose interval (per week increment)</td>
<td>- - - - - - - - - - - -</td>
<td>-0.34 -0.91 to 0.26 0.27</td>
</tr>
<tr>
<td></td>
<td>Days since vaccine</td>
<td>0.62 -0.21 to 1.46 0.14</td>
<td>-0.14 -0.72 to 0.43 0.62</td>
</tr>
<tr>
<td></td>
<td>COVID-19 convalescent</td>
<td>37.04 28.38 to 45.70 <0.0001</td>
<td>2.74 -2.72 to 8.21 0.32</td>
</tr>
</tbody>
</table>
Figure 1

A

Anti-RBD antibody concentration (log_{10}) after first dose

- PLWH naive
- Control naive
- Convalescent

p = 0.0001

B

Anti-RBD antibody concentration (log_{10}) after second dose

- PLWH naive
- Control naive
- Convalescent

p = 0.04

C

Anti-RBD antibody concentration (log_{10}) vs. most recent CD4+ T-cell count (cells/mm^3)

Spearman's \rho = 0.18, p = 0.09

Spearman's \rho = 0.11, p = 0.3
Figure 1 (previous page): Binding antibody responses to spike RBD following one and two COVID-19 vaccine doses. Panel A: Binding antibody responses to the SARS-CoV-2 spike RBD in plasma following one dose of a COVID-19 vaccine in PLWH (black circles) and controls (grey circles) who were COVID-19 naive at study entry. Convalescents, denoting participants with anti-N antibodies at study entry, are colored as above. Red bars and whiskers represent median and IQR. P-values were computed using the Mann-Whitney U-test and are uncorrected for multiple comparisons. LLOD: assay lower limit of detection. ULOQ: assay upper limit of quantification. Panel B: Binding antibody responses after two vaccine doses, colored as in A. Panel C: Correlation between most recent CD4+ T-cell count and binding antibody responses after one dose (red circles) and two doses (blue circles). Dotted lines are to help visualize the trend.
Figure 2

A

B

C

Spearman's $\rho = 0.12, p = 0.25$

Spearman's $\rho = 0.18, p = 0.09$

ACE2 displacement (%)

most recent CD4+ T-cell count (cells/mm3)

after dose 1

after dose 2
Figure 2 (previous page): Ability of vaccine-induced antibodies to block ACE2-receptor binding following one and two COVID-19 vaccine doses. Panel A: ACE2 displacement activities following one dose of a COVID-19 vaccine in PLWH (black circles) and controls (grey circles) who were COVID-19 naive at study entry. Convalescents (participants with anti-N antibodies at study entry) are colored as above. Red bars and whiskers represent median and IQR. Grey shaded area denotes the range of values observed using baseline (pre-vaccine) plasma samples from COVID-19 naive participants (see supplemental Figure 1). P-values were computed using the Mann-Whitney U-test and are uncorrected for multiple comparisons. Panel B: ACE2 displacement activities after two vaccine doses, colored as in A. Panel C: Correlation between most recent CD4+ T-cell count and ACE2 displacement activities after one dose (red circles) and two doses (blue circles). Dotted lines are to help visualize the trend.
Figure 3: ACE2 displacement activities against the original and Delta SARS-CoV-2 variants after one and two doses of COVID-19 vaccine. **Panel A:** ACE2 displacement activities against the original wild-type (wt) and Delta variant Spike-RBD in naive PLWH, naive controls, and convalescent individuals after one vaccine dose. Data are shown as violin plots with horizontal red lines depicting the mean, 1st and 3rd quartiles. P-values were computed using the Wilcoxon matched-pairs signed rank test, and are uncorrected for multiple comparisons. **Panel B:** Same as panel A, but for responses after two vaccine doses.