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Abstract 
 
Background: Indices of ventilation heterogeneity (VH) from multiple breath washout (MBW) 
have been shown to correlate well with VH indices derived from hyperpolarised gas 
ventilation MRI. Here we report the prediction of ventilation distributions from MBW data 
using a mathematical model, and the comparison of these predictions with imaging data. 
 
Methods: We developed computer simulations of the ventilation distribution in the lungs to 
model MBW measurement with 3 parameters: 𝜎!, determining the extent of VH; 𝑉#, the lung 
volume; and 𝑉$, the dead-space volume. These were inferred for each individual from supine 
MBW data recorded from 25 patients with cystic fibrosis (CF) using approximate Bayesian 
computation. The fitted models were used to predict the distribution of gas imaged by 3He 
ventilation MRI measurements collected from the same visit. 
 
Results: The MRI indices measured (𝐼%/', the fraction of pixels below one-third of the mean 
intensity and 𝐼(!, the coefficient of variation of pixel intensity) correlated strongly with those 
predicted by the MBW model fits (𝑟 = 0.93, 0.88 respectively). There was also good 
agreement between predicted and measured MRI indices (mean bias ± limits of agreement: 
𝐼%/' :	− 0.003 ± 0.118  and 𝐼(! :	− 0.004 ± 0.298). Fitted model parameters were robust to 
truncation of MBW data. 
 
Conclusion: We have shown that the ventilation distribution in the lung can be inferred from 
an MBW signal, and verified this using ventilation MRI. The Bayesian method employed 
extracts this information with fewer breath cycles than required for LCI, reducing acquisition 
time required, and gives uncertainty bounds, which are important for clinical decision 
making.  
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1. Introduction 

Ventilation heterogeneity (VH) refers to the unevenness of inspired air distribution in 
different lung regions during breathing. It is an early and prominent feature of lung diseases 
such as cystic fibrosis (CF), bronchiectasis, asthma and COPD1–4. Clinical assessment of VH 
in the lung is performed by the multiple breath washout test (MBW), from which the most 
commonly used primary outcome is the lung clearance index (LCI)5. LCI is now well 
established, particularly in CF where it is a sensitive, robust measure of early disease, and 
responsive to clinical status6. However, LCI utilises a relatively small proportion of the gas 
washout data collected: the alveolar gas concentrations, and specifically those preceding the 
first and last washout breaths. Alternative VH indices from MBW, such as moment ratios7 
and phase-III slopes8, have been developed but are less commonly used as they are more 
sensitive than LCI to other factors besides ventilation heterogeneity5,9, including variations in 
tidal volume and gas diffusivity. One current limitation to widespread clinical use of LCI as a 
pulmonary function test is the time required for data collection5. Although LCI appears 
robust to earlier test thresholds to some extent, this may be at the cost of reduced sensitivity 
and the practice is not widespread10–14.   
 Hyperpolarised gas ventilation MRI allows for visualisation of the ventilation 
distribution in the lung15. Patients inhale a bolus of hyperpolarised tracer gas (129Xe or 3He) 
which is imaged during a short breath hold (as in this study), dynamically during the 
respiratory cycle16 or over several cycles 17. This enables the identification of small 
ventilation defects that are not detected by spirometry (FEV1) or LCI, and the method is 
therefore highly sensitive to early lung disease progression1,18,19. Ventilation MRI also 
provides a 3-dimensional representation of the distribution of lung disease, allowing regional 
changes to be identified and tracked. Furthermore, MRI can identify lung regions where tidal 
flow is entirely obstructed, which would not normally contribute to the MBW signal. This 
powerful technique is therefore potentially more informative about the nature and severity of 
lung disease. We have previously reported a good correlation between MRI markers of 
airway obstruction and LCI in patients with CF18,20. The availability of these paired data 
presents a unique opportunity to link clinically usable measures of gas washout with detailed 
lung imaging in order to better inform understanding of MBW and to develop more 
sophisticated washout metrics.  
 To improve the clinical viability of MBW, we have developed a Bayesian method for 
inferring the distribution of ventilation directly from MBW data. Underlying the method is an 
efficient three-parameter model of gas ventilation and transport in the lung similar to 
previous models in this area. The benefit of the method presented here is that uncertainty in 
the predictions is readily quantified by the Bayesian methodology, and where there are 
multiple viable solutions all are given weight relative to their probability of explaining the 
observed data. The model predictions have been compared to independent measurements of 
the VH from ventilation MRI, directly testing the validity of the inferred parameters and the 
predicted ventilation distribution. 
 The aim of this study was to develop computational software to predict the ventilation 
distribution in individual subjects using raw MBW data and to use this to produce robust 
indices of VH that directly correspond to those measured directly with ventilation MRI. A 
secondary aim was to test whether the measures derived using this new method were robust 
at shorter test times.  
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2. Methods 

Table 1 introduces the mathematical symbols that are used in this section prior to their 
first use in the text.  

Symbol(s) Description of use 
𝑖 Index of lung units and dead space compartments in the 

compartmental lung model. 
𝑗 Index of volume elements in the compartmental lung model. 
𝑘 Index of breath number in processed MBW data. 
𝑛 Time-step index in processed MBW data. 
𝑠 Voxel index in MRI data (simulated or observed).  
𝐼%/' Proportion of the masked He3 MRI image with voxel brightness less 

than 1/3 of the mean. 
𝐼)* Coefficient of variation in brightness of masked He3 MRI image. 
LCI+ Lung clearance index measured by MBW (mean from 3 test repeats), 

𝑧 = 2.5, 5, 10, 20, 40 is the termination threshold used in % of 
equilibrium SF6 concentration. 

𝑉,-) Functional residual capacity (L) measured by MBW (mean from 3 test 
repeats).  

𝑉,./ Fowler dead-space (L) measured from CO2 curve during MBW (mean 
from 3 test repeats – each test is the median value of all washout 
breaths). 

V,-)
(12345) Functional residual capacity (L) measured by plethysmography 
𝑉?#, 	𝑉?$ Initial guess for model parameters 𝑉# and 𝑉$, used to set model priors.  

𝑉7
(895), 𝑉7

(3:5) Volume of inhalation and exhalation respectively for breath 𝑘 of an 
MBW test.  

𝑁;;, 𝑁;;; Number of data-points used to represent phase-II and phase-III parts 
of each breath (𝑁;; =	𝑁;;; = 4	used throughout). 

{𝑉#, 𝑉$ , 𝜎<} Compartmental lung model parameters setting the FRC, dead-space 
volume and VH respectively. 

{𝑣=> , 𝑐=>
(?), 𝑐=>

(@), 𝑔=>} Properties of the volume element j in dead-space compartment 𝑖: gas 
volume, inert gas concentrations (distal end and proximal end), and 
inert gas volumes respectively. 

{𝐶= , 𝑉= , 𝐺=} Properties of the lung unit 𝑖: inert gas concentration, gas volume and 
inert gas volume respectively.  

𝑁A Number of lung units in the model (𝑁A = 50 used throughout) 
𝑣BC: Re-discretisation volume used for mixing-step (𝑣BC: =	used 

throughout) 
Table 1: A list of all mathematical symbols and notation used in the text, and what they represent.  

2.1 Study design and recruitment 
  
 As part of a longitudinal observational study, children and adults with CF were 
recruited from three UK specialist centres19,20. At recruitment, patients had to be over the age 
of five years, be clinically stable for four weeks prior to their visit and achieve an FEV1 
>30% predicted within the previous six months. This study was approved by the Yorkshire 
and Humber - Leeds West Research Ethics Committee (REC reference: 16/YH/0339). 
Parents/guardians of children and all adult patients provided written informed consent. For 
this analysis we have used data from a single visit when patients completed both MRI and 
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MBW, including supine MBW (since this corresponds to the same position as the MRI 
procedure, and so minimises the effect of changes due to body position or gravity21,22).   
 
2.2 Ventilation MRI 
 
 Ventilation MRI was performed on a 1.5T GE HDx scanner (GE, Milwaukee, WI, 
USA) using hyperpolarised helium-3 (3He) using a transmit-receive vest coil (CMRS, 
Milwaukee, WI, USA) and a three-dimensional (3D) steady state free precession ventilation 
imaging sequence as described previously17. Images used in this study were acquired during a 
breath-hold at end-inspiratory tidal volume following the inhalation of a predetermined fixed 
volume of test gas from their resting functional residual capacity (FRC). The volume of gas 
was titrated based on the subject's height and consisted of scaled doses of 3He balanced with 
nitrogen20.  

Contiguous ventilation MR images of the coronal plane were acquired with slice 
thickness of 5mm and pixel size ranging from 2.73 x 2.73mm to 3.28 x 3.28 mm (depending 
on patient lung size). For each slice, a mask was manually derived from 1H images (acquired 
during the same breath hold as the 3He MRI) to determine which pixels corresponded to 
positions inside the lung cavity (excluding visible airways). The masked images were eroded 
by one pixel to avoid edge effects. The intensity (brightness) of each pixel is taken as a 
relative measure of the gas concentration at that point. This is used as a proxy for the local 
ventilation rate, and is used to characterise VH in two ways (see figure 1): 

• Measuring the ‘poorly ventilated’ fraction of the lung by 𝐼%/'. That is, the fraction 
of pixels with intensity less than one-third of the mean (as used previously to 
define ventilation defects23). 

• Calculating the total coefficient of variation of the normalised pixel intensity, 𝐼)*. 
Note these are measures of global ventilation heterogeneity which can be predicted from 
MBW data, other common MRI indices such as CVB3C924 or ∆𝑅25 quantify spatial 
heterogeneity and are not considered here. 
 
2.3 Pulmonary function tests 
  
 MBW was performed using a modified open-circuit Innocor device (Innovision, 
Glamsbjerg, Denmark)26 using 0.2% sulphur hexafluoride (SF6) tracer gas in air. MBW tests 
were collected in triplicate in the supine position. Spirometry and body plethysmography 
were performed to international standards27,28 using a PFT Pro (Vyaire, Basingstoke, UK). 
All tests were performed on the same day. Either MBW or MRI was performed first, 
followed by the other. Spirometry was always performed last to minimise the influence of 
VH redistribution due to a forced manoeuvre. 

MBW data were analysed using a software package for Igor Pro v6 (Wavemetrics 
Inc., Lake Oswego, OR, USA) as previously described12. We extracted from this analysis the 
following parameters for each patient: LCI2.5, lung volume at FRC (𝑉DE(), and Fowler dead-
space from CO2 curves (𝑉D$F)29. We also re-computed LCI for different termination 
thresholds (5%, 10%, 20%, 40% of initial concentration).   

 
2.4 Compartmental lung model 

Figure 2 provides schematic overview of the model-fitting process, which this section 
describes in detail. 
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Figure 1: Examples of MR indices 𝐼!/# and 𝐼$% for two patients. Patient 1 (blue) has low VH, whereas patient 2 (orange) has 
high VH. (a) Histogram of pixel intensity (normalised to have unit mean, as indicated by the vertical thick grey line). The blue 
dotted and orange dot-dashed lines show 1 standard deviation from the mean for patient 1 and 2 respectively. The standard 
deviations of this normalised distribution are the 𝐼$% values (as given in the figure). (b) The cumulative distributions of pixel 
intensity for the same two patients. Where these curves cross 1/3 of the mean pixel intensity (indicated by the thick grey line) 
corresponds to the 𝐼!/# value on the vertical axis (the blue dotted line for patient 1, and orange dot-dashed line for patient 2), 
as this is the proportion of the distribution below this value.  

2.4.1 Processing of MBW data for model fitting: Raw MBW data were outputted as plain text 
files. Processing of these raw data was carried out using a custom-built  C++ program in line 
with recommendations5. Corrections for re-breathed SF6 were not applied as these are 
simulated in the model. In summary: 

1. Gas traces from each MBW are corrected for the flow-gas delay (as measured during 
device calibration).  

2. The data are separated into inhalations and exhalations, with a filtering step to ensure 
that flow fluctuations near to zero are not counted as separate breaths. 

3. Exhaled volumes are corrected to body temperature, pressure, water vapour saturated 
(BTPS) by multiplying the measured flow by 1.016. Then, inhaled volumes are all 
scaled by a constant factor to give unitary respiratory quotient for the whole test. 

4. Fowler dead space (FDS) volume was measured using the CO2 traces, and functional 
residual capacity (FRC) approximated as outlined in Robinson et al. 20135. The 
median FDS over all valid breaths in each test was used as the test average, then 𝑉J$ 
was taken as the mean of this over all the test repeats of an individual. Similarly, 
𝑉J#	was the mean FRC measured in this step over all test repeats.  

5. Finally, exhalations are down-sampled to 10 points per breath: these were the start 
and end points, 4 evenly spaced points in phase II (defined as exhaled volume 
between 𝑉J$ /2 and 3𝑉J$ /2), and 4 in phase III (defined as between 3𝑉J$ /2	 and 
0.95 𝑉7

(GHI)), where 𝑉7
(GHI) is the total exhalation volume of breath 𝑘. This down-

sampling was achieved by linearly interpolating from the nearest concentration 
measurements in the dataset. Inhalations were down-sampled to a single step between 
inhalations, as the inspired gas trace is approximately zero during washout and 
therefore not used in the fitting process. We label the time-steps with index 𝑛 and the 
associated volume change as Δ𝑉J′.  
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Figure 2: Sketch of the relations between the multiple breath washout (MBW) data, Bayesian (ABC-SMC) model, and imaging 
data. The raw MBW data (top-left) consist of flow rate (black line), SF6 trace (green line), and CO2 trace (not shown), where 
the black arrow in the plot indicates switch of gas source (from wash-in to washout). This is processed and split into fewer 
measurement points in order to be fitted by the model. The model is fitted to the processed data by searching over 3 parameters 
for each individual. Initially, parameter values are drawn from the prior distributions (blue histograms in bottom-left); the 
outcome of the ABC algorithm is the posterior distribution of parameters shown in orange in the bottom-right. In both cases 
the solid lines show a kernel density estimation (KDE) of the distribution, and the most likely parameters (maximum a 
posteriori) were taken as the peaks of the KDE curves for the posterior distributions. The accepted simulations are also used 
to predict the probability distribution of ventilation MRI indices 𝐼!/# and 𝐼$% (middle-right), as well as the ventilation 
distribution (expressed as a probability density function in the top-right, black line is the median, the dark orange region is 
the interquartile range, and pale orange the central 95%). The outcomes are then compared to the 3He MRI data (top-centre) 
where the blue histogram (top-right) shows the normalised probability distribution function of masked image intensity, which 
in this example closely matches the model prediction. 

2.4.2 Compartmental lung model: As in Bates and Peters30, the computational lung model 
comprises 𝑁A = 50 lung units of equal size with total volume 𝑉# at FRC, with each 
compartment connected to independent dead-space compartments of equal size with total 
volume 𝑉$. As in Mountain et al.31, the relative inflation rate 𝑥 of each compartment is drawn 
from a lognormal probability distribution with unit mean 

𝑃(𝑥) =
1

𝑥𝜎!√2𝜋
exp V−

(𝑙𝑛	𝑥 − 𝜇)K

2𝜎!K
Y ,  𝑤ℎ𝑒𝑟𝑒  𝜇 = −

𝜎!K

2 . 

where 𝜎! is the VH parameter. Once the 𝑥 values have been drawn (𝑥=~	𝑃(𝑥) for 𝑖 =
1, . . , 𝑁A), they are normalised so that the mean is 𝑥̅ = 1. The model simulates advection of 
the inhaled/exhaled volumes measured from MBW through the dead-space and into/out of 
the lung units via the transport of discrete volume elements. These volume elements therefore 
effectively form a Lagrangian grid for the 1D network of dead-space components. Each 
element 𝑗 is indexed sequentially from distal to proximal end in each dead-space 
compartment 𝑖 = 0,…𝑁A (where 𝑖 = 0 is the common-dead space and 𝑖 = 1, . . , 𝑁A the 

...
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private dead-space compartments corresponding to the acinar units with the same index). An 
element has volume 𝑣=>, and concentration values 𝑐=>

(?) and 𝑐=>
(@) defined at its proximal 

(mouth) and distal (acinar) ends respectively. These elements are shifted along each time-step 
by the volume inhaled proximal to them, or exhaled distal to them, as shown in figure 3. A 
more detailed description of the simulation of each timestep is given in Supplementary Text 
S1. 

This model has a number of shared features with previous methods for similar 
applications, as cited above. It is a stochastic model so simulations with the same distribution 
parameter (𝜎<), will have slightly different ventilation distributions, as in Mountain et al. 31. 
The number of compartments in the model (𝑁A) dictates how similar an individual realisation 
of the ventilation distribution is to the lognormal distribution used to generate it.  
 

 
Figure 3: Sketch of a single simulation step where the cylinders represent volume elements inside dead-space compartments, 
and the spheres represent lung units. The shading in red indicates the concentration of SF& gas. (a) On inhalation a new 
element (blue outline) is added to the proximal end (top) of the common dead space, and the same amount of volume is removed 
from the distal end (bottom), as indicated by the dashed black line. This removed volume (blue) is split into volumes for each 
private dead-space based on their ventilation rate. These are added to the proximal end of each dead-space and the same 
volume is removed from the distal end (dashed line). This removed gas volume (blue) is then added to the volume of gas in the 
lung units. (b) On exhalation, the reverse process happens, and there is a re-discretisation of the volumes that are extruded 
from the private dead-spaces at the mixing point where they are combined. 

 
2.4.3 Model parameter estimation: Adaptive Bayesian Computation Sequential Monte Carlo 
(ABC-SMC)32 was used for each individual’s data. The flow data from MBW is taken as a 
model input, and the SF6 concentration is the output to be fitted against. Parameters sets are 
drawn and evaluated to build a (posterior) probability distribution for their actual values 
through an iterative refinement process, as previously described 32 and detailed in 
Supplementary Text S2.  

The parameter prior distributions we assumed uniform and independent as: 

𝑉# ∼ 𝒰(𝑉J# /2,  2 𝑉J#) , 𝑉$ ∼ 𝒰(𝑉J$ /2,  3 𝑉J$) , 𝜎! ∼ 𝒰(0,4). 

The range bounds are defined using their estimated quantities from MBW processing (see 
2.4.1) where 𝑉J# is the estimated FRC (mean of three tests) and 𝑉J$ the test median Fowler 
dead-space (mean of three tests), whereas 𝜎! is given a broad plausible range. 

... ...
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The posterior parameter sets are used to predict the alveolar ventilation distribution 
measured by imaging (as detailed in the previous section) and compared directly to those 
measurements in the same patient. The final number of iterations required in the ABC-SMC 
algorithm was set adaptively (see Supplementary Text S2 for full details). 

 
2.5 Statistical Analysis 

Data were analysed in Matlab (v. R2020a)33. The MAP values for parameters were 
estimated using kernel density estimation (KDE) on the posterior parameter distributions (see 
figure 2 for an example). The KDE used 1000 points with default Matlab settings for the 
bandwidth, the maximum value was then interpolated by fitting a quadratic function to a 5-
point stencil around the maximum of the discretised function and solving for the point where 
its gradient was equal to 0. 

 The Pearson correlation 𝑟 was used to quantify correlation between measured and 
predicted values of the same quantities. Agreement of these values was measured by Bland-
Altman analysis. Variability in MBW derived indices (𝑉DE(  and LCI) was quantified by the 
standard deviation over 3 tests. To compare measures of different properties we have used 
Spearman's rank correlation coefficient 𝜌, these are labelled as such in the figures. A p-value 
of <0.05 was considered statistically significant.  
 
3. Results 

3.1 Parameter identifiability and convergence of the fitting model  
 

We varied the discretisation parameters 𝑁;;, 𝑁;;; and 𝑁A to test for convergence of the 
inferred parameters to those used to generate artificial data from a single model realisation. 
The results are given in Supplementary Figures S1, S2 and S3. The parameters chosen to fit 
the data, given in table 1, represent the optimum balance between accuracy and performance.  

Supplementary figure S3 shows the parameter recovery from simulated data. We see 
that, for the full range of 𝜎! tested (up to 1.5), this heterogeneity parameter is recovered well 
(within the uncertainty limits). However, we observe that the volume parameters are poorly 
estimated at very high VH.  
 
3.2 Patient population 
 

Paired MRI and LCI data were available for 25 children and adults with CF, with 
FEV1 z-scores ranging from -5.32 to 1.10, and LCI ranging from 6.8 to 16.8. Table 4 shows 
the patient demographics and lung function of all subjects.  

 
3.3 Prediction of physiological parameters and MRI-measured ventilation distribution from 
MBW data 
  
 Figures 4(a) and (c) compare the measured 𝐼%/' and 𝐼)* values with those predicted 
from simulations fitted to the MBW data. There is a strong correlation for both measures 
(𝑟 = 0.93  and	𝑟 = 0.87 respectively). The Bland-Altman analysis of the predictions vs. 
measurements in figures 4(b) and (d) shows negligible mean biases of the two 
measures:−0.003 ± 0.118  and −0.004 ± 0.298 respectively (± 2 S.D.). The uncertainty 
approximation appears to explain most but not all of the prediction error: for 𝐼)*, 18 (72%) 
measured values fell within the predicted 95% prediction intervals, whilst for 𝐼%/' it was 20 
(80%). 
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 All subjects 

Subjects (female) 25(10) 
Age years 17.5 (8.9—43.7) 
Height cm 162 (133—189) 
Weight kg 55.0 (27.5—95.0) 
FEV1 % pred. 76.5 ± 23.0 
FEV1 z-score −1.89 ± 1.81 
LCI2.5 supine 10.5 ± 3.2 
VFRC supine (L) 1.50 ± 0.47 
𝐼!/# 0.146 ± 0.140 
𝐼$% 0.569 ± 0.210 

 
Supplementary figure S4 compares the posterior model parameters to their MBW 

counterparts. Figures S4(a) and (b) show that the parameters 𝑉# and 𝑉$ agree well with the 
MBW measured values 𝑉DE(  and 𝑉D$F in the majority of cases (r=0.88 and 0.76 respectively). 
Figure S4(c) shows that there is strong correlation between the VH parameter 𝜎! and LCI 
measured by MBW (r=0.93).  

Furthermore, the fitted parameters of the ventilation model show interdependence. 
Figures S5(a) and (b) shows that increased ventilation heterogeneity 𝜎! results in an increase 
of the fitted FRC volume (𝑉#) and dead-space volume (𝑉$) relative to the value directly 
computed by MBW. These differences are due to the assumptions underlying both the model 
and the MBW measures themselves, which break down at high VH, as explained in the 
discussion. Supplementary figure S5(c) also shows that the uncertainty in predictions 
increases with VH. 

In the majority of cases, the imaged ventilation distributions show good agreement 
with those predicted by the model (Figure 5). These fits are quantified in Supplementary 
Table S1, where it is shown that they fit the ventilation distributions better than a single 
parameter distribution fit directly to the imaging data. Supplementary figure S6 shows two 
examples of fitted SF6 curves compared to MBW data.  
 
3.4 Impact of shorter washout 

To measure the effect of shortening the MBW test time, we computed the LCI and 
model fits for increasing MBW termination thresholds (retaining the same model priors for 
𝑉# and 𝑉$).  As the termination threshold is raised, LCI correlates strongly with MRI indices 
for thresholds of 10% and below (table 5), but this correlation drops off rapidly for larger 
thresholds.  

Table 2: Patient characteristics of the 
dataset. Age, height and weight are 
median values with the range in 
brackets, the lung function indices 
below are given as mean ± standard 
deviation. FEV1: forced expiratory 
volume in 1 second; LCI2.5: lung 
clearance index measured at the 
conventional endpoint of expired gas 
concentration 2.5% of the starting 
concentration; VFRC: lung volume at 
functional residual capacity; I1/3: 
fraction of pixels on MRI with low 
ventilation (below 1/3 of the mean); 
ICV: coefficient of variation of inhaled 
helium measure by image intensity. 
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Figure 4: (a) Model predicted 𝐼!/# versus MRI measured values. (b) Bland-Altman plot of 𝐼!/# (predicted minus measured 
versus the mean of the two). (c) Model predicted 𝐼$% versus MRI measured values. (d) Bland-Altman plot of 𝐼$%	(predicted 
minus measured versus the mean of the two). Key: MAP = Maximum a posteriori (most likely measurement value from ABC-
SMC algorithm), IQR = Interquartile range (central 50% of sampled posterior distribution from ABC-SMC algorithm), 95% 
range (central 95% of sampled posterior distribution from ABC-SMC), and LOA = limits of agreement (2 standard deviations 
either side of the mean). 

Figure 6 also shows that LCI values correlate much less strongly with LCI2.5 values as 
the threshold is increased, however the model parameter σ* remains practically unchanged 
up to the 20% threshold, and still correlates strongly with its initial values even at 40% 
termination threshold (r=0.91 for σ* vs. r=0.69 for LCI). As shown in table 3, the correlation 
of σ* with MRI indices of VH (𝐼%/' and 𝐼)*) is also better maintained at the 20% threshold 
compared to LCI. Agreement of the model predicted MRI parameters is just as strong at 20% 
termination threshold as it is at 2.5%. Two examples of model fits for increasing threshold 
are given in Supplementary figure S7. 
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Figure 5: Comparison of MRI measured ventilation distributions (blue histograms, normalised by mean pixel intensity in lung 
region) against those predicted by modelling. The black line shows the median, the darker orange region the interquartile 
range, the light orange region the central 95%, and the red dotted line the mean of the MRI ventilation distributions predicted 
from the final set of accepted simulations from ABC-SMC for each histogram.  In the inset of each graph is printed the 
Kolmogrov-Smirnov (K-S) statistics for both the median and mean predicted distributions (vs. the observed distribution). A 
bin-width of 0.16 was used to visualise these distributions. Each figure (a)-(y) shows the result for one of the 25 patients in 
this study. 

 
MBW test 
termination 
threshold 

Median washout 
duration per test (s) 

𝐼!/# 𝜌-value 𝐼&' 𝜌-value Model agreement 

LCI σ' LCI σ' 𝐼!/# 𝐼$% 

2.5% 97.0 [57.3 – 215.2] 0.82 0.80 0.75 0.70 -0.003±0.118 -0.004±0.298 
5% 73.9 [41.6 – 137.1] 0.81 0.83 0.74 0.71 0.004±0.121 -0.000±0.287 
10% 47.0 [32.5 – 93.6] 0.86 0.82 0.76 0.72 0.003±0.126 0.005±0.291 
20% 27.9 [23.1 – 58.8] 0.72 0.81 0.65 0.72 -0.007±0.117 -0.016±0.282 
40% 19.2 [11.0 – 38.2] 0.59 0.77 0.51 0.67 -0.017±0.154 -0.034±0.311 
Table 3: Results of truncating MBW data. The median of the washout duration per test for all subjects is given with the range 
in square brackets. The washout duration per test is measured for each individual by taking the mean duration of the washout 
period (from time of first inhalation of room air to the end of 2nd exhalation following the termination threshold) over their 
three tests. Correlations between MRI indices of VH (𝐼!/# and 𝐼$%) and MBW measures (LCI and model-fitted 𝜎%) are given in 
terms of their Spearman rank 𝜌-values, while agreement between model-predicted and measured MRI indices are given as 
mean bias ± 2 standard deviations. 
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Figure 6: Summary of measurements from shortened MBW tests versus baseline measurements. (a) Comparison of patient 
LCI values (mean of 3 test repeats) at different termination thresholds (5%, 10%, 20%, and 40% of initial concentration). 

The error bars show the standard deviation (over test repeats) and the dotted lines show linear fits. Corresponding Pearson 
correlation coefficients are given next to the fit they relate to (and in the same colour). (b) Comparison of fitted (maximum a 
posteriori) values for the model VH parameter  𝜎%

(() at the different termination thresholds (x=5, 10, 20, and 40% as shown 
by y-axes labels) plotted against 𝜎%

(*.,) (all x-axes). Error bars show the IQR of the predicted values and the grey dashed 
line is the unity line. The black dotted lines show the linear fit for each plot with corresponding Pearson correlation. All p 

values for the linear fits shown are p < 0.001. 

 
4 Discussion 
  
 We have developed a method to predict the ventilation distribution in the lungs 
directly from MBW data. The results show good agreement with the distribution measured by 
hyper-polarised gas ventilation MRI (figure 4). The CF patient cohort in this study displayed 
varying levels of lung function, with 5/25 subjects having LCI < 8 and FEV1 > 90% expected, 
implying VH within the normal limit. Therefore, we were able to test the model across a full 
spectrum of LCI values. The shape of the ventilation distribution was also well characterised 
in the majority of cases (figure 5 and Supplementary table S1). This method therefore makes 
the MBW and MRI results more directly comparable. This method also has an advantage 
over LCI in that it incorporates the interdependence of the inferred FRC, dead-space and 
ventilation heterogeneity.  
 
 

In addition, the model predictions of VH remained consistent as the test-data were 
truncated, remaining more strongly correlated with the predictions from the full dataset than 
LCI (figure 6 and table 3). Other studies have shown that LCI specificity and sensitivity 
decreases with increasing termination threshold12. The model we have developed is robust up 
to a 20% termination threshold, suggesting that washout time could be reduced by 
approximately 75% on average. LCI, on the other hand, proved to be consistent with MRI 
measures only up to a 10% termination threshold. This demonstrates that we can extract 
sufficient information about VH from the early breaths of washout curves to characterise the 
full ventilation distribution, although this requires confirmation in broader datasets. It should 
be noted that the prior distributions of the model parameters were still generated using 
estimated FRC from the full washout (𝑉DE(), so the model predictions are not entirely 
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independent of classic MBW indices, but these priors are sufficiently broad to not bias the 
inferred parameters. However, closed-circuit wash-in can be used to calculate more accurate 
priors for FRC during wash-in34. Thus, combining our model with closed-circuit wash-in 
could greatly reduce overall test time while retaining the sensitivity to VH. Even in the case 
of nitrogen washout, the shortened washout time would also allow a quicker recovery 
between tests.  
  

This work complements the wealth of literature around predicting the ventilation 
distribution in the lungs from inert gas washout tests30,31,35–40. The underlying compartmental 
lung model is similar to that of previous studies including the widely used methods of Lewis 
et al.36 and the Multiple Inert Gas Washout Technique41. As in the more recent models30,31 we 
have used the actual MBW measured flow-rate as an input to simulations to account for the 
effects of variations in breath volumes (which is common in young subjects or those who 
have trouble regulating their breath volume). However, we designed the model to be 
discretised into large time-steps (10 per exhalation), improving model efficiency and 
enabling the use of Approximate Bayesian Computation. Bayesian inference approaches have 
previously only been used to extract data from the end-tidal concentrations in MBW42, but 
not to predict the ventilation distribution.  Moreover, though the link between ventilation 
distribution and MBW curves has been studied in detail using biophysical modelling43–46 and 
benchtop experiments47, ours is the first study to have validated predictions of the ventilation 
distribution in a clinical setting using direct imaging measurement in the same patients.  
 

The model also has some limitations. First, it assumes that gas transport to the lung 
units occurs in parallel, which is not a true representation of the branching airway network. 
Second, diffusion in the alveolar region was modelled here as instantaneous. Part of the 
mechanism to generate phase-III slopes48, particularly for gases with high molecular weight 
such as SF6, was therefore missed. This intra-acinar mixing is below the MRI resolution and 
furthermore the molecular weight of the gases used for the two tests are different, and so one 
might expect a systematic bias in VH predictions, which is not seen in figure 4. This suggests 
that either this cohort is dominated by convective VH or the existence of some unknown 
compensatory factors. Third, it is implicit in the model that the ventilation distribution is the 
same on inhalation and exhalation, regardless of breath volume or flow rate. These factors 
both affect airway closure and reopening, which may explain some of the discrepancy 
between predictions and outcomes. Fourth, the model in its current form is designed to model 
inert exogenous gases, such as SF6, extensions will be required to simulate exchange of N2 or 
CO2 as measured by certain MBW devices. Finally, an inherent difficulty of parameter 
identifiability occurs when VH is large enough to mean that some lung regions have very low 
specific ventilation, and it appears that the actual size of this unventilated region is 
occasionally poorly accounted for in this model (see Supplementary figure S8 for a detailed 
example). This leads to poorer estimates of the lung volumes (both FRC and dead-space) and 
greater parameter uncertainty when VH is very high, as seen in Supplementary figures S3 and 
S5. Related to this is the assumption of an underlying continuous distribution that is used to 
generate the discrete ventilation distribution in the model (in this case lognormal), which 
places a restrictive prior on the shapes of distribution that can be predicted (e.g. multi-modal 
distributions are much less likely to be predicted). Future improvements of the model will be 
aimed at addressing these issues and testing in larger and broader datasets. 
 
 Notwithstanding these limitations, the concept of this approach has been justified. 
Future refinement will be required to include more realistic acinar mixing effects and lung 
mechanics. To achieve this in a computationally efficient way,  we may need to employ new 
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approaches to dimensionality reduction49 and homogenisation50 of acinar and airway 
transport simulations. The Bayesian framework laid out here will also aid in these 
developments, since Bayesian model selection32 (which the algorithm51 is programmed to 
perform) can be used to compare the ability of different models to adequately explain the data 
independently of external verification. 
  
 In conclusion, our results demonstrate that this model can use an individual’s MBW 
test data to predict ventilation distribution in their lungs, and for the first time this been 
corroborated these predictions with regionally resolved ventilation imaging. This method will 
enable clearer interpretation of clinical data, more direct comparison between ventilation 
imaging and MBW data, and help to enable reductions in test time that are required to 
improve clinical practicality. Furthermore, by translating more abstract indices of VH (e.g. 
LCI or 𝜎!) into more interpretable measures (e.g. the fraction of lung which is poorly 
ventilated 𝐼%/') this work adds clinical value. Finally, this work is also the first example of a 
physiological model fitted to patient washout data using Bayesian parameter estimation, 
which will provide clinicians with all important estimates of uncertainty in physiological 
inferences.  
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Supplementary Text S1-S2: Text describing methods in more detail. Text S1 describes the 
execution of the compartmental ventilation model. Text S2 describes the algorithm for ABC-
SMC fitting. 
 
Supplementary Figures S1-S8: Figures showing extra results to complement the results in 
the main paper. S1-S3 shows the results of parameter identifiability checks. S4 & S5 show 
correlations between fitted parameters and measured parameters. S6 and S7 shows examples 
of MBW fits and S8 shows an example MRI where MBW fitting was poor. 
 
Supplementary Table S1: Measures of average agreement of the ventilation distribution 
predicted vs. observed in MRI, with details of how these are calculated. 
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