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Abstract

The Covid-19 pandemic outbreak was followed by a huge amount of modelling studies in order to

rapidly gain insights to implement the best public health policies. Most of these compartmental models

involved ordinary di�erential equations (ODEs) systems. Such a formalism implicitly assumes that the

time spent in each compartment does not depend on the time already spent in it, which is at odds with

the clinical data. To overcome this “memoryless” issue, a widely used solution is to increase and chain

the number of compartments of a unique reality (e.g. have infected individual move between several

compartments). This allows for greater heterogeneity and thus be closer to the observed situation, but

also tends to make the whole model more di�cult to apprehend and parameterize. We develop a non-

Markovian alternative formalism based on partial di�erential equations (PDEs) instead of ODEs, which,

by construction, provides a memory structure for each compartment thereby allowing us to limit the

number of compartments. We apply our model to the French 2021 SARS-CoV-2 epidemic and, while

accounting for vaccine-induced and natural immunity, we analyse and determine the major components

that contributed to the Covid-19 hospital admissions. The results indicate that the observed vaccination

rate alone is not enough to control the epidemic, and a global sensitivity analysis highlights a huge uncer-

tainty attributable to the age-structured contact matrix. Our study shows the �exibility and robustness

of PDE formalism to capture national COVID-19 dynamics and opens perspectives to study medium

or long-term scenarios involving immune waning or virus evolution.
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1 Introduction
Shortly after the Covid-19 outbreak in late 2019, many e�orts were put in diverse research areas to under-

stand both the disease and its aetiological agent, SARS-CoV-2, and to produce tools to deal with what quickly

became a pandemic. Among those areas, mathematical modelling studies proliferated to better grasp the epi-

demics’ dynamics on a —at �rst— short and medium-term scale. Stochastic models were more appropriate

early on to take into account the randomness of the transmission events [Kucharski et al., 2020; Hellewell5

et al., 2020; Beneteau et al., 2021], but they were rapidly complemented by deterministic models since many

epidemics were settled within a couple of months in many countries. These modelling results provided valu-

able insights to guide public health policies, often on a nationwide scale [RSTB, 2021].

Many of the deterministic models developed were variations of the classical Susceptible–Infected–Reco-

vered (SIR) compartmental model and usually involved a system of ordinary di�erential equations (ODEs)10

[Keeling and Rohani, 2008]. Such a simple formalism was adapted at �rst given the unknowns regarding

the natural history of the disease. However, the knowledge accumulated in a matter of months made it clear

that several assumptions were biologically unrealistic. In particular, the residence times in various compart-

ments were not distributed exponentially, and the related “lack of memory” (also named Markov property)

—meaning that the time spent in a compartment does not depend on the time already spent in the com-15

partment, as implicitly assumed by the ODE formalism— became particularly detrimental to short-term

forecasting (see Supplementary Figure S1 for an illustration of the impact of memory on the time spent in a

compartment). For example, for the time elapsed between infection and potential hospital admission, French

hospitalisation data analyses show this memoryless hypothesis does not hold [Salje et al., 2020; Sofonea et

al., 2021]. A simple workaround to this issue consisted in adding new compartments, e.g. for exposed peo-20

ple but not yet infectious, thereby increasing the heterogeneity in the infected period. Earlier studies indeed

show that the addition of intermediate compartments transforms the sum of exponentially distributed wait-

ing times into a hypoexponential distribution [Lloyd, 2001]. Accounting for memory can also be achieved

by other formalisms such as discrete-time modelling, and thus be tailored to epidemiological data the time

resolution of which is almost always that of the day [Sofonea et al., 2021].25

Nevertheless, depending on the issue dealt with by the model, sources of heterogeneity may emerge and

increase the number of host categories and thus the total number of equations and parameters. With the

onset of vaccination campaigns, this phenomenon became even more pronounced [Kiem et al., 2021; Moore

et al., 2021]. Even if the approach consisting in a chain of compartments in ODE systems remained a useful

approximation, the initial gain in simplicity progressively vanished, making the models increasingly di�cult30

to analyse and parameterize.

On a longer time scale, virus evolution and the emergence of variants of concern (VOC) [Davies, Ab-

bott, et al., 2021], coupled with some pre-existing unknowns regarding the behaviour of natural and vaccine-

induced immune responses [Zellweger et al., 2020; Alizon and Sofonea, 2021], further increased the need

for modelling approaches. However, even for medium or long-term projections, ODE-based approaches re-35

main far from ideal since immunity waning may occur rapidly (at least from a prospective point of view) and

might not be memoryless.

To address these issues, we use an alternate formalism relying on partial di�erential equations (PDEs)

instead of ODEs, with which it shares similarities and simplicity in its formalism. Although models based

on PDEs require an additional initial e�ort for parameterization, they o�er increased �exibility because bi-40

ological assumptions can be strongly varied without adding more compartments. Interestingly, the seminal

work on the SIR model by Kermack and McKendrick [1927] was implicitly based on a PDE formalism and

ODE models were simply presented as special cases when infectivity and removal rates were assumed to be

constant. PDEs are often used in epidemiological models to take into account a population age-structure or a

spatial structure [Hethcote, 2000; Brauer, Castillo-Chavez, and Feng, 2019]. PDE models can also elegantly45

incorporate non-linearity in models (e.g. for infectiousness pro�le [Hoppenstaedt, 1975; Inaba, 2017] or im-

munity waning [Ehrhardt, Gašper, and Kilianová, 2019]). Including such aspects with ODE-based models

would require more e�ort because it would be necessary to add compartments and, therefore, change the

structure of the model itself. Regarding Covid-19 epidemics, PDE based approached have mainly been used

2
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to deal with spatial structure (e.g. [Wang et al., 2020; Viguerie et al., 2021]) and sometimes to add the age of50

infection in the model structure [Wu et al., 2022; Richard et al., 2021]. But, overall, PDE-based models of

Covid-19 epidemics remain marginal compared to ODE-based models.

In this study, we build upon earlier work by Richard et al. [2021], who developed a non-Markovian

model structured in terms of the age of the host (in years) and of the infection (in days). We extend it by

generalising the PDEs non-linear properties to vaccination status and clearance memory. More precisely, we55

also record the time since vaccination as well as the time since clearance (both in days). These daily time

structures allow us to keep track of the time spent in each compartment, thereby providing a convenient way

to correct the memory problem while limiting the number of epidemiological compartments.

We �rst present the details of the model and derive some of its main properties, such as the basic repro-

duction number. Then, we perform a sensitivity analysis to identify which parameters a�ect epidemiological60

dynamics the most. We also show that the model can be tailored to analyse the past French Covid-19 epidemic

and formulate projections regarding future trends. Finally, we discuss perspectives to extend the model and

additional questions regarding Covid-19 epidemics.

2 Model
2.1 Model overview65

The density of susceptible individuals of age a ∈ [0, amax] at time t is denoted by S(t, a). Susceptible

individuals leave the compartment either by being infected, at a rate λ(t, a) corresponding to the force of

infection, or by becoming vaccinated, at a rate ρ(t, a).

Infected individuals are denoted I`(t, a, i). The exponent ` ∈ {m, s, d} corresponds to the three types

of infections: m for mild and asymptomatic cases, s for severe cases that will require hospitalization at some70

point before recovering, andd for severe cases that always result in the patient’s death. Each of these categories

of infected individuals is further strati�ed according to the time since infection, which is indexed by i ∈
[0, imax]. Practically, this a�ects the recovery rates (γm(a, i) and γs(a, i)) and the death rate (µ(a, i)), as

well as the di�erent transmission rates β`(a, i), ` ∈ {m, s, d}; all of which are functions of i. The number

of new mildly infected individuals at a given time t is given by the boundary condition,75

Im(t, a, 0) = (1− pa)λ(t, a)S(t, a), (1)

where pa is the proportion of infections that lead to severe cases for individuals of age a.

We add a similar time structure j to record time since clearance for the density of recovered individuals,

R(t, a, j), to account for a possible post-infection immunity waning at a rate σ(a, j). Recovered individ-

uals are assumed to be vaccinated at the same rate as susceptible individuals, ρ(t, a). The number of newly

recovered individuals of age a at time t is given by the boundary condition80

R(t, a, 0) =

∫ imax

0

[
γs(a, i)Is(t, a, i) + γm(a, i)Im(t, a, i)

]
di. (2)

The density of vaccinated individuals, V (t, a, k), also has its own time-structure k to capture the time

since vaccination. This allows taking into account the immunity waning,σv(a, k), or any temporal variation

in vaccine e�cacy. The number of newly vaccinated individuals is given by the boundary condition

V (t, a, 0) = ρ(t, a)S(t, a) + ρ(t, a)

∫ jmax

0

R(t, a, j)dj. (3)

Since vaccine e�cacy may be imperfect, we assume that vaccinated individuals can still be infected by the

virus, but at a rate reduced by 1− ε(a, k) compared to susceptible unvaccinated individuals. If the infection85

is mild, infected vaccinated hosts move to the Imv(t, a, i, k) compartment, which is separated from mild-

infected former susceptible individuals to allow for reduced transmission at a rate 1 − ξ(a, k). Vaccinated

individuals can also develop a severe form of Covid-19 following infection but at a rate reduced by (1 −

3
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Figure 1: Model �owchart. On this �owchart, subscripts denote additional structure beside time t for each

compartment: a stands for the host age, i for the time since infection, j for the time since clearance, and k
for the time since vaccination. Exponents indicate di�erent types of infections: m for mild or asymptomatic

cases, s for severe cases who will survive,d for cases who will die, andmv for mild infection though vaccinated

host.

ν(a, k)). And therefore reduced by (1− ε(a, k))(1− ν(a, k)) compared to susceptible individuals. Hence,

the number of newly severely infected individuals of age a at time t is given by the boundary conditions90

Is(t, a, 0) = pa

(
1− ifra

pa

)
λ(t, a)

[
S(t, a) +

∫ kmax

0

(1− ε(a, k))(1− ν(a, k))V (t, a, k)dk

]
(4)

and

Id(t, a, 0) = ifra λ(t, a)

[
S(t, a) +

∫ kmax

0

(1− ε(a, k))(1− ν(a, k))V (t, a, k)dk

]
, (5)

where ifra denotes the infection fatality rate (IFR), that is the fraction of individuals of age a who die from

the infection. It is worth noting that due to VOC emergence inducing an increase in virulence, both pa and

ifra will be scaled by κ accounting for this increase.

Regarding the infected vaccinated individuals who develop mild symptoms, the boundary conditions95

are

Imv(t, a, 0, k) = [1− ε(a, k)] [1− (1− ν(a, k))pa]λ(t, a)V (t, a, k) (6)

and

Imv(t, a, i, 0) = 0. (7)

The model �owchart is displayed in Figure 1. Notice that our model only has 8 compartments. Note also

that vaccines can act in three non mutually exclusive ways by decreasing the risk of being infected (ε(a, k)),

the probability to develop severe symptoms if infected (ν(a, k)), and the transmission rate if infected (ξ(a, k)).100

The change over time, including the leaving of each compartment, is provided by the following PDE

4
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system, coupled with the boundary conditions (1)–(7):

∂S(t, a)

∂t
= −λ(t, a)S(t, a)− ρ(t, a)S(t, a)

+

∫ jmax

0

σ(a, j)R(t, a, j)dj

+

∫ kmax

0

σv(a, k)V (t, a, k)dk, (8)(
∂Im(t, a, i)

∂t
+
∂Im(t, a, i)

∂i

)
= −γm(a, i)Im(t, a, i), (9)(

∂Is(t, a, i)

∂t
+
∂Is(t, a, i)

∂i

)
= −γs(a, i)Is(t, a, i), (10)(

∂Id(t, a, i)

∂t
+
∂Id(t, a, i)

∂i

)
= −µ(a, i)Id(t, a, i), (11)(

∂R(t, a, j)

∂t
+
∂R(t, a, j)

∂j

)
= −ρ(t, a)R(t, a, j)− σ(a, j)R(t, a, j) (12)(

∂V (t, a, k)

∂t
+
∂V (t, a, k)

∂k

)
= −σv(a, k)V (t, a, k)

− (1− ε(a, k))λ(t, a)V (t, a, k)

+

∫ imax

0

γmv(a, i)Imv(t, a, i, k)di, (13)(
∂Imv(t, a, i, k)

∂t
+
∂Imv(t, a, i, k)

∂i
+
∂Imv(t, a, i, k)

∂k

)
= −γmv(a, i)Imv(t, a, i, k), (14)

with

λ(t, a) =

∫ amax

0

(1− c)2K(a, a′)

∫ imax

0

[
βm(a′, i)Im(t, a′, i) + βs(a′, i)Is(t, a′, i) +

βd(a′, i)Id(t, a′, i) + βmv(a′, i)

∫ kmax

0

(1− ξ(a′, k))Imv(t, a′, i, k)dk

]
di da′,

(15)

for any (t, a, i, j, k) ∈ R+ × [0, amax] × [0, imax] × [0, jmax] × [0, kmax]. Here, K(a, a′) is the kernel

giving the mean contact rate between two individuals belonging respectively to the age classes a and a′. We

also introduce e�cacy, denoted c, of non-pharmaceutical interventions (NPIs) in reducing the contact rates

between individuals independently of their age. We assume NPIs a�ect all individuals indi�erently, no matter

the compartment they belong to. Therefore, since both susceptibles and infected individuals are targeted, the105

reduction of the contact rate is a squared term.

The above system is associated with Assumption S1 in Supplementary Methods and the following initial

conditions

S(t = 0, ·) = S0(·) ∈ L∞+ ([0, amax]),

R(t = 0, ·, ·) = R0(·, ·) ∈ L∞+ ([0, amax]× [0, jmax]),

V (t = 0, ·, ·) = V0(·, ·) ∈ L∞+ ([0, amax]× [0, kmax]),

I`(t = 0, ·, ·) = I`
0
(·, ·) ∈ L∞+ ([0, amax]× [0, imax]), for ` ∈ {m, s, d},

Imv(t = 0, ·, ·, ·) = Imv
0

(·, ·, ·) ∈ L∞+ ([0, amax]× [0, imax]× [0, kmax]).

(16)

Notice that the well-posedness of System (1)–(16) is analysed in Supplementary Methods A.2.

5
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Table 1: Model parameters. For each parameter, we indicate the default value used and the references used.

Parameter Value Reference
Generation time Weibull(2.83, 5.67) Ferretti et al. [2020]

Proportion of severe cases (pa),

IFR (ifra) and increase in

virulence (κ)

0.0113 (mean), 0.0022 (mean)

and 1.65 (baseline)

Verity et al. [2020]; Challen et

al. [2021]; Davies, Jarvis, et al.

[2021]

Mild recovery rate Adapted Salje et al. [2020]

Severe recovery rate Adapted Salje et al. [2020]; Lefrancq et al.

[2021]

Vaccination rate Fitted https://data.gouv.fr
Total severity reduction 0.925 (e�cacy after 2 doses) Public Health England [2021]

Infection immunity 0.875 (e�cacy after 2 doses) Public Health England [2021]

Transmission reduction 0.75 (e�cacy after 2 doses) Public Health England [2021]

(see Supplementary Meth-

ods B.5)

Initial proportion of recovered 0.149 [0.132− 0.169] Hozé et al. [2021]

Age structure Real data https://www.insee.fr/fr/
statistiques/2381474

Contact matrix — SPF/CNAM and Béraud et al.

[2015]

2.2 Model parametrization110

In this study, we focus on the French Covid-19 epidemic in 2021. The values used are shown in Table 1

along with the (French) data we use for parameter inference. Additional details about these can be found in

Supplementary Methods B.

The basic reproduction number is �xed but varies in time due to the emergence of the α and δ VOCs.

The α VOC was �rst detected in France in early January and rapidly became dominant. Therefore, theR0115

retained starting in January was 4.5 [Haim-Boukobza et al., 2021; Davies, Abbott, et al., 2021]. By July, the

α VOC was supplanted by the δ VOC, increasing theR0 up to 6 [Alizon, Haim-Boukobza, et al., 2021].

Regarding the modelling of vaccine e�cacy, for simplicity, we neglect immune waning, i.e. the decrease

of immunity with time, meaning that σ(a, j) ≡ 0 and σv(a, k) ≡ 0. This assumption is motivated by the

fact that we consider a medium-term scenario and it could readily be modi�ed. We also assume that the three120

types of vaccine e�cacies (against reinfection, severe symptoms, and transmission) are not maximal upon

entry into the vaccinated compartment. More precisely, we assume a double sigmoid curve to capture two

vaccine injections (Figure S2). The di�erent levels of e�cacy are based on the Public Health England [2021]

report, and additional details are provided in the Supplementary Methods B.5. The vaccination rateρ(t, a) is

based on the observed French data (see Supplementary Methods B.6 for details about this implementation).125

The di�erent transmission rates β`(a, i), ` ∈ {m, s, d}, are simply the generation time, weighted to

correct for the possibility for individuals to leave the infected compartments before the generation time be-

comes null.

Concerning some age-strati�ed parametrization functions, we assume no di�erences between age groups.

This assumption is either made for parsimony reasons (i.e. for γm(a, i), γs(a, i), and µ(a, i)) or because of130

lack of information (e.g. for βm(a, i) and βs(a, i)).

2.3 Contact matrices

Due to the data available and following the parametrization relative to the severity disease, the kernelK(a, a′)
is also given for a �nite number of age classes, thus providing a contact matrix. And this contact matrix

K(a, a′) is also an important part that needs to be de�ned as it will de�ne the age-structure of the population135

6
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Figure 2: Coe�cients of variation of each element of the SPF/CNAM contact matrix over the 38 weeks

available. The higher the value, the greater the variability in contacts between age-classes over the di�erent

weeks.

regarding an age-severity di�erentiated infectious disease [Valle, Hyman, and Chitnis, 2013; Jacco Wallinga,

Teunis, and Kretzschmar, 2006]. In that regard, we decide to present two competing choices. The �rst one

from Béraud et al. [2015] was estimated to better apprehend the spread of infectious diseases. The second

source of contact matrices comes from the French health agency (Santé Publique France) and the French

national health insurance (CNAM). They provide Covid-19 38 week-speci�c contact matrices ranging from140

August 2020 to April 2021.

The latter reveal pronounced changes across weeks. These are most likely due to a variety of reasons such

as control restrictions policies or school holidays. Interestingly, these changes do not a�ect all age classes in

the same way (Figure 2).

The two sources of contact matrix also exhibit qualitative pattern di�erences, as illustrated in Figure 3.145

Indeed, that from Béraud et al. [2015] gives more weight to relatively young people who tend to have contact

with people close in age, such as colleagues or friends, which could be representing the active population.

Furthermore, in this matrix, older people have few contacts. Conversely, SPF matrices seem to have more

extra-generational contacts, which could increase the role of transmission within households.

Therefore, we included all (normalized) contact matrices in the sensitivity analysis.150

2.4 Model outputs and �tting procedures

The main model outputs are population sizes of the compartments overtime for the year 2021 in France. The

French publicly available hospital admission data are not strati�ed by age so we only use the global incidence

data for parameterization and comparison purposes. In our model, incidence data in hospital admissions

dynamics corresponds to the entry in the severe infection compartments (Is(t, a, i) and Id(t, a, i)) with a155

twelve days lag [Salje et al., 2020].

For each compartment dynamic, we build a 95% con�dence interval using the 0.025 and 0.975 quantiles

at each time step of all model runs used for the sensitivity analysis (see below).

Regarding parameter inference, we consider a daily minimal sum of squares between the data and sim-

7
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Figure 3: Contact matrices sources. The �rst source corresponds to 38 weekly contact matrices from Au-

gust 2020 to April 2021 provided by SPF / CNAM (on the left, the mean contact matrix over the 38 weeks.).

The second source originates from Béraud et al. [2015] (on the right). All matrices were normalized in order

to be compared.

ulations. We �rst �t the vaccination rate ρ(t, a) on French data as detailed in Supplementary Methods B.6.160

Due to high computational cost, we �t the NPI policies e�cacy only on the median trajectory (de�ned as the

trajectory obtained using the median parameter set but with the Béraud et al. [2015] contact matrix).

2.5 Sensitivity analysis

We perform a variance-based sensitivity analysis to assess the robustness of the model given its inputs. We

compute the Sobol main sensitivity indices for each model parameter and for each time step [Saltelli et al.,165

2008]. For an input parameterXi and a given day, this index re�ects the fraction of the variance in the output

Y (here the daily hospital admissions) and is de�ned by

Si =
Var(E[Y |Xi])

Var(Y )
.

The di�erence between the sum of the main indices and 1 corresponds to the variance originating from the

interactions between all the parameters. The analysis was performed on 30, 400 model runs with di�erent

parameters sets chosen using a Latin Hypercube Sampling within the ranges detailed in Table S1.170

Assessing the sensitivity of model outputs depending on the contact matrix is more delicate since draw-

ing each matrix coe�cient would be numerically too costly and drawing an entire matrix would cause a loss

of information regarding the role of the di�erent age classes. However, we possess 38 weekly contact matrices

from SPF and another contact matrix from Béraud et al. [2015]. Therefore, for each age class, we randomly

draw the corresponding age class column (i.e. the rate of being infected for the given age class by all the age175

classes) among the 39 available matrices. As discussed in Section 2.3, the two sources of contact matrices

exhibit qualitatively di�erent patterns, suggesting potential di�erences in terms of within-household trans-

mission or active population transmission patterns. To avoid giving more weight to a speci�c pattern, the

Béraud et al. [2015] matrix was weighted 38 times more than the SPF matrix.

Additional details regarding the sensitivity analysis can be found in Supplementary Results C.180
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3 Results
3.1 Basic reproduction number and NPIs

The basic reproduction number, denotedR0, is a widely used metric in epidemiology because it corresponds

to the average number of secondary infections caused by an infected host in an otherwise fully susceptible

population [Anderson and Robert M May, 1992]. Calculating it for our PDE system is not trivial and for185

this, we use the next generation operator approach [Diekmann, Heesterbeek, and Metz, 1990; Inaba, 2012].

More precisely, we show that the number of new infections in individuals of age a at time t in a fully sus-

ceptible population, denoted IN (t, a), satis�es the renewal equation (see Supplementary Methods A.3 for

details)

IN (t, a) = S0(a)

∫ t

0

∫ amax

0

K(a, a′)Ω(a′, i)IN (t− i, a′)da′di, (17)

where Ω(a, i) can be interpreted as the infectiousness expectation of an individual of age a infected since190

time i and is de�ned by

Ω(a, i) = βm(a, i)(1− pa)πm(i) + βs(a, i)pa

(
1− ifra

pa

)
πs(i) + βd(a, i) ifra πd(i),

where π` is the “survival” probability (i.e. remaining in the compartment) of infected individuals of the

I` compartment. Mathematically, π`(a, i) = e−
∫ i

0
f`(a,r)dr

, with f` = γm, γs, µ, respectively, for ` =
m, s, d.

Following the Next Generation Theorem, the basic reproduction numberR0 is calculated as the spectral195

radius, noted r(U), of the next generation operatorU de�ned fromL1

+([0, amax],R) into itself by

U : v 7−→ S0(·)
∫ imax

0

∫ amax

0

K(·, a′)Ω(a′, i)v(a′)da′di.

For parametrization purpose, we assume that the contact matrixK(·, ·) is given up to a positive constant β
(to be determined), such that K(·, ·) = βK(·, ·), and K satis�es

∑
i

∑
jK(ai, aj) = 1. Consequently,

we �nd that β is given by

β =
R0

r
(
U
) , (18)

whereU is the operator de�ned fromL1

+([0, amax],R) into itself by

U : v 7−→ S0(·)
∫ amax

0

K(·, a′)Ω(a′)v(a′)da′,

with200

Ω(a) =

∫ imax

0

(1− pa)βm(a, i)πm(i) + pa

(
1− ifra

pa

)
βs(a, i)πs(i) + ifraβ

d(a, i)πd(i)di.

In the following, theR0 is set to correspond to that of theα and then the δ VOC, which are both higher

than that of the initial lineages. Note that, within this study, we scaleK(·, ·) by

β∗ := (1− c)2β =
(1− c)2R0

r
(
U
)

rather than β because we estimate the level of NPI e�cacy (c) beforehand on real data, and for prospective

scenarios after the current date, we arbitrarily set it to the desired value.
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Figure 4: Temporal sensitivity analysis. We represent the main Sobol indices for each time step. These

indices give the relative variance explained by each parameter. There are 9 parameters associated to the contact

matrix corresponding to the rate of being infected for each age class from younger to older (bottom to top).

‘Virulence’ corresponds to the (increased) virulence of the VOC.

3.2 Sensitivity analysis205

Performing per time-point sensitivity analyses on the daily hospital admissions for all the model parameters

(Figure 4), we noticed that most of the variance originated from the contact matrix (and its 9 parameters),

especially the younger age classes. This e�ect was even more striking when considering the raw variance

originating from each parameter (Figure S3).

We also observed important time variations of some parameters, such as the generation time Weibull’210

scale parameter. The period where this is the most predominant also corresponds to the period with few

newly hospital admissions (Figure 6), and therefore a lesser variance. The sharp decrease of this parameter

sensitivity coincides with the epidemic’s growth reprisal.

Furthermore, others parameters explained variance, such as the VOC-increased virulence (in red) at �rst

or more notably the interactions between parameters progressively increasing over time reaching half of the215

variance explained at the end of the year.

3.3 Inferred dynamics

By parameterizing our model with existing data and inferring additional parameters, we could estimate past

epidemic dynamics and investigate scenarios for future trends (Figure 5). The vaccinal coverage modelling

did follow quite well real data, even though dissimilarities emerged in the summer (corresponding to the220

French summer holidays).

We may also observe a slight rebound in infected individuals mid-March, which follows by two weeks

the end of the winter holidays. We also see this phenomenon on the new hospital admissions (Figure 6), with

a supplementary delay corresponding to the delay between infection and hospital admissions.

It seems that the current vaccination rate is not high enough to avoid a new epidemic wave. However,225

we observe the uncertainty is huge and does not allow us to have a precise idea of what might happen.

10

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 20, 2022. ; https://doi.org/10.1101/2021.09.30.21264339doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.30.21264339
http://creativecommons.org/licenses/by-nc-nd/4.0/


Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0e+00

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

N
u

m
b

er
 o

f 
p

eo
p

le

True data

𝓡0 4.5 6
NPI efficacy0.51 0.52 0.48 0.51 0.54 0.52 0.44 0.37

Vaccinated

Recovered
Susceptibles

Infected

Figure 5: Epidemic dynamics of the French SARS-CoV-2 epidemic in 2021. For vaccinated hosts, we

show the real data (green dots). Vertical lines indicate imposed changes in the basic reproduction number

R0 (in red) or estimated changes in the e�cacy of NPIs (in blue). Plain lines and shaded areas respectively

represent the median and 95% con�dence interval computed from the simulations used for the sensitivity

analysis.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0

1300

2600

3900

5200

6500

N
ew

 h
os

pi
ta

l a
dm

is
si

on
s

𝓡0 4.5 6
NPI efficacy 0.51 0.52 0.48 0.51 0.54 0.52 0.44 0.37

True data
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4 Discussion
Mathematical modelling has emerged as a central tool to control and anticipate the SARS-Cov-2 pandemic.

This importance is likely to increase now that vaccination has become the cornerstone of the public health

response in many countries. However, the limitations of current vaccination models lie in either neglecting230

memory e�ects or compensating by highly dimensional models with dozens of ordinary di�erential equa-

tions. In this study, we used partial di�erential equations to model medium and long term hospital admission

dynamics in a population with natural and vaccine-induced immunity only with 8 general compartments.

To identify the components of our model that a�ected the results most, we conducted a global sensitivity

analysis, which revealed that the contact matrix between age classes strikingly contributed more variance in235

daily hospital admissions than the VOC related increase of virulence itself. This predominant role is some-

how surprising because although there is susceptibility to infection di�erences based on age (e.g. [Davies,

Klepac, et al., 2020]), the strongest age di�erences appear in the IFR. Furthermore, in our results, contacts

of younger age groups appeared to be the most important contributor to the variance of the outcome, al-

though they were, and by far, the less likely to be hospitalized.240

An important limitation of the model is that the contact matrix is assumed not to vary throughout a

simulated epidemic. As suggested by the temporal variance in the SPF matrix data (Figure 2), this may be

oversimplistic. For instance, we observed a di�erence of patterns in simulations whether they assumed high

or low contact rates among younger age classes (as shown in Supplementary Figure S4). A baseline for the

di�erent contacts rates, if such a concept can even exist biologically, would most likely be impossible to de-245

termine because of the variety of events over a year inducing changes in social interactions such as calendar

events (e.g. school holidays), implementation of control policies (e.g. lockdown, curfew), or even media cov-

erage of the epidemic (resulting in spontaneous behavioural change with respect to the perception of the

epidemic).

The importance of the age-structure of the host population in shaping Covid-19 epidemics is widely250

acknowledged. However, this e�ect is usually studied in the clinical context of disease severity and less so for

transmission dynamics [Salje et al., 2020; Sofonea et al., 2021]. However, there are exceptions and, using

a PDE formalism, Richard et al. [2021] �nd the population structure to be the parameter that contributed

relatively the most variance to their model’s output. Both Richard et al. [2021] and Keeling, Hill, et al. [2021]

use a constant contact matrix, but they explore the impact of age-di�erentiated NPI policies. That being said,255

none of those studies (including ours), are able to fully assess the role of the age-structure since additional

unknown patterns could potentially impact medium-term forecasting. For example, in absence of external

data, it seems impossible to distinguish the “true contact matrix” from age-di�erentiated NPI policies. The

problem is that the two would likely yield di�erent outputs in NPI-lifting scenarios.

Although the variance contributed by the other parameters is low, there is a noticeable e�ect of the in-260

crease in virulence associated with infections caused by VOCs. Our approach allows us to quantify this e�ect

(20 % of the variance) and even identify its peak contribution (in the declining phase of the epidemic peak).

Note that the relative importance of virulence is lower in the prospective part of the model (i.e. after August

2021) but this is potentially because other parameters such as the ones related to vaccination and interactions

between parameters become more important over time. We also did not consider an increase in virulence in265

the δ VOC compared to the α VOC (but recent data shows this might very well be the case [Sheikh et al.,

2021]).

The generation time Weibull’s scale parameter, which has an impact on the mean generation time, also

a�ects hospital admission dynamics, especially in June/July and November/December 2021. However, this

needs to be put in perspective since the impact of this parameter arises only when there is little variance270

(Figure S3) and a decreasing epidemic (Figure 6). This can be explained by the fact a shorter mean generation

time for a given reproduction number is known to increase the epidemic’s growth rate [Nishiura, 2010;

Wallinga and Lipsitch, 2007]. On this aspect, it is worth noting that the δ VOC seems to have a shorter

generation time than the wildtype strain and this was not taken into account in this model [Zhang et al.,

2021].275

By applying our model to the context of the French epidemic, we show that the vaccination levels reached
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in the summer 2021 were insu�cient to prevent a new epidemic wave, even in the scenarios with good vac-

cine coverage and e�cacy (i.e. the lower bound of the con�dence interval). A strong caveat to extending

this model to longer time scales is that anticipating variations in the vaccination rate is extremely di�cult

as it relies on sociological factors. Increasing the uncertainty range for this parameter would most likely in-280

crease the variance in the sensitivity analysis. However, given past vaccination dynamics, we do not expect

this to qualitatively a�ect the results. Regarding the medium-term forecasting, we did not include potential

weather-related variations in behaviour or infectivity, which have been estimated to account for 15 to 20% of

the variations in temporal reproduction number [Ma et al., 2021].

To analyse our model, we had to make several simplifying assumptions, which are common to di�erential285

equation-based models. The two major ones are the lack of spatial heterogeneity and the contact homogene-

ity among a given age class. The lack of spatial heterogeneity implies an identical contact rate across the whole

country. This is not problematic at the start of an epidemic but is not adapted for long-term modelling as

it a�ects the persistence of the disease [Lloyd and R. M. May, 1996; Hagenaars, Donnelly, and Ferguson,

2004]. Furthermore, age contact patterns allow us to capture some of the heterogeneity in the population290

but there could be other social heterogeneities that could, for instance, correlate with vaccination status. As

shown in the case of the in�uenza virus, these could a�ect epidemiological dynamics [Barclay et al., 2014].

One advantage of this PDE model is the restrained number of compartments, especially compared to a

classical alternative in ODE-based models which consists of chaining and multiplying compartments. For the

latter, this would also require rewriting the formalism, depending on whether we consider a short, medium,295

or long-term temporal scale. In a way, PDE models allow one to explore a great variety of biological scenarios

without adding any compartments thanks to the time since an event (infection, recovery, or vaccination)

structure, only by varying the "age-since-event functions". Therefore, the same model can be used to monitor

new hospital admissions or the need for a new vaccination campaign years later in the presence of immune

waning, i.e. a time-induced loss of immunity. For instance, we could account di�erential building up of300

vaccine immunity in susceptible versus recovered individuals. This would be consistent with the fact that

the latter enter the vaccinated compartment at a later ‘vaccination age’ (i.e. k > 0) and a single vaccine dose

appears to be su�cient to build strong immunity [Mazzoni et al., 2021]. Also, in the context of waning

immunity, our model can be used to investigate the long-term bene�ts or costs of implementing vaccine

boosters depending on assumptions regarding vaccine e�cacy or the duration of natural immunity. More305

generally, we can readily investigate the e�ect of implementing age-strati�ed vaccination policies.

Undeniably, PDE formalism requires a greater investment to implement simple models. Furthermore,

deriving analytical results is more challenging, as illustrated by our calculation of the basic reproduction

number. Another potential downside is that the computation time for simulation can increase rapidly.

On a more prospective side, our model o�ers promising possibilities to investigate virus evolution be-310

cause it can explicitly capture the interplay between change in susceptibility, contagiousness, virulence and

immune escapes (post-infection and vaccine) and trade-o�s between them.
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Supplementary information
Supplementary �gures and table
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Figure S1: Illustrating the impact of memory on the time spent in a compartment. Providing memory

to any compartment might yield di�erent results in terms of epidemic dynamics. As illustrated here, in both

cases half of the people leave the compartment at approximately twelve days. However, the number of people

still in the compartment at 5 or 30 days might be radically di�erent, given the initial population, whether

memory is provided or not.

Table S1: Parameters range used in the sensitivity analysis. Further explanations are provided in Sup-

plementary Methods B, especially when assumptions are made.

Parameter Interval References
Virulence increase (κ) due to α
VOC

[1.37− 1.93] Davies et al. [2021]; Challen et al.

[2021]

Initial proportion of recovered [0.137− 0.169] Hozé et al. [2021]

Scale parameter generation time [1.75− 4.7] Ferretti et al. [2020]

Shape parameter generation

time

[4.7− 6.9] Ferretti et al. [2020]

Contact matrix Columns randomly drawned See Section 2.5

Final transmission reduction [0.71− 0.79] By assumption

Final infection immunity [0.78− 0.99] Public Health England [2021]

Final total reduction of severity [0.87− 0.99] Public Health England [2021]

Final number of vaccinated

people

[5− 5.5] · 10
7

By assumption
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Figure S2: Temporal dynamics of vaccine e�cacy. The double sigmoid is intended to re�ect a two-doses

vaccination schedule. The colors show the di�erent types of protection conferred by the vaccine. The dif-

ferent e�cacy levels remain constant over time after the second dose (no immune waning). Data used to

calibrate these curves originate from the analyses of the P�zer-BioNTech vaccine by Public Health England

[2021]. Note that the “Total reduction of severity” also accounts for infection immunity.
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Figure S3: Non-normalised sensitivity analysis results. The output is similar to that in Figure 4 but we

show, for each time step, the raw variance originating from the di�erent parameters instead of the relative

variance.
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Figure S4: Younger age classes contact rates e�ect on hospital admission dynamics. We show 100

randomly selected trajectories among runs made with younger age-classes having the lowest (resp. highest)

contact rates. We selected 50 trajectories among runs made with the 3 contacts matrices having the lowest

(resp. highest) contact rates among [0− 9] y.o., plus 50 for the [10− 19] y.o.
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A Model
System (1)–(16) is considered under the following general assumption

Assumption S1 1. pa ∈ [0, 1], and ifra ∈ [0, pa] for all a ∈ R+;535

2. ρ ∈ L∞+ (R+ × R+), with 0 ≤ ρ(t, a) ≤ 1, for all (t, a) ∈ R+ × R+;

3. ε(a, ·), ξ(a, ·), ν(a, ·) ∈ L∞+ (R+), for all a ∈ R+, and 0 ≤ ε(a, ·), ξ(a, ·), ν(a, ·) ≤ 1;

4. σ(a, ·), µ(a, ·), γm(a, ·), γs(a, ·), γmv(a, ·), ω(a, ·) ∈ L∞+ (R+), for all a ∈ R+;

5. K ∈ L∞+ (R+ × R+);

6. Transmission rates satisfy β` ∈ L∞+ (R+ × R+) for each ` ∈ {m, s,mv}.540

A.1 Implementation

The model was implemented in R [R Core Team, 2021], using Rcpp [Eddelbuettel and François, 2011] to

maximize computational e�ciency.

The PDE system was implemented using an Euler explicit scheme.

A.2 Well-posedness545

Let us introduce the Banach space

X = L1(R+)×L1(R+,R3)×L1(R2

+,R3)×L1(R2

+)×L1(R3

+)×L1(R+)×L1(R2

+)×L1(R+)×L1(R2

+),

as well as its positive cone

X+ = L1

+(R+)× L1(R+,R3

+)× L1(R2

+,R3

+)× L1

+(R2

+)× L1

+(R3

+)×
L1

+(R+)× L1

+(R2

+)× L1

+(R+)× L1

+(R2

+).

Now, we de�ne the subspaces Y1 ⊂ L1(R2

+,R3), Y2 ⊂ L1(R3

+), Y3, Y4 ⊂ L1(R2

+) by:

Y1 =

{
ϕ : (a, i) 7−→ ϕ(a, i), ϕ ∈ L1(R2

+,R3) :
∂ϕ

∂i
∈ L1(R2

+,R3)

}

Y2 =

{
ϕ : (a, i, k) 7−→ ϕ(a, i, k), ϕ ∈ L1(R3

+) :
∂ϕ

∂i
∈ L1(R3

+),
∂ϕ

∂k
∈ L1(R3

+)

}
.

Y3 =

{
ϕ : (a, j) 7−→ ϕ(a, j), ϕ ∈ L1(R2

+) :
∂ϕ

∂j
∈ L1(R2

+)

}
Y4 =

{
ϕ : (a, k) 7−→ ϕ(a, k), ϕ ∈ L1(R2

+) :
∂ϕ

∂k
∈ L1(R2

+)

}
.

It follows that there exists a unique linear operator Π` ∈ L(Y2, L
1(R2

+)) for each ` ∈ {1, 2} such that

Π1ψ = ψ(·, 0, ·) and Π2ψ = ψ(·, ·, 0) for all ψ ∈ Y2. Next, let A : D(A) ⊂ X → X be the linear

operator on the domain

D(A) =L1(R+)× {0L1(R+,R3)} × Y1 × {0L1(R2

+)} × (Y2 ∩ ker(Π2))×
(
W 1,1(R2

+,R) ∩ ker(Π2)
)

× {0L1(R+)} × Y3 × {0L1(R+)} × Y4,
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and de�ned by

A



S
0L1(R+,R3)

ϕi

0L1(R2

+)

ψ
0L1(R+)

ϕj

0L1(R+)

ϕk


=



0

−ϕi(·, 0)
−∂iϕi − diag [γm, γs, µ]ϕi

−Π1ψ
−∂iψ − ∂kψ − γmvψ

−ϕj(·, 0)
−∂jϕj − σϕj
−ϕk(·, 0)

−∂kϕk − σvϕk


.

Finally, let us introduce the following nonlinear map F : D(A)→ X :

F (t, φ(t, a)) =

−λ(t, a)S(t, a)− ρ(t, a)S(t, a) +
∫ jmax

0
σ(a, j)R(t, a, j)dj +

∫ kmax

0
σv(a, k)V (t, a, k)dk

(1− pa)λ(t, a)S(t, a)

pa

(
1− ifra

pa

)
λ(t, a)

[
S(t, a) +

∫ kmax

0
(1− ε(a, k))(1− ν(a, k))V (t, a, k)dk

]
ifra λ(t, a)

[
S(t, a) +

∫ kmax

0
(1− ε(a, k))(1− ν(a, k))V (t, a, k)dk

]


0

[1− ε(a, k)] [1− (1− ν(a, k))pa]λ(t, a)V (t, a, k)
0∫ imax

0

[
γs(a, i)Is(t, a, i) + γm(a, i)Im(t, a, i)

]
di

−ρ(t, a)R(t, a, j)

ρ(t, a)S(t, a) + ρ(t, a)
∫ jmax

0
R(t, a, j)dj

−(1− ε(a, k))λ(t, a)V (t, a, k) +
∫ imax

0
γmv(a, i)Imv(t, a, i, k)di



.

wherein φ(t) is the function:

φ(t) =
(
S(t, ·), 0, Im(t, ·, ·), Is(t, ·, ·), Id(t, ·, ·), 0, Imv(t, ·, ·, ·), 0, R(t, ·, ·), 0, V (t, ·, ·)

)
∈ D(A).

From here, System (1)–(16) rewrites as the following nondensely de�ned Cauchy problem:

dφ(t)

dt
= Aφ(t) + F (t, φ(t)), t > 0,

φ(0) =
(
S0, 0, Im

0
, Is

0
, Id

0
, 0, Imv

0
, 0, R0, 0, V0

)
∈ D(A) ∩X+.

(S1)

Therefore, under Assumption S1, we have the well-posedness of System (S1); that is, the Cauchy problem

(S1) generates a unique globally de�ned, positive and bounded non-autonomous semi�ow.550

The proof of this result is based on a rather standard methodology combining an integrated semigroup

approach and Volterra integral formulation in the context of multiple structured variables (e.g., Richard,

Choisy, et al. [2022] and the references therein) and existence of the semi�ow for non-autonomous systems

(e.g., [Pazy, 2012; Magal, 2001]).

A.3 Basic reproduction number and NPI policices555

We consider that there are no vaccinated, i.e ρ(t, a) ≡ 0 and V (t, a, k) ≡ 0, nor recovered people, i.e.
R(t, a, j) ≡ 0, and that the number of susceptible individuals is very close to the total population size. For

simplicity, we �rst introduce the “survival” probability (i.e. the probability to remain in the compartment)
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of infected individuals of, respectively, the Im, Is, and Id compartments:

πm(a, i) = exp

(
−
∫ i

0

γm(a, r)dr

)
, (S2)

πs(a, i) = exp

(
−
∫ i

0

γs(a, r)dr

)
, (S3)

πd(a, i) = exp

(
−
∫ i

0

µ(a, r)dr

)
. (S4)

By linearizing System (1)–(16), we obtain the following Volterra formulation for Im, Is, and Id compart-

ments:

Im(t, a, i) =

{
Im

0
(a, i− t) πm(a,i)

πm(a,i−t) for t ∈ [0, i[,

(1− pa)λ0(t− i, a)S0(a)πm(a, i) for t ≥ i,
(S5)

Is(t, a, i) =

I
s
0
(a, i− t) πs(a,i)

πs(a,i−t) for t ∈ [0, i[,

pa

(
1− ifra

pa

)
λ0(t− i, a)S0(a)πs(a, i) for t ≥ i,

(S6)

Id(t, a, i) =

{
Id

0
(a, i− t) πd(a,i)

πd(a,i−t) for t ∈ [0, i[,

ifraλ0(t− i, a)S0(a)πd(a, i) for t ≥ i,
(S7)

with λ0(t, a) de�ned as λ(t, a) with no control policies (c = 0),

λ0(t, a) =

∫ amax

0

K(a, a′)

∫ imax

0

[
βm(a′, i)Im(t, a′, i)+βs(a′, i)Is(t, a′, i) +

βd(a′, i)Id(t, a′, i)

]
di da′.

Let IN (t, a) = λ0(t, a)S(0, a) be the density of newly infected of age a at time t. Then, by (S5)–(S7) it

comes

IN (t, a) = S0(a)

∫ t

0

∫ amax

0

K(a, a′)Ω(a′, i)IN (t− i, a′)da′di+ f(t, a), (S8)

where560

Ω(a, i) = βm(a, i)(1− pa)πm(i) + βs(a, i)pa

(
1− ifra

pa

)
πs(i) + βd(a, i) ifra πd(i),

and f(t, a) is accounting for the initial population.

The basic reproduction numberR0 is then the spectral radius, denoted by r(U), of the next generation

operatorU de�ned fromL1

+([0, amax],R) into itself by

U : v 7−→ S0(·)
∫ imax

0

∫ amax

0

K(·, a′)Ω(a′, i)v(a′)da′di.

For parametrization purpose, we assume that the contact matrixK(·, ·) is given up to a positive constant

β (to be determined), such thatK(·, ·) = βK(·, ·), andK satis�es

∑
i

∑
jK(ai, aj) = 1. Consequently,565

we �nd that β is given by

β =
R0

r
(
U
) , (S9)

whereU is the operator de�ned fromL1

+([0, amax],R) into itself by

U : v 7−→ S0(·)
∫ amax

0

K(·, a′)Ω(a′)v(a′)da′,
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with

Ω(a) =

∫ imax

0

[
(1− pa)βm(a, i)πm(i) + pa

(
1− ifra

pa

)
βs(a, i)πs(i) + ifraβ

d(a, i)πd(i)

]
di.

Note that, within this paper, we scaleK(·, ·) by

β∗ := (1− c)2β =
(1− c)2R0

r
(
U
)

rather than β since the NPI level e�cacy was �tted beforehand on real data.

To go further steps in the computation of r(U), in addition to the general Assumption S1, we also assume570

that

Assumption S2 Functions S0,K,Ω are positive almost everywhere.

Then, we can show that r(U) is given by the spectral radius of the following linear operator, de�ned from

L1

+([0, amax],R) into itself:

v 7−→
∫ amax

0

K(·, a′)Ω(a′)S0(a′)v(a′)da′.

The spectral radius of this later operator is computed easily since the agea is numerically divided inton ∈ N∗575

classes so that the term inside the integral of the latter equation is an×nmatrix. Finally, the scaling parameter

β is obtain from (S9).

Importantly, the symmetric property of the contact matrix K is not strictly necessary for the compu-

tation of r(U). However, in addition to Assumptions S1 and S2, if K is a symmetric function, then the

Rayleigh quotient formulation leads to (see Proposition F.2 in Richard, Alizon, et al., 2021)580

r(U) = sup
v∈L2([0,amax],R)
‖v‖L2([0,amax],R)=1

∫ amax

0

∫ amax

0

K(a, a′)

√
S0(a′)Ω(a′)

√
S0(a)Ω(a)v(a′)v(a)da′ da.

B Model parametrization
In this section, we describe the parametrization and the assumptions made in the main text. The uncertainty

ranges retained for each parameter are displayed in Table S1.

B.1 Proportion of severe cases, IFR and increase in virulence

The proportion of severe cases corresponds here to the fraction of the population who will be hospitalized585

following a SARS-CoV-2 infection. This parameter is age-dependent and follows the infection fatality rate

(IFR) by Verity et al. [2020].

However, studies show that the virulence of the infection increased (taken into account by theκ parame-

ter) by more than 60% with theαVOC [Davies et al., 2021; Challen et al., 2021]. Estimation for the δ VOC

are still at an early stage, so we used the virulence from the α VOC, even if the former seems more virulent590

[Sheikh et al., 2021].

B.2 Generation time and transmission rates

For the underlying generation time, we use that provided by Ferretti et al. [2020], which follows a Weibull

distribution, with a shape parameter of 2.826 (95% CI [1.75− 4.7]) and scale parameter of 5.665 (95% CI

[4.7−6.9]). We assume that the transmission rates from mild infectionsβm(a, i) and severe casesβs+d(a, i)595

are equal to the generation time corrected by the probability for individuals to leave their infected compart-

ment.
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B.3 Recovery rates

From the data shown in Salje et al. [2020], we retrieve the time severely-infected individuals spend as infected,

whether they required ICU admission or not, by adding up the di�erent exponential distributions of the600

di�erent infected compartments of their model (which will be denoted E1, E2, Ihosp
, Inon ICU

, I ICU
, H1,

H2, HICU, ICU 1, ICU 2 in a later study by Kiem et al. [2021]). This gives us the probability of remaining

in the infected compartment over time, thereby allowing us to infer the recovery rates. We also know from

Lefrancq et al. [2021] the probability for hospitalized individuals to require ICU admission, which provides

us with appropriate recovery rates weighting for severe cases.605

We apply the same method for mildly-infected individuals.

B.4 Initial conditions

For this PDE model, the initialization is not as straightforward as for ODE models since within a compart-

ment individuals do not have the same age of infection (for infected individuals) or time since clearance (for

recovered individuals). Initialising over all the domain of de�nition of each compartment is di�cult since610

a uniform initialization would almost immediately be counterbalanced by a higher probability to leave the

compartment for higher ages (i.e. i > 0 and j > 0). Put di�erently, this would produce distributions dif-

ferent from what we might expect with a constant in�ow in the compartments. To overcome this issue, we

start the di�erent runs with a 45 days delay (not shown) to let the di�erent compartments stabilise around a

distribution.615

Hozé et al. [2021] estimate that the proportion of recovered adults in France was of 0.149 (95% CI

[0.132 − 0.169]) on January 15th, 2021. For simplicity, and in absence of more detailed data, we assumed

this proportion to be constant across age classes, including the younger age groups.

For infected individuals, we initialize the density with a qualitative value. The β coe�cient associated to

theR0 and the NPI were �tted such that the number of daily hospital admissions was close to the real data.620

The overall number of infected individuals in the model on January 1st was around 267, 000 [170, 000 −
310, 000].

B.5 Vaccine properties

We assume that the three types of vaccine e�cacies (against infection, severe forms, and transmission) follow

a double-sigmoid temporal pattern starting from the day of injections (Figure S2). The reduction in trans-625

mission rate corresponds to function ξ(a, k) in our model, the infection immunity corresponds to function

ε(a, k). The total reduction of virulence corresponds to the cumulative e�ects of ε(a, k) and ν(a, k).

The order of magnitude of the �nal (full) e�cacy levels is based on that from the P�zer-BioNTech vaccine

after two doses provided by Public Health England [2021]. However, note that the outcomes referenced in

the report were used as overall proxy in this study (“symptomatic disease” and “infection” for ε(a, k), “hos-630

pitalisation” and “mortality” for ν(a, k) and “transmission” for ξ(a, k)) as they do not exactly match our

implementation. The reduction of transmission estimation 14 days after the second dose was not available,

so we applied a rule of thumb in order the increase between the two injections was similar to the other vaccine

properties. Hence, we assume a 75% e�cacy for transmission reduction 14 days after the second dose.

We also assume there was no di�erence in e�cacy between age classes, and that the di�erent e�cacy levels635

remain constant 14 days after the second dose until the end of our projections (i.e. no immune waning).

B.6 Vaccination rate

We model the vaccination rate using a sigmoid function,

f(t; θ1, θ2, vtot) =
vtot

1 + exp
(
θ1−t
θ2

) ,
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where vtot denotes the total number of vaccinated individuals at the end of the year (which is a model input),

and θ1 and θ2 are the sigmoid curve parameters �tted to the observed data. This gives us the number of newly640

vaccinated people at each time step.

The number of doses attributed to each age-group at each time step depends on initial weights (ωa(t0)),

which can be interpreted as the age-based strategy vaccination prioritization, the proportion of the age group

targeted (ta), assuming that the total number of vaccinated in each age class may vary and is lower than 100%,

and the proportion of individuals already vaccinated within each age-group at time t (pv(t, a)).645

Therefore, at time t+ ∆t, the splitting of the number of doses is given by ωa(t+ ∆t) which is de�ned

by

ωa(t+ ∆t) =
$a(t+ ∆t)∑
a$a(t+ ∆t)

with $a(t+ ∆t) = ωa(t0) · (ta − pv(t, a)).

Finally, we have

ρ(t, a) · [S(t, a) +R(t, a)] = ωa(t) · f(t; θ1, θ2, vtot).

The initial weights, ωa(t0), and ta is �tted on an ordinary least squares metric to reproduce at best the

real vaccination rate.650

Vaccination is assumed to start on January, 1st, 2021.

B.7 Age groups

The di�erent data sources we used had non-homogeneous age groups, and these groups sometimes over-

lapped. For instance, the contact matrices were provided by 5 years bins, while the parameters related to the

disease severity were provided by 10 years bins. On another hand, vaccination data were provided with age655

groups better re�ecting the French society structure (0-4, 5-11, 12-18, 18-24. . . ).

We decided to use 10 years bins age groups since it was the option that required less data transformation.

C Sensitivity analysis
To perform the sensitivity analysis, we use the lhs package [Carnell, 2020] to generate a Latin Hypercube

Sample (LHS). The parameters were drawn in a uniform distribution within the con�dence interval speci�ed660

for each parameter and shown in Table S1.

For each parameter combination, a model run was computed. In total, 30, 400 model runs were per-

formed. Then, for each time step, we used the multisensi package [Bidot, Lamboni, and Monod, 2018]

to compute the Sobol main indices, given by

Si =
Var(E[Y |Xi])

Var(Y )
,

as implemented in the sensitivity package [Iooss et al., 2021]. The di�erence between the sum of all665

the main indices and 1 corresponds to the e�ect of interactions between parameters. More explanations are

available in Saltelli et al. [2008].

Due to numerical approximations, some indices may sometimes be negative (the lowest was −0.004).

These were rounded to 0.
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