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Abstract 

Introduction To retrospectively assess the accuracy of a mathematical modelling study that projected the rate of 

COVID-19 diagnoses for 72 locations worldwide in 2021, and to identify predictors of model accuracy.  

Methods Between June and August 2020, an agent-based model was used to project rates of COVID-19 infection 

incidence and cases diagnosed as positive from 15 September to 31 October 2020 for 72 geographic settings. Five 

scenarios were modelled: a baseline scenario where no future changes were made to existing restrictions, and four 

scenarios representing small or moderate changes in restrictions at two intervals. Post hoc, upper and lower bounds 

for number of diagnosed Covid-19 cases were compared with actual data collected during the prediction window. 

A regression analysis with 17 covariates was performed to determine correlates of accurate projections. 

Results The actual data fell within the lower and upper bounds in 27 settings and out of bounds in 45 settings. 

The only statistically significant predictor of actual data within the predicted bounds was correct assumptions 

about future policy changes (OR = 15.04; 95%CI 2.20-208.70; p=0.016).   

Conclusions For this study, the accuracy of COVID-19 model projections was dependent on whether assumptions 

about future policies are correct. Frequent changes in restrictions implemented by governments, which the 

modelling team was not always able to predict, in part explains why the majority of model projections were 

inaccurate compared with actual outcomes and supports revision of projections when policies are changed as well 

as the importance of policy experts collaborating on modelling projects. 
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1. Introduction 

According to the World Health Organization (WHO), as of September 22, 2021, there have been 

more than 229 million confirmed cases of COVID-19 globally, causing the loss of more than 4.7 million 

lives [1].The wide and rapid spread of the SARS-CoV-2 virus precipitated a global health and economic 

crisis: the WHO reported a disruption to essential health services that affected 90% of countries between 

March and June 2020 [2], and the World Bank estimates that the global economy has experienced the 

deepest recession since the Second World War and that an upsurge in extreme poverty is to be expected 

[3, 4] 

Governments have introduced physical distancing policies, hygiene protocols, and total or partial 

lockdowns to control virus transmission, but many countries who eased lockdown restrictions saw a 

resurgence of COVID-19 cases, making the development of a vaccine to combat COVID-19 one of the 

most urgent public health endeavors in modern history. As of September 22, 2021, there were one 

vaccine approved and three approved for emergency use in the United States, four approved for 

emergency use in the European Union [5], 121 candidate vaccines in clinical evaluation and 194 in 

preclinical studies [6], with more vaccines on track to complete clinical trials and possibly receive 

regulatory authorization for use.  

To evaluate a vaccine candidate’s efficacy and safety, it is critical that vaccine trials are conducted 

in the right populations at the right time to improve the power of an accurate result for the product’s 

true efficacy, and to reduce the required sample size. Ideally, randomized controlled trials for vaccines 

are conducted in sites and population groups where there is a high incidence rate and where a significant 

proportion of the population remains susceptible to infection. Infectious disease models can help 

support the decision-making process in vaccine trial site selection by predicting which settings and 

populations are most likely to have high incidence rates during periods when trials are scheduled to 

occur. In addition, models can assist in predicting the expected rate of infection endpoints that is needed 

to calculate the required study sample size.  Between June and August 2020, we used an agent-based 

model, Covasim [7], to project COVID-19 incidence and diagnosis rates for 72 locations across 

Australia (AU), Belgium (BE), Brazil (BR), France (FR), Italy (IT), Mexico (MX), the Netherlands 

(NL), South Africa (ZA), Spain (ES), and the United States (US).  The Covasim model was used as one 

of multiple models to predict the incidence rate of infections and diagnosed (i.e., tested positive) cases 

for the 6-week window of 15 September to 31 October 2020, which was 2-3 months in the future from 

the time that the model projections were created. The 6-week window was the time during which the 

Janssen COVID-19 vaccine was scheduled to start enrolment in efficacy clinical trials. Model 

projections from multiple models (e.g., the MIT model), including the Covasim model, were considered 

in the selection of clinical trial sites alongside logistic, feasibility, time to enrolment, and other factors 

in vaccine trial site selection. 

Infectious disease models, no matter how sophisticated, are inherently limited by the data used to 

calibrate them and the assumptions they make about the future conditions. Model validation is an 

important mechanism to understand which inputs and assumptions play the greatest role in determining 

model accuracy. For the 72 settings modelled, the projection period has now passed, meaning that it is 

possible to compare model outcomes with actual outcomes in each setting and to determine any 

correlates of accuracy. This information is valuable for improving future reliability of infectious disease 

models, as well as for improving our fundamental understanding of the COVID-19 pandemic. 

In this study, we assess whether the actual data for each of the 72 settings fell within predicted 

confidence limits, the a priori accuracy of the ranking of COVID-19 projected incidence for potential 

trial sites, and usefulness of a statistical regression model to identify policy, socioeconomic, and other 

factors as predictors of model accuracy.  

2. Methods 
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2.1 Model overview 

Covasim is an agent-based microsimulation model that allows assessment of COVID-19 epidemic 

trajectories. The model can be calibrated to a given setting using available demographic data (population 

size, population age structure, household size distribution), setting-specific contact data (separated by 

household, school, work, and community contacts [8]), and global COVID-19 disease parameter 

estimates. It allows interventions including testing, contact tracing, quarantine, mask use, and social 

restriction policies (e.g., lockdowns, border controls, physical distancing) to be implemented with 

different levels of effectiveness and adherence. Once calibrated to match historical epidemiological data 

from the application context (e.g., number of tests, number of positive diagnoses, number of COVID-

related deaths) and data or assumptions on transmission-related behaviors in the population and 

associated policies, the model can project the likely timing, duration and size of epidemic trajectories, 

including subsequent epidemic waves, based on input assumptions for future testing rates and policies. 

A detailed description of the Covasim methodology can be found in [7], with relevant applications in 

[9-11]. The models were generated with a population of 100,000 agents representing individuals who 

interact over common social layers (household, school, work, and community networks), and Covasim 

applies a dynamic scaling factor to the results to quantify the extent of the epidemic with respect to the 

size of the population in each setting.  

 

2.2 Data and inputs 

The modelling was conducted for 72 nominated settings (51 cities, 5 US counties, 6 French 

departments, 5 South African provinces, 3 Italian provinces, and 2 Australian states). Of the 51 cities, 

3 were in Belgium, 13 in Brazil, 4 in Italy, 2 in Mexico, 2 in the Netherlands, 2 in Spain, and 25 in the 

US. 

Time-varying data on COVID-19 testing, cases, and deaths were obtained from publicly-available 

government, state, and territory health department sources. In some instances, it proved difficult to 

source authoritative data detailed at the city level and, in such instances, data from broader areas such 

as counties, departments, and provinces were used to estimate city-level values by factoring in the 

population ratio. 

 

2.3 Patient and Public Involvement 

Study participants or the public were not involved in the design, or conduct, or reporting, or 

dissemination plans of our research. 

 

2.4 Scenarios projected 

At the time model scenarios were run (during July and August 2020), it was unclear what policy 

pathways each setting would take as they emerged from initial lockdowns; however, we assumed that 

it was unlikely to be a sudden policy change with return to pre-COVID behaviors in one step. So, for 

each location, we simulated five scenarios based on plausible future dates and intensities for policy 

changes that may occur, with the lower and upper bounds across scenarios used as an uncertainty 

interval for projected outcomes. The scenarios are defined as follows: 

● No changes to restrictions: policies that were implemented at the data end date remained in 

place for the duration of the simulation, 

● 10% easing of restrictions: a 10% increase in average individual-level transmission, 

implemented (a) 6- or (b) 10-weeks from the data end date, to simulate a decrease in the 

efficacy of the policies in place / an easing of restrictions following a lockdown, and 
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● 20% easing of restrictions: a 20% increase in average individual-level transmission, 

implemented (a) 6- or (b) 10-weeks from the data end date, to simulate a further decrease in 

the efficacy of the policies in place / an easing of restrictions following a lockdown. 

Additionally, for the duration of the projection period, models were specified as having zero imported 

infections and a constant number of daily tests equal to the 7-day rolling average at the end of the 

available data. For settings that were not in lockdown at the time of the analysis but who were 

experiencing a resurgence of COVID-19 cases, analogous scenarios with increased restrictions were 

modelled. 

 

2.5 Calibration to existing data 

Calibration of the models was performed to fit the reported COVID-19 diagnoses and deaths over 

time in each setting by adjusting the overall transmission probability, the effectiveness of the past policy 

changes and the proportion of people with COVID-19 symptoms being tested. Where the mortality data 

appeared inconsistent with diagnoses data, given testing rates, the mortality data was judged to be the 

more reliable indicator. For each setting, past lockdown or policy changes were implemented in the 

models on the dates that they occurred, with the effectiveness of each lockdown or policy change 

deduced by calibrating the impact parameter in the model such that models reproduced the best fit to 

reported diagnoses and deaths. Simulations were run from the start date of the data for a given setting 

to October 31, 2020. 

 

2.6 Outcome measures 

The primary outcomes of each setting from September 15 to October 31, 2020 were the projected 

total number of new infections, the average daily incidence rate and the average daily diagnosis rate 

over a 30-day period, as well as the projected seroprevalence at the end of October. Upper and lower 

bounds for outcomes were based on the maximum/minimum values of the medians from the scenarios 

described in Section 2.3.  

To evaluate the accuracy of projections, we assessed whether the actual data for number of new 

diagnoses for the period September 15 to October 31 was within the upper and lower bounds that were 

projected. 

2.7 Statistical regression to determine correlates of accurate projections 

Post hoc, we hypothesized that covariates associated with the modelled context might explain why 

our previous model projections were either consistent or inconsistent with the observed epidemic 

trajectory. We used a logistic regression model with 17 modelling, socioeconomic, demographic, 

health, and climate variables against the dependent variable of whether the observed data was within or 

outside the projected incidence range for modelled settings. Modelling variables included future policy 

assumption accuracy, defined as being correct if actual policy changes (easing or increasing of 

restrictions) occurred within a month of the dates they were modelled; future testing assumption 

accuracy, defined as being correct if modelled testing rates fell within a 25% margin of the actual ones; 

future border control assumption accuracy, defined as being correct if borders remained closed as we 

had assumed in our models; days between the end of the data (i.e. calibration end date) and September 

15, 2020; and two parameters assessing calibration accuracy, the average difference between the rate 

of change of reported cumulative diagnosis and deaths versus these modelled indicators over the 

calibration period (the difference in rate of change was selected over just the observations to capture a 

stricter calibration criteria). The final multivariate regression only considered variables that were 

statistically significantly correlated with the outcome variable in the univariate analyses (p < 0.1 was 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 1, 2021. ; https://doi.org/10.1101/2021.09.30.21264273doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.30.21264273
http://creativecommons.org/licenses/by-nc-nd/4.0/


Houdroge et al  

5 

 

chosen here). A sensitivity analysis was tested where a random-effects term was included for country 

to determine whether it might be influencing the outputs.  

 

3. Results  

3.1 Illustrative examples of original projections: Paris (FR) and New York (US) 

Calibrations, projections, and summary model outcomes are presented for the major cities of Paris 

(population of 2.15 million) and New York (population of 8.34 million) in Figures 1 and 2 and in 

Table 1, respectively. The calibration period corresponding to the available data at the time of study 

was from February 25 to August 24, 2020 in Paris, and from February 20 to July 7, 2020 in New York. 

Paris was an example of a city where the observed data did not fall within the upper and lower bound 

of the projections. In contrast, New York is an example of a city where the observed data was within 

the upper and lower bounds of the scenarios.  

 

 

 

 
 

Figure 1: calibration of Paris (left) and New York (right).  

Black dots represent the data, the blue line the median model projection, and the blue shaded area the 

confidence interval. 
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Figure 2: Number of new infections, cumulative infections, and cumulative diagnoses in  

Paris (top) and New York (bottom). The dashed vertical line represents the start of the model projection period, 

the black squares the actual data and the colored lines the scenarios modelled. 
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Table 1: Model-projected COVID-19 outcomes and actual reported data for the cities of Paris and New 

York from September 15 to October 31, 2020 

 

 

Model: number of 

new SARS-CoV-2 

infections 

Model: 30-day SARS-

CoV-2 infection 

incidence rate* 

Model Predicted: 

seroprevalence end 

of October 

Model predicted and actual 

data: 30-day detected cases 

(/population size) 

Lower 

Bound** 

Upper 

Bound** 

Lower 

Bound** 

Upper 

Bound** 

Lower 

Bound** 

Upper 

Bound** 

Lower 

Bound** 

Upper 

Bound** 
Data 

Paris 51,169 82,006 1.55% 2.49% 0.27% 0.28% 0.41% 0.52% 3.70% 

New York 741 416,358 0.01% 3.26% 0.22% 0.25% 0.00% 0.64% 0.18% 

* New SARS-CoV-2 infections occurring between September 15 and 

October 31, 2020 were converted to a 30-day incidence rate for 

comparability 

** The lower and upper bounds were taken as the minimum and maximum 

median values, respectively, of the five forecasting scenarios  

 

3.2 Assessment of outcomes: detected cases 

Of the 72 locations modelled, 27 (37.5%) yielded correct projections (observed data was within 

projected range) and 45 (62.5%) were out of range. The 30-day case detection rate from the projections 

and the data are illustrated in Figure 3. Epidemic trajectories for detected cases were under-estimated 

in 78% of settings with incorrect projections.  

 

3.3 Logistic regression  

Univariate analysis showed that correct future policy assumptions, correct testing rates, longer 

projection periods, a higher poverty rate, a higher unemployment rate, a larger proportion of the 

population younger than 30 and a smaller proportion of the population older than 65 were correlated 

with correct model projections (Table 2). Multivariate logistic regression revealed that, by far, the most 

important predictor for accurately predicting the epidemic trajectory as compared with observed data is 

the correctness of assumed future policy changes (or scenarios) implemented in the models (p < 0.05). 

A sensitivity analysis indicated that this was true even when a random-effects term was included for 

country. 
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Figure 3: 30-day detected COVID-19 cases for September 15 to October 31, 2020, sorted by data in 

descending order. The blue line represents the estimated range from the simulations, and the red diamond the 

data. 
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Table 2: Logistic regression results for model projection accuracy 

 

  
Logistic regression analysis 

N = 72 

  

Projection 

correct 

 

Projection 

incorrect 

 

Crude  

odds ratio 

(95% CI) 

 

p- 

value 

 

Adjusted 

odds ratio 

(95% CI) 

 

p- 

value 

 

Policy assumptions 

Correct 25 26 
9.13 

(2.33, 61.13) 

0.005 

 

15.04 

(2.20, 208.70) 

0.016 

 

Incorrect 2 19 − − − − 

Testing 

assumptions 

Correct 8 6 
2.74 

(0.84, 9.42) 

0.098 

 

2.63 

(0.62, 12.22) 

0.195 

 

Incorrect 19 39 − − − − 

Border control 

assumptions 

Correct 9 12 
1.37 

(0.48, 3.89) 

0.548 

 

− 

 

− 

 

Incorrect 18 33 − − − − 

Days between end 

of calibration and 

September 15 

Median 

(range) 

70 

(35 – 90) 

43 

(20 – 90) 

1.04 

(1.01, 1.07) 

0.003 

 

1.04 

(1.00, 1.08) 

0.055 

 

Average difference 

between diagnoses 

slopes 

Median 

(range) 

32.8 

(7.6 – 552.3) 

24.8 

(0.8 – 534.0) 

1.00 

(1.00, 1.01) 

0.334 

 
− − 

Average difference 

between deaths 

slopes 

Median 

(range) 

1.3 

(0.3 – 56.4) 

2.1 

(0.0 – 61.7) 

0.99 

(0.95, 1.03) 

0.769 

 
− − 

Average 

temperature in the 

month of calibration 

(◦C) 

Median 

(range) 

23.5 

(7.5 – 33.5) 

22.0 

(12.0 – 28.5) 

1.02 

(0.92, 1.14) 

0.658 

 

− 

 

− 

 

GDP per capita 

(US$) 

Median 

(range) 

65,298 

(6,001 – 

65,298) 

40,494 

(6,001 – 

65,298) 

1.00 

(1.00, 1.00) 

0.630 

 

− 

 

− 

 

Persons in poverty 

(%) 

Median 

(range) 

23.7 

(12.2 – 60.7) 

21.2 

(8.0 – 39.8) 

1.00 

(1.00, 1.09) 

0.077 

 

0.98 

(0.87, 1.09) 

0.700 

 

Population covered 

by health insurance 

or public health (%) 

Median 

(range) 

91.2 

(83.3 – 100.0) 

99.9 

(76.8 – 100.0) 

0.94 

(0.87, 1.01) 

0.113 

 

− 

 

− 

 

High school 

graduate or higher 

(%) 

Median 

(range) 

80.8 

(26.1 – 92.6) 

69.8 

(26.7 – 95.2) 

1.01 

(0.98, 1.03) 

0.556 

 

− 

 

− 
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Average household 

size 

Median 

(range) 

2.6 

(1.4 – 3.8) 

2.6 

(1.4 – 4.8) 

1.60 

(0.72, 3.75) 

0.257 

 

− 

 

− 

 

Unemployment rate 

(%) 

Median 

(range) 

12.6 

(3.7 – 46.3) 

9.5 

(3.0 – 38.7) 

1.07 

(1.01, 1.15) 

0.047 

 

1.05 

(0.96, 1.16) 

0.326 

 

Population density 

(habitation/km2) 

Median 

(range) 

1,084 

(10 – 10,636) 

2,236 

(28 – 20,754) 

1.00 

(1.00, 1.00) 

0.159 

 

− 

 

− 

 

Population size 
Median 

(range) 

823,302 

(122,105 – 

11,065,240) 

1,208,542 

(55,676 – 

13,399,724) 

1.00 

(1.00, 1.00) 

0.694 

 

− 

 

− 

 

Population younger 

than 30 years (%) 

Median 

(range) 

44.6 

(36.9 – 58.6) 

40.42 

(28.6 – 61.6) 

1.11 

(1.03, 1.21) 

0.009 

 

1.19  

(1.00, 1.44) 

0.058 

 

Population older 

than 65 years (%) 

Median 

(range) 

11.7 

(5.2 – 16.3) 

13.168 

(3.1 – 24.2) 

0.88 

(0.78, 0.99) 
0.034 

1.31 

(0.98, 1.81) 
0.084 

 

4. Discussion 

Proper model validation is an important yet often overlooked aspect of modelling. With the growing 

use of mathematical modelling to inform and guide major decisions being made in public health, 

validating past model projections against real-world data can provide valuable insight into how models 

can be improved and fine-tuned for future studies [12]. Eaton et al.’s paper on human immunodeficiency 

virus (HIV) modelling [13] is an example of such work: data from the 2012 household survey in South 

Africa was used to evaluate the accuracy of ten previous model projections of HIV prevalence and 

treatment coverage in 2012, with findings emphasizing that model projections consistently under-

predicted HIV incidence and prevalence for that year. More recently, James et al. [14] wrote of the key 

limitations of mathematical modelling as a tool for policymaking in the context of the global health 

crisis wrought by COVID-19. More specifically, describing how the rapidly changing epidemiological 

situation coupled with the fact that the effectiveness of new policies may not be well documented poses 

challenges in the evaluation and implementation of new policies in COVID-19 models. Indeed, since 

the start of the pandemic, COVID-19 predictions have differed significantly between the different 

epidemiological models and have received criticism for being wrong [15, 16]. For instance, in the initial 

stages of the epidemic in the United States, the number of deaths from COVID-19 on any single day 

fell outside the predicted range of some prominent models up to 70% of the time [17]. Eleven models 

assembled by FiveThirtyEight show how estimates can vary widely due to the different underlying 

assumptions made about policy changes and the number of contacts in the models [18]. The Centers for 

Disease Control and Prevention in the United States has compiled a list of 37 independent models in its 

published weekly forecasts predicting national and state numbers of new COVID-19 cases, deaths, and 

hospitalizations in the United States [19]. Moreover, these model outputs were compared against each 

other, validated against empirical data, and aggregated into an “ensemble” forecast to improve the 

predictive performance. 

 

In this study we revisited COVID-19 epidemic projections for 72 candidate clinical trial settings to 

identify policy, socioeconomic, and other factors that could be predictors of model accuracy. Of the 17 

covariates evaluated, we found that making correct assumptions about future policies and restrictions 

was the most significant driver of whether projections were accurate or not. These results, combined 

with the frequent changes in restrictions implemented by governments throughout the pandemic to date 
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(at the time of the analysis), help to explain why past model projections were inaccurate. These findings 

also support the need for frequent revision of projections as policies change and highlight the risks of 

using a model to project COVID-19 epidemics too far into the future—although how far remains 

unclear.  

 

A limitation to this study, and the original modelling, is that it can be difficult to predict the intensity 

and timing of future policy changes, let alone translate real-world policy changes and restrictions into 

reductions in transmission risk in the model. For this study we classified our policy change assumptions 

as being incorrect when the actual restriction change was actually made in the opposite direction to our 

assumption (e.g., we modelled a tightening of restrictions and an easing of restriction occurred) or when 

the timing of the policy change occurred more than a month from when we modelled it to occur. It is 

not surprising that these scenarios led to out-of-range projections: the projection for a scenario is not 

inaccurate if the scenario never happened. However, in instances where the actual policy change 

occurred at the time that we assumed, forecast accuracy was only 49%. This could have occurred 

because either behavioral or health systems changes occurred that could not be quantified and captured 

in the model, or because the policy and restriction changes had more or less impact than we assumed. 

For policy changes occurring in the past, the effect size of the restrictions can be calibrated; however, 

for future policy changes this is not possible, and the effectiveness of future restrictions must be 

estimated based on the impacts they have had in the past. This introduces uncertainty because people’s 

behavior in response to public health directions may not be consistent over time.  

 

There are other limitations to COVID-19 modelling that may explain discrepancies in model 

projections. First, diagnoses and deaths are often underreported due asymptomatic cases, limited testing, 

limited health system capacity, or limited (or suppressed) reporting. Second, transmission is highly 

heterogeneous and even data at a city-level may result in epidemic behavior being smoothed out. Third, 

some of the data used to calibrate the models (up to July 2020) is likely to be outdated due to the 

emergence of new COVID-19 variants with increased transmissibility and mortality [20]. One example 

that is relevant to this study is in Brazil, where the SARS-CoV-2 variant P.1 emerged as early as July 

2020 and is estimated to be 1.4 to 2.4 times more transmissible than previously circulating variants [21-

23] (in Brazil, the epidemiological data was within the projected range 46% of the time). Fourth, with 

more than 5.7 billion vaccine doses administered globally as of September 22, 2021 [1], vaccine roll-

out plays a significant role in transmission from 2021. In the context of today’s highly transmissible 

Delta variant, the impact of the different vaccines and the waning immunity on severe disease and 

deaths must be modelled accordingly, as well as (from a policy perspective) the deployment of booster 

doses including which vaccines will be used, when, and for which target populations. 

5. Conclusions 

Our findings suggest that the policies administered in response to a pandemic are of utmost 

importance when it comes to determining epidemic outcomes. However, the frequent, somewhat 

unpredictable, and significant changes in restrictions implemented heterogeneously across settings can 

largely explain why COVID-19 projections may be inaccurate. Therefore, epidemic modelling for 

informing epidemic mitigation should be conducted in unison with policy makers and be driven by the 

needs of these decision makers, and epidemic modelling for research and trial purposes should be 

updated regularly with the best possible data, assumptions and sensitivity analyses, and should involve 

the collaborative insight of behavioral and policy experts.  
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