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Abstract 

Motivation 

Pretrained contextual language models proposed in the recent past have been reported to 

achieve state-of-the-art performances in many natural language processing (NLP) tasks. 

There is a need to benchmark such models for targeted NLP tasks, and to explore effective 

pretraining strategies to improve machine learning performance. 

Results 

In this work, we addressed the task of health-related social media text classification. We 

benchmarked five models—RoBERTa, BERTweet, TwitterBERT, BioClinical_BERT, and 

BioBERT on 22 tasks. We attempted to boost performance for the best models by 

comparing distinct pretraining strategies—domain-adaptive pretraining (DAPT), source-

adaptive pretraining (SAPT), and topic-specific pretraining (TSPT). RoBERTa and 

BERTweet performed comparably in most tasks, and better than others. For pretraining 

strategies, SAPT performed better or comparable to the off-the-shelf models, and 

significantly outperformed DAPT. SAPT+TSPT showed consistently high performance, 

with statistically significant improvement in one task. Our findings demonstrate that 

RoBERTa and BERTweet are excellent off-the-shelf models for health-related social 

media text classification, and extended pretraining using SAPT and TSPT can further 

improve performance.  

Availability and implementation 
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Source code for our model and data preprocessing is available under the Github 

repository https://github.com/yguo0102/transformer_dapt_sapt_tapt. Datasets must 

be obtained from original sources, as described in supplementary material. 

Supplementary information 

Supplementary data are available at Bioinformatics online. 
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INTRODUCTION 

Supervised text classification is perhaps the most fundamental machine learning task in 

natural language processing (NLP), and it has been employed extensively to design data-

centric solutions to research problems within the broader biomedical domain. Formally, 

this task involves the training of machine learning models using a set of text (often 

referred to as records or documents in early research) and label (also referred to as class 

or category) pairs, where the number of labels is finite, and then employing the trained 

model to automatically predict the labels for previously-unseen texts.1 Compared to 

supervised classification of structured data, text classification typically poses additional 

challenges due to the presence of large feature spaces (ie., high dimensionality of feature 

space)2,3 and feature sparsity.4,5 Support vector machines (SVMs),6 Random forests,7 and 

logistic regression8 had produced state-of-the-art (SOTA) classification performances for 

many tasks over the years due to their abilities to handle large feature sets consisting of 

bag-of-words or n-grams. These traditional approaches typically relied on feature 

engineering methods to generate salient features from texts, and improve performances 

particularly by addressing the feature sparsity problem. Text classification tasks within 

the medical domain primarily benefited from domain-specific features, often generated 

via the utilization of knowledge sources such as the unified medical language system 

(UMLS).9 With the emergence of methods for generating effective numeric 

representations of texts or word embeddings (dense vectors), coupled with advances in 

computational capabilities, deep neural network based approaches became dominant in 

this space, obtaining SOTA performances in many text classification tasks.10,11 Such 
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approaches use dense vector representations, and generally require large volumes of 

annotated data. Word embedding generation approaches such as Word2Vec12 and 

GLoVe13 are capable of effectively capturing semantic representations of words/phrases 

(ie., text fragments with similar meanings appear close together in vector space), which 

n-gram based approaches were not capable of. However, these context-free embedding 

generation approaches do not provide any mechanism for disambiguating homonyms 

(eg., the term ‘bank’ in ‘river bank’ and ‘bank cheque’ would have the same vector 

representation). This limitation was overcome relatively recently via the proposal of 

transformer-based models that are capable of capturing contextual vector 

representations for texts.  

Pretrained transformer-based models such as bidirectional encoder 

representations from transformers (BERT)14 and RoBERTa15 have achieved SOTA results 

in most domain-independent NLP tasks (ie., tasks involving generic texts), often with 

substantial performance increases over past SOTA approaches. Recent research efforts 

attempted to boost the performances of pretrained transformer-based models on 

domain-specific tasks by domain-adaptative pretraining (DAPT), which involves further 

training of a generic pretrained model such as BERT on domain-specific data. For 

example, Lee et al. (2019)16 proposed BioBERT by pretraining BERT on a large biomedical 

corpus of PubMed abstracts, and demonstrated that it outperforms BERT on three 

representative biomedical text mining tasks. Alsentzer et al. (2019)17 attempted to adapt 

pretrained models for clinical text by training BioBERT on clinical notes, resulting in the 

creation of BioClinical_BERT.18 Gururangan et al. (2020)19 illustrated the usefulness of 

DAPT by continuing training of pretrained models on domain-specific data from four 

different domains (biomedical and computer science publications, news, and reviews). 
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However, some studies, including our own pilot, demonstrated that DAPT is not 

guaranteed to achieve SOTA results for health-related NLP tasks involving social media 

data.20,21 To address such performance issues, several studies have experimented by 

continuing pretraining on social media data (we refer to it as source-adaptive pretraining; 

SAPT), and demonstrated their superior performance on social media specific NLP 

tasks.22,23 

Data from social media, often referred to as consumer-/patient-generated data, is 

increasingly being utilized for health-related research.24–26 Social media has several 

attractive characteristics—large volumes of data are available, are generated directly from 

large segments of the population, can be captured in close to real-time, and can be 

obtained with little to no cost, to name a few. However, from the perspective of NLP and 

machine learning, social media presents unique challenges due to the presence of 

misspellings, noise, and colloquial expressions. NLP of health-related text is itself more 

challenging compared to NLP of generic text,27,28 and the characteristics of social media 

data further exacerbate the challenges. Typically, NLP methods developed for generic text 

underperform when applied to health-related texts from social media. For example, for 

the task of adverse drug event classification, the same SVM model with identical feature 

generation methods was shown to exhibit significant performance differences between 

data from medical literature and social media (F1-score dropped from 0.812 to 0.597).29 

 The emergence of transformer-based models and pretraining has thus opened up 

new opportunities for social media-based health NLP research. However, although recent 

studies have demonstrated the utility of these emergent models on social media-based 

datasets, there is a paucity of research available that (i) enables the direct comparison of 
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distinct pretrained models on a large number of social media-based health-related 

datasets, or (ii) provides guidelines about strategies for improving machine learning 

performance on such specialized datasets. Pretraining language models is a resource-

intensive task, and it is often impossible for health informatics researchers to conduct 

extensive pretraining or compare multiple pretrained models. In this paper, we 

investigate the influence of pretraining strategies on performance for health-related text 

classification tasks involving social media data. In addition, since health-related NLP 

tasks generally focus on specific topics, we explore a new pretraining strategy—using 

topic-specific data for extended pretraining (we refer to this as topic-specific pretraining; 

TSPT)—and compare it with SAPT and DAPT for health-related social media text 

classification. TSPT can be viewed as a further specialization of DAPT or SAPT, where 

additional pretraining is performed using data related to the topic only, regardless of the 

source. 

Contributions 

A summary of the specific contributions of this paper are as follows: 

1. We compare the performances of five models pretrained with texts from different 

domains and sources—RoBERTa15 (generic text), BERTweet22 and Twitter BERT 

(social media text, specifically Twitter),20 BioClinical_BERT17 (clinical text), and 

BioBERT16 (biomedical literature text)—on 22 social media-based health-related 

text classification tasks.  

2. We perform TSPT using the masked language model (MLM),30 and assess its 

impact on classification performance compared to other pretraining strategies for 

three tasks.  
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3. We conduct an analysis of document-level embeddings at distinct stages of 

processing, namely pretraining and fine-tuning, to study how the embeddings are 

shifted by DAPT, SAPT and TSPT. 

4. We summarize effective strategies to serve as guidance for future research in this 

space.  

 
SYSTEMS AND METHODS 
We used 22 health-related social media text classification tasks for comparing pretrained 

models. Manually annotated data for all these tasks were either publicly available or had 

been made available through shared tasks. The tasks covered diverse topics including, but 

not limited to, adverse drug reactions (ADRs),29 cohort identification for breast cancer,31 

non-medical prescription medication use (NPMU),32 informative COVID-19 content 

detection,33 medication consumption,34 pregnancy outcome detection,35 symptom 

classification,36 suicidal ideation detection,37 identification of drug addiction and recovery 

intervention,38 signs of pathological gambling and self-harm detection,39 and sentiment 

analysis and factuality classification in e-health forums.40 Table 1 presents the 

details/sources for the classification tasks, the evaluation metric for each task, training 

and test set sizes, the number of classes, and the inter-annotator agreement (IAA) for each 

dataset, if available. Eleven tasks involved binary classification, eight involved three-class 

classification, and one involved four-, five- or six-class classification. The datasets 

combined included a total of 126,184 manually-annotated instances, with 98,161 (78%) 

instances for training and 28,023 (22%) for evaluation. The datasets involved data from 

different social media platforms—11 from Twitter, 6 from 

MedHelp (https://www.medhelp.org/), 4 from Reddit, and 1 from WebMD 
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(https://www.webmd.com/). For evaluation, we attempted to use the same metrics as the 

original papers or as defined in the shared tasks. 

 

ID Task Source Evaluation 
metric TRN TST L IAA 

1 ADR Detection Twitter P_F1 4318 1152 2 0.71 
2 Breast Cancer Twitter P_F1 3513 1204 2 0.85 
3 NPMU characterization Twitter P_F1* 11829 3271 4 0.86 

4 WNUT-20-task2 (informative 
COVID-19 tweet detection) Twitter P_F1 6238 1000 2 0.80 

5 SMM4H-17-task1 (ADR detection) Twitter P_F1 5340 6265 2 0.69 

6 SMM4H-17-task2 (medication 
consumption) Twitter M_F1 7291 5929 3 0.88 

7 SMM4H-21-task1 (ADR detection) Twitter P_F1 15578 913 2 - 

8 SMM4H-21-task3a (regimen change 
on Twitter) Twitter P_F1 5295 1572 2 - 

9 SMM4H-21-task3b (regimen change 
on WebMD) WebMD P_F1 9344 1297 2 - 

10 SMM4H-21-task4 (adverse 
pregnancy outcomes) Twitter P_F1 4926 973 2 0.90 

11 SMM4H-21-task5 (COVID-19 
potential case) Twitter P_F1 5790 716 2 0.77 

12 SMM4H-21-task6 (COVID-19 
symptom) Twitter M_F1 8188 500 3 - 

13 Suicidal Ideation Detection Reddit M_F1 1695 553 6 0.88 

14 Drug Addiction and Recovery 
Intervention Reddit M_F1 2032 601 5 - 

15 eRisk-21-task1 (Signs of Pathological 
Gambling) Reddit P_F1 1511 481 2 - 

16 eRisk-21-task2 (Signs of Self-Harm) Reddit P_F1 926 284 2 - 

17 Sentiment Analysis in e-Health 
Forums (Food Allergy Related) MedHelp M_F1 618 191 3 0.75 

18 Sentiment Analysis in e-Health 
Forums (Crohn'S Disease Related) MedHelp M_F1 1056 317 3 0.72 

19 Sentiment Analysis in e-Health 
Forums (Breast Cancer Related) MedHelp M_F1 551 161 3 0.75 

20 Factuality Classification in e-Health 
Forums (Food Allergy Related) MedHelp M_F1 580 159 3 0.73 

21 Factuality Classification in e-Health 
Forums (Crohn'S Disease Related) MedHelp M_F1 1018 323 3 0.75 

22 Factuality Classification in e-Health 
Forums (Breast Cancer Related) MedHelp M_F1 524 161 3 0.75 

Table 1. Details of the classification tasks and the data statistics. P_F1 denotes the F1-score for 
the positive class, and M_F1 denotes the micro-averaged F1-score among all the classes. *For 
NPMU, P_F1 denotes the F1-score of the non-medical use class. TRN, TST, and L denote the 
training set size, the test set size, and the number of classes, respectively. IAA is the inter-
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annotator agreement, where Task 4 used Fleiss’K, Task 13 used Krippendorff’s alpha, Task 17-22 
provided IAA but did not mention the coefficient they used, and other tasks used Cohen’s Kappa. 

Data collection and preparation 

To compare DAPT, SAPT, and TSPT, we required unlabeled data from (i) different sources 

and (ii) different domains, and (iii) specific to targeted topics. We first collected data from 

three sources—Twitter (social media; source-specific), PubMed abstracts and full-text 

articles (medical domain; domain-specific), and OpenWebText (generic/domain 

independent). For the Twitter and PubMed data, we created additional subsets for TSPT 

by applying hand-crafted filters. Since the process of pretraining is computationally 

intensive and time consuming, to reduce the time and environmental cost of our 

experiments, we specifically focused on 3 tasks for extended comparative analysis instead 

of all 22 tasks—breast cancer, NPMU, and informative COVID-19 tweet classification. For 

the breast cancer and NPMU classification tasks, we used the same keyword and regular 

expression filters described in Al-Garadi et al. (2020)41 (ie., breast cancer-related 

expressions) and Al-Garadi et al. (2021)32 (ie., medication names and their spelling 

variants) to collect additional topic-specific data. For the COVID-19 classification task, we 

used filtered data from a large dataset from our prior work42 using the keywords ‘covid’, 

‘corona virus’, and ‘coronavirus’. These filters were applied to the PubMed and Twitter 

datasets, leading to two TSPT datasets for each. Thus, the filtered Twitter data was a topic-

specific subset of source-specific data, and the filtered PubMed data was a topic-specific 

subset of domain-specific data. For comparison, we also created off-topic equivalents of 

each of these TSPT sets by sampling from the data not detected by the filters from both 

sources. To summarize, we created 5 pretraining datasets for each classification task (i) 

topic-specific and domain-specific (from PubMed), (ii) topic-specific and source-specific 
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(from Twitter), (iii) off-topic and domain-specific, (iv) off-topic and source-specific, and 

(v) generic (ie., the data from OpenWebText). For fair comparison, we ensured that the 

off-topic, topic-specific, and generic pretraining sets were of the same sizes for each task: 

298,000, 586,000 and 272,000 samples for breast cancer, NPMU and COVID-19, 

respectively. These sizes were dictated by the number of topic-specific posts we could find. 

For the web content from OpenWebText and research articles from PubMed, all the 

documents were chunked into sentences, and each sample is a sentence randomly 

selected from all the sentences. To further study the effect of pretraining data size for 

source-specific data, we created three additional large pretraining sets including 1 million 

samples using the same strategies: (i) topic-specific and source-specific (from Twitter), 

(ii) off-topic and source-specific, and (iii) generic. PubMed data was not included for these 

large data experiments due to the availability of the limited topic-specific data related to 

the three tasks. 

Model architectures 

The model architectures for the masked language model (MLM) and classification are 

shown in Figure 1. MLM is an unsupervised task in which some of the tokens in a text 

sequence are randomly masked in the input and the objective of the model is to predict 

the masked text segments. In Figure 1(a), the input {t1 , … , tn} denotes a text sequence 

with some tokens masked. The encoder embeds the text sequence as an embedding matrix 

consisting of token embeddings {𝑒!! , … , 𝑒!"}. The embeddings of the masked tokens are 

fed into a shared linear fully-connected layer, and a Softmax layer to predict the masked 

token. For each masked token, the output is a probability vector that has the same size as 

the vocabulary. During classification, the individual token embeddings are combined into 
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a document embedding (𝑒")  that represents the full instance of text sequence to be 

classified by average pooling. This document embedding is then fed into a linear fully-

connected layer and a Softmax layer to predict the class of the instance.  

For extended pretraining, we initialized our MLM models from RoBERTa_Base 

and BERTweet, respectively, and performed the pretraining on the off-topic, topic-

specific and generic pretraining sets we curated. We chose RoBERTa_Base and 

BERTweet as the initial models for these experiments because they outperformed the 

other models in our initial benchmarking experiments over the 22 datasets (see Results). 

The generic pretraining was only required to be done once for all three tasks, but the topic-

specific and off-topic pretraining were distinct for each task. After pretraining, we fine-

tuned each model on the target classification task, where the encoder of the classification 

model was the same encoder of the MLM model.  

 

Figure 1. The model architectures for MLM (a) and classification (b). [CLS] and [SEP] are two 
special tokens indicating the start and end of the text sequence and [msk] are masked tokens. 

 

Evaluation 

All system configurations were evaluated against each other based on the metrics shown 

in Table 1. 

Statistical Significance 
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In order to better compare the performance of different models, we estimated the 95% 

confidence intervals on the test score of each model and on the performance difference 

between the models using a bootstrap resampling method43. Specifically, the 95% 

confidence intervals on the test scores are computed as follows: (i) we randomly chose 𝐾 

samples from the test set with replacement and computed the test score of the selected 

samples; (ii) we repeated the previous step 𝑘 times and to get 𝑘 scores; (iii) we sorted the 

𝑘 scores and estimated the 95% confidence interval by dropping the top 2.5% scores and 

the bottom 2.5% scores. Similarly, when estimating the 95% confidence interval on the 

performance difference between two models 𝐴 and 𝐵, we first randomly chose 𝐾 samples 

from the test set with replacement and computed the difference in test scores (𝑠! − 𝑠"), 

where 𝑠# and 𝑠$  are the test scores of the models 𝐴 and 𝐵 on the selected samples. The 

following steps were the same as the steps (ii) and (iii) as described above. If the 95% 

confidence interval did not contain zero (ie., no difference in the test scores), the 

performances of the models 𝐴 and 𝐵 were considered to be statistically significant. In our 

experiments, we set 𝐾 to be equal to the size of the test set and set 𝑘 as 1000 for each task. 

 

Document embedding transfer evaluation 

Past studies have shown that pretrained transformer-based models can generate 

embedding vectors that might capture syntactic and semantic information of texts.44–46 

Inspired by these works, we attempted to study the effectiveness of SAPT and TSPT by 

exploring the change in document embeddings following these two pretraining strategies. 

For each topic, we measured the cosine similarities between the document embeddings 

of the instances in the training set (𝐷) and analyzed the change of document embeddings 
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before and after pretraining. For each document 𝑑% 	𝜖	𝐷 , there were three document 

embeddings generated by the following models: 

• 𝑟%: Default encoder without any modification 

• 𝑝%: Encoder after pretraining 

• 𝑞%: Encoder after pretraining and fine-tuning  

As described in the previous subsection, both the MLM and classification model 

architecture contain an encoder, and all the models contained an encoder of the same 

architecture.  The encoder converted each document into an 𝑛	 × 	𝑚  embedding matrix, 

where 𝑛 is the maximum sequence size and 𝑚 is the dimension of the token embeddings. 

For each topic, we computed the cosine similarity of the embedding pairs (𝑟% ,	𝑝%) and 

(𝑝% ,	𝑞%) in the training set and then analyzed the distribution of cosine similarities by 

histogram visualization. Our intuition was that effective pretraining strategies would be 

reflected by observable shifts in the document embeddings, which would be discernible 

from the histograms. Significant shifts in the document embeddings before and after 

pretraining would suggest that the models can learn new information from the 

pretraining data, which can benefit the downstream tasks. Otherwise, further pretraining 

would be unlikely to improve the performance on the downstream tasks. 

Experiments 

Data preprocessing 

To reduce the noise in the Twitter data, we used the open source tool preprocess-twitter 

for data preprocessing.47 The preprocessing includes lowercasing, normalization of 

numbers, usernames, urls, hashtags and text smileys, and adding extra marks for capital 
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words, hashtags and repeated letters. Web content from OpenWebText and research 

articles from PubMed were chunked into sentences and then applied the same 

preprocessing. 

Experimental setup 

For MLM, we initialized the models RoBERTa_Base and BERTweet, respectively, and set 

the learning rate to 4&'(, the batch size as 4096, and the warm-up ratio as 0.06. The rest 

of hyper-parameters were the same as those for pretraining RoBERTa_Base.15 We trained 

each model for 100 epochs and used the model from the last checkpoint for fine-tuning. 

For classification, we performed a limited parameter search with the learning rate ∈

{2 × 10'), 3 × 10')}  and fine-tuned each model for 10 epochs. The rest of hyper-

parameters were empirically chosen and are shown in the supplementary material. 

Because initialization can have a significant impact on convergence in training deep 

neural networks, we ran each experiment three times with different random 

initializations. The model that achieved the median performance over the test set was 

selected to conduct the statistical significance test and report the result. 

 
 

IMPLEMENTATION AND RESULTS 

Comparison of pretrained models  

Table 2 presents the performance metrics for the five transformer-based models on each 

task. On most tasks, RoBERTa and BERTweet had comparable performances, and 

BERTweet outperformed TwitterBERT. BERTweet performed statistically significantly 

better than all others on two tasks, and RoBERTa performed statistically significantly 
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better than all others on one task. Although both of BERTweet and TwitterBERT were 

pretrained on Twitter data, the number of tweets used to train TwitterBERT (0.9B tokens) 

was much smaller than BERTweet (16B tokens), which is likely to be the reason of the 

differences in their performances. BioClinical_BERT and BioBERT consistently 

underperformed on all tasks compared to RoBERTa and BERTweet, despite having 

undergone DAPT.  

Task RoBERTa BERTweet Twitter 
BERT 

BioClinical 
BERT BioBERT 

ADR Detection 60.6  
[50.7-64.5] 

64.5  
[58.4-70.6] 

57.6  
[50.6-64.8] 

58.9  
[51.7-65.3] 

60.2  
[53.4-66.9] 

Breast Cancer 88.5  
[85.2-90.3] 

87.4  
[84.5-90.2] 

86.3  
[83.3-89.1] 

83.0  
[79.4-85.8] 

83.9  
[80.4-86.9] 

NPMU 61.8  
[54.1-61.5] 

64.9   
[61.5-68.9] 

59.5  
[56.0-63.3] 

56.8  
[53.3-60.6] 

52.7  
[49.2-56.4] 

WNUT-20-task2 (COVID-19) 88.7  
[87.0-90.9] 

88.8  
[86.2-90.9] 

87.1  
[84.7-89.2] 

86.1  
[83.9-88.4] 

87.4  
[85.1-89.6] 

SMM4H-17-task1 
(ADR detection) 

53.4  
[47.7-55.5] 

50.7  
[46.6-54.7] 

47.6  
[43.3-51.3] 

45.5  
[41.5-49.1] 

44.5  
[40.6-48.4] 

SMM4H-17-task2 
(Medication consumption) 

79.2  
[76.9-79.1] 

79.8 
[78.8-80.8] 

77.6  
[76.6-78.7] 

74.7  
[73.6-75.7] 

75.2  
[74.2-76.3] 

SMM4H-21-task1 
(ADR detection) 

71.8  
[62.1-80.4] 

66.2  
[55.7-74.8] 

64.9  
[53.0-73.9] 

64.9  
[53.2-73.6] 

62.7  
[51.0-72.3] 

SMM4H-21-task3a 
(Regimen change on Twitter) 

62.1  
[55.1-68.8] 

57.6  
[50.7-64.7] 

54.0  
[46.4-60.9] 

53.6  
[46.3-60.6] 

55.0  
[48.1-61.8] 

SMM4H-21-task3b 
(Regimen change on WebMD) 

88.6  
[86.9-90.1] 

87.6  
[85.8-89.2] 

87.7  
[85.9-89.4] 

86.7  
[84.8-88.5] 

87.1  
[85.3-88.9] 

SMM4H-21-task4 
(Adverse pregnancy outcomes) 

89.5  
[87.0-91.4] 

88.8 
 [86.4-91.1] 

88.4  
[86.3-90.7] 

83.4  
[80.4-86.0] 

83.3  
[80.4-85.9] 

SMM4H-21-task5 
(COVID-19 potential case) 

75.5  
[68.9-81.0] 

71.0  
[64.6-76.8] 

70.9  
[64.2-76.8] 

65.0  
[57.8-71.7] 

66.4  
[59.0-72.9] 

SMM4H-21-task6 
(COVID-19 symptom) 

98.0  
[96.6-99.2] 

98.2  
[97.0-99.2] 

97.8  
[96.4-99.0] 

97.8  
[96.4-99.0] 

98.2  
[97.0-99.2] 

Suicidal Ideation Detection 64.6 
[60.4-68.6] 

63.3 
 [59.3-67.3] 

59.8  
[56.0-64.0] 

61.7  
[57.4-65.7] 

61.7  
[57.4-66.1] 

Drug Addiction and Recovery 
Intervention 

74.0 
 [70.4-77.5] 

71.9  
[68.2-75.2] 

69.9  
[66.2-73.4] 

69.7  
[66.2-73.4] 

69.7  
[66.1-73.2] 

eRisk-21-task1 (Signs of 
Pathological Gambling) 

75.0  
[59.1-87.7] 

67.9  
[52.0-81.1] 

70.2  
[54.5-81.8] 

68.1  
[50.0-82.1] 

62.7  
[45.5-76.4] 

eRisk-21-task2 (Signs of Self-
Harm) 

49.3 
 [34.4-62.9] 

48.6 
 [32.8-61.8] 

49.2 
 [34.0-64.0] 

40.0  
[25.9-53.3] 

45.2 
 [27.6-60.0] 

Sentiment Analysis in e-Health 
Forums (Food Allergy Related) 

76.4  
[70.2-82.7] 

74.3  
[68.1-80.6] 

71.2  
[64.4-77.5] 

71.7  
[65.4-77.5] 

74.9  
[68.6-80.6] 

Sentiment Analysis in e-Health 
Forums (Crohn's Disease 
Related) 

79.2  
[74.4-83.6] 

78.2  
[73.5-82.6] 

75.4  
[70.7-79.8] 

75.7  
[71.3-80.1] 

75.7  
[71.0-80.1] 

Sentiment Analysis in e-Health 
Forums (Breast Cancer Related) 

75.2  
[68.3-81.4] 

70.8  
[63.4-77.6] 

72.7  
[65.8-79.5] 

73.9  
[67.1-80.1] 

70.2 
 [62.7-77.6] 

Factuality Classification in e-
Health Forums (Food Allergy 
Related) 

78.0  
[71.1-83.6] 

76.1  
[69.2-82.4] 

76.1  
[69.2-83.0] 

70.4  
[62.9-77.4] 

76.7  
[69.8-83.6] 
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Factuality Classification in e-
Health Forums (Crohn'S Disease 
Related) 

85.4  
[81.7-89.2] 

84.2 
 [80.2-88.2] 

84.8  
[81.1-88.5] 

82.4  
[78.0-86.1] 

81.4  
[77.1-85.4] 

Factuality Classification in e-
Health Forums (Breast Cancer 
Related) 

75.2  
[67.7-82.0] 

77.0  
[70.2-83.2] 

74.5  
[67.1-80.7] 

75.8  
[68.9-82.0] 

72.0 
 [64.6-78.9] 

Table 2. Comparison of five pretraining strategies on 22 text classification tasks. The metric for 
each task is shown along with 95% confidence intervals. The best model for each task is 
highlighted in boldface. Models that are statistically significantly better than all other models on 
the same task are underlined. 

 
Pretraining results 

Table 3 shows the performances obtained on three tasks by models further pretrained on 

data selected by the different strategies mentioned in the previous section, representing 

SAPT, DAPT, and TSPT. The table shows that models further pretrained on tweets (SAPT) 

performed better or comparable to the baseline/off-the-shelf models (RoBERTa_Base 

and BERTweet), and significantly outperformed the models pretrained on biomedical 

research papers (DAPT), even with relatively small datasets for extended pretraining. In 

contrast, there is no statistically significant differences between using the on-topic data 

and the off-topic data from the same source for the smaller TSPT datasets (ie., 298K, 586K, 

and 272K). However, when pretrained using larger datasets (1M), the table shows that the 

models pretrained on the on-topic data generally obtained better performances than the 

models pretrained on the off-topic data from the same source, with significantly better 

performance for the NPMU task. This illustrates that pretraining on data related to the 

same topic (TSPT) may be effective in some cases. The table also shows that 

RoBERTa_Base tends to benefit more from SAPT than BERTweet. This may be attributed 

to the fact that RoBERTa_Base was initially pretrained on generic text while BERTweet 

was initially pretrained on tweets, and thus RoBERTa_Base can gain more new 

information from further pretraining on Twitter data compared to BERTweet. The best 
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performance achieved for each of these three tasks is higher than those reported in past 

literature. We present the implications of these findings in the Discussion section. 

Continual 
Pretraining 
Data 

Initial 
Model Breast Cancer NPMU COVID-19 

OpenWebText 
(generic) 

RB 87.6 
[84.8-90.2] 

87.3 
[84.4-90.4] 

59.5 
[55.4-63.1] 

57.2 
[53.5-61.1] 

89.2 
[87.1-91.3] 

88.5 
[86.2-90.6] 

BT 86.5 
[83.3-89.2] 

87.1 
[84.1-89.8] 

61.6 
[57.8-65.3] 

62.1 
[58.2-65.2] 

88.5 
[86.4-90.7] 

87.9 
[85.8-90.1] 

Twitter+off-
topic 
(SAPT) 

RB 87.5 
[84.5-90.1] 

86.4  
[83.7-89.2] 

65.2  
[61.5-68.6] 

64.7  
[59.0-66.5] 

90.8  
[88.8-92.6] 

89.2  
[87.0-91.2] 

BT 86.9  
[83.9-89.4] 

87.6  
[84.7-90.3] 

65.7  
[62.3-69.0] 

64.7  
[61.4-67.9] 

90.2  
[88.0-92.1] 

90.1  
[88.2-92.1] 

Twitter+on-
topic 
(SAPT+TSPT)
  

RB 89.7  
[87.1-92.0] 

88.9  
[86.0-91.5] 

65.8  
[62.5-69.2] 

66.0  
[63.2-70.0] 

90.5  
[88.4-92.1] 

91.2  
[89.2-92.9] 

BT 89.1  
[86.4-91.6] 

89.5  
[86.9-92.1] 

66.7  
[63.5-69.9] 

68.0  
[64.7-71.4] 

90.5  
[88.4-92.4] 

91.1  
[89.1-93.0] 

PubMed+off-
topic 
(DAPT) 

RB 85.1 
 [81.9-88.1] - 55.8 

[51.9-59.3] - 89.0 
[87.0-91.2] - 

BT 85.9  
[83.0-88.7] - 58.8 

[55.2-62.1] - 88.8 
[87.0-91.0] - 

PubMed+on-
topic 
(DAPT+TSPT) 

RB 85.8  
[82.7-88.7] - 58.6 

[55.1-62.4] - 89.8 
[87.7-91.7] - 

BT 86.9  
[84.0-89.5] - 60.2 

[56.6-64.0] - 89.2 
[87.1-91.3] - 

Data size - 298K 1M 586K 1M 272K 1M 

Table 3. Performance metrics obtained by models after pretraining on different data collections. 
The metric for breast cancer and COVID-19 is the F1-score of the positive class, and the metric for 
NPMU is the F1-score for the non-medical use class. RB and BT denote RoBERTa and BERTweet, 
respectively. Data sizes for extended pretraining are shown at the bottom. The best model for each 
task is shown in boldface. The models underlined are statistically significantly better than their 
initial models (ie., RoBERTa and BERTweet without continual pretraining in Table 2). 

Document embedding transfer results 

Figure 2 visualizes the changes in document embeddings following pretraining and fine-

tuning for the three datasets. As we can see, for each type of pretraining dataset, the cosine 

similarities of the document embeddings before and after pretraining are mostly greater 

than 0.8, while those of the document embeddings before and after fine-tuning are mostly 

smaller than 0.6, with a wider spread. This suggests that the embeddings changed 

substantially after fine-tuning on the classification task compared to the initial 

pretraining. The same document can be encoded in very different ways depending on 

what task the model is trained on. The figure also shows that for the breast cancer and 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 30, 2021. ; https://doi.org/10.1101/2021.09.28.21264253doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.28.21264253
http://creativecommons.org/licenses/by-nc-nd/4.0/


COVID-19 tasks, the cosine similarities of the document embeddings before and after 

pretraining are mostly greater than 0.9. This indicates that the document embeddings 

hardly changed by pretraining for the breast cancer and COVID-19 tasks. In comparison, 

for NPMU, the cosine similarities for pretraining show a less concentrated distribution. 

The large shifts in document embeddings for the NPMU may be one of the reasons for the 

statistically significant improvement in performance for this task, as depicted in Table 3. 

Figure 2. Histograms of the distributions of cosine similarities for the models initialized 
from RoBERTa_Base and pretrained on 298K, 586K, and 272K samples for the breast 
cancer, NPMU, and COVID-19 tasks, respectively. 
 
DISCUSSION 

The consistent high performance of RoBERTa suggests that models pretrained on generic 

text can still achieve good performance on domain specific social media-based NLP tasks, 

specifically text classification, and may counterintuitively outperform models pretrained 
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on in-domain (medical) data. The better performance of RoBERTa can be attributed to 

larger training data, longer training periods and better optimization of hyperparameters. 

Thus, models pretrained on generic text can be a good choice particularly when sufficient 

domain specific data or computational resources are not available. The relative 

underperformances of BioClinical_BERT and BioBERT suggest that the effectiveness of 

DAPT for social media-based health-related text classification tasks can be limited, which 

may be because of the considerable gap between the languages of the pretraining data and 

the target tasks (ie, clinical/biomedical language vs. social media language).   

The results in Table 3 illustrate that pretraining on data from the same source 

(SAPT) and pretraining on data related to the same topic (TSPT) as the target task can be 

an effective approach for social media-based health-related text classification tasks. 

However, the effectiveness of SAPT and TSPT differed among three tasks. The most likely 

possibility for this is that the NPMU task had the most room to improve since the gap 

between IAA (Κ=0.86) and classifier performance (initial F1-score=0.649) for this task 

was much bigger than those of the other two (breast cancer: 0.85 vs. 0.892; COVID-19: 

0.80 vs. 0.897). Although IAA and F-scores are not directly comparable, the differences 

in the values here clearly show the sub-optimal classification performance for the NPMU 

task. Thus, future researchers may find TSPT to be effective when classification 

performance is considerably lower compared to IAA.   

We also investigated the potential reasons for the difference by exploring the 

transfer of the document embeddings for pretraining and fine-tuning. As illustrated in 

Figure 2, we observed that for breast cancer and COVID-19, the embedding similarities of 

different models have the similar distribution after pretraining on different data, mostly 
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between 0.9 and 1. In comparison, for the NPMU task, the embedding similarities of 

change considerably. This observation may provide a visual explanation for the different 

performances of the same strategy on different tasks. For the breast cancer and COVID-

19 tasks, the document embeddings did not change much after pretraining, indicating 

that the models poorly learned new information. One possible reason for this finding 

might be that when taking MLM as the training goal, the initial model may be optimal 

enough to encode the data and may not need extra data. This interpretation is consistent 

with the pretraining results with larger data in Table 3, which shows that increasing the 

size of pretraining data does not significantly improve the performance on the breast 

cancer and COVID-19 tasks, while for the NPMU task, the performance was improved by 

TSPT with larger data. For the NPMU task, the model representations may have been 

incomplete and needed more data to improve the representation. Visual analysis, such as 

the one presented in this paper, may be an efficient strategy to decide how much 

pretraining data is needed for future studies attempting similar supervised text 

classification tasks. 

Implications for informatics research 

With the rapidly growing inclusion of social media texts for conducting health-related 

studies, it is imperative to identify NLP strategies that are likely to produce the best results. 

In most research settings, it is not possible to execute all the different types of pretraining 

we described in this paper. Also, as reported in recent research, conducting large-scale 

training/pretraining has associated environmental costs,48,49 and the establishment of 

effective strategies can significantly lower such costs in future research. Our findings in 

this paper reveal some simple but effective strategies for improving social media-based 
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health-related text classification tasks. First, large generic models such as RoBERTa and 

source-specific models such as BERTweet can produce excellent performances in most 

social media-based text classification tasks. Second, SAPT and TSPT to extend existing 

pretrained models such as RoBERTa and BERTweet can further improve performance, 

and they may be particularly useful when existing pretrained models exhibit relative 

under-performance on a given task. Third, DAPT may not be very effective in improving 

classification performance for social media tasks, which may have a higher cost-benefit 

trade-off ratio than SAPT and TSPT. Also, SAPT and TSPT are easy to implement and only 

require unannotated data. For example, SAPT can be implemented by randomly selecting 

data from the same source, and TSPT can be implemented by data filtering using topic-

related keywords. While our experiments focused solely on text classification tasks, it is 

likely that these findings will be relevant for other NLP tasks such as information 

extraction or named entity recognition.   

 

CONCLUSIONS 

We benchmarked the performances of five pretrained transformer-based models on 22 

health-related classification tasks involving social media text. We found that RoBERTa 

and BERTweet perform similarly on most datasets, consistently outperforming 

BioClinical_BERT and BioBERT. In addition, we found that pretraining on the data from 

the same source as the target task (SAPT), in this case social media data, is more effective 

than pretraining on domain-specific data (DAPT), such as texts retrieved from PubMed. 

We also found that topic-specific pretraining (TSPT) may in some cases further improve 

performance, although this strategy may not be as effective as SAPT. Broadly speaking, 
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our experiments suggest that for social media-based classification tasks, it is best to use 

pretrained models generated from large social media text, and further pretraining on 

topic-specific data may improve model performances. 
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