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Abstract

Background:

Daytime napping has been associated with cognitive function in observational studies.

However, it remains elusive whether napping could be beneficial or detrimental for cognition

and whether these associations are causal.

Methods:

Using Mendelian randomisation (MR), we studied the relationship between daytime napping

and cognitive outcomes. Data were from UK Biobank (n= 378,932; mean age= 57 years).

Our exposure (daytime napping) was instrumented using 92 genome-wide, independent

genetic variants and our cognitive outcomes were reaction time and visual memory.

Inverse-variance weighted MR was implemented, with sensitivity analyses including

MR-Egger and the Weighted Median Estimator for horizontal pleiotropy. We also tested

different daytime napping instruments (47 SNPs, 86 SNPs and 17 SNPs) to ensure the

robustness of our results.

Results:

No associations were found between daytime napping and reaction time (expß=1.01,

95%CI=1.00; 1.03), or visual memory (expß=0.99, 95%CI=0.94; 1.05). MR-Egger and

Weighted Median Estimator approaches showed no evidence of horizontal pleiotropy.

Additional analyses with 47 SNPs (adjusted for excessive daytime sleepiness), 86 SNPs

(excluding sleep apnoea) and 17 SNPs (no sample overlap with UKB) also showed no

associations with reaction time or visual memory.

Conclusions:

Overall, we observed no evidence of a causal association between habitual daytime napping

and reaction time and visual memory. Future studies should focus on the associations

between napping and other cognitive outcomes.
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Introduction

Daytime napping, defined as brief daytime bouts of sleep [1], is a universal [2,3] and highly

prevalent behaviour [4], reported in approximately 30% of the British population [5].

Napping has been associated with multiple health outcomes [4,6], including cognitive

function [7,8]. Interestingly, napping seems beneficial to performance on certain cognitive

tasks [3,9,10]. These benefits arise immediately following a brief nap (e.g. 5-15 minutes) and

can last between one to three hours. After a long nap (>30 min), a temporary deterioration of

performance emerges, followed by improvements that can last up to a day [10]. However,

some authors argue that individuals who frequently have a nap and those who never nap may

differ in the benefits derived from napping, with the latter experiencing no benefits from it

[3]. While recently more attention has been paid to napping, it remains elusive whether

habitual daytime napping could be beneficial or detrimental for cognition [11]. In addition, as

most studies about the relationship between napping and cognitive function are observational,

causal associations between both could not be drawn.

To overcome this limitation, Mendelian randomisation (MR) can be used, which is based on

the analysis of genetic markers, to examine the possible causal associations between

exposures and outcomes [12,13]. Previous MR studies investigated the causal relationship

between sleep traits and cognitive outcomes. These studies reported that both short and long

sleep duration are associated with poorer cognitive outcomes [14] and, short sleep is

associated with Alzheimer’s disease (AD) risk [15]. Regarding napping, Anderson et al.

(2021) found suggestive evidence that self-reported habitual daytime napping is associated

with lower AD risk. However, no previous MR studies investigated the association between

daytime napping and cognitive outcomes. Given that the most pronounced decline during

ageing occurs in reaction time and memory [17], and the high prevalence of cognitive

impairment in the ageing population [18], the identification of modifiable risk factors is

essential. Thus, the present study aimed to use MR to examine whether the relationship

between daytime napping and cognitive function might be causal.

Methods
Sample

The UK Biobank (UKB) cohort has been described in detail elsewhere [19]. Briefly, UKB

recruited 500,000 males and females from the general UK population, aged 40-69 years at

baseline (2006-2010). Although UKB recruited participants of distinct ancestries, those
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included in this study were of white European ancestry and retained if they had relevant

(quality-controlled) genotype and phenotype data (N=378,932).

Study design

Our exposure (SNPsx) sample overlapped with our outcome sample (SNPsy) by 77%. This is

because the discovery genome-wide association study (GWAS) for the exposure under study

was performed in UKB participants, which was also our analytical sample. However, below

we detail in Sensitivity Analyses the strategy we undertook to mitigate this sample overlap.

Genotyping and quality control (QC) in UKB

487,409 UKB participants were genotyped using one of two customised genome-wide arrays

that were imputed to a combination of the UK10K, 1000 Genomes Phase 3 and the Haplotype

Reference Consortium (HRC) reference panels, which resulted in 93,095,623 autosomal

variants [20]. We then applied additional variant level QC and excluded genetic variants with:

Fisher’s exact test <0.3, minor allele frequency (MAF) <1% and a missing call rate of ≥5%.

Individual-level QC meant that we excluded participants with: excessive or minimal

heterozygosity, more than 10 putative third-degree relatives as per the kinship matrix, no

consent to extract DNA, sex mismatches between self-reported and genetic sex, missing QC

information and non-European ancestry (based on how individuals had self-reported their

ancestry and the similarity with their genetic ancestry, as per a principal component analysis

of their genotype).

Outcomes: cognitive function measures

At baseline UKB administered a total of five cognitive assessments to all participants, via a

computerised touch-screen interface, all of which are described in detail elsewhere [21]. For

the purposes of this study and to maximise statistical power, we pragmatically chose visual

memory and reaction time. For the visual memory task respondents were asked to correctly

identify matches from six pairs of cards after they had memorised their positions. The

number of incorrect matches (number of attempts made to correctly identify the pairs) was

then recorded, with a greater number reflecting poorer visual memory. Reaction time (in

milliseconds) was recorded as the mean time taken by participants to correctly identify

matches in a 12-round game of the card game ‘Snap’. A higher score on this test indicated a

slower (poorer) reaction time. Both of these variables were positively skewed and therefore,

reaction time scores were transformed using the natural logarithmic function [ln(x)], whilst

visual memory was transformed using [ln(x+1)].
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Selection of genetic instruments

Main daytime napping genetic instrument

Daytime napping was instrumented using 123 genome-wide significant (p<5*10-8) genetic

variants discovered in a recent genome-wide association study (GWAS) [22]. These variants

were discovered in 452,633 UKB participants, based on the question ‘Do you have a nap

during the day?’ administered at baseline, with possible responses Never/rarely, Sometimes

and Usually (Prefer not to answer was coded as missing in the GWAS). Thirty-eight percent

of UKB respondents reported that they ‘sometimes’ napped and 5% reported that they

‘usually’ have a nap. The 123 variants explain 1% of the variance in daytime napping.

However, here we selected 92 of the 123 daytime napping SNPs, as we used linkage

disequilibrium (LD) clumping in PLINK with r2<0.01 within 250kb. We then calculated the

F-statistic which yielded F=41 using the Cragg-Donald formula [23]:

We harmonised the genetic variants between the exposure GWAS and our outcome sample by

aligning effect alleles and we also excluded palindromic SNPs. Our instrument selection

process is detailed in Supplementary Figure S1.

Additional daytime napping genetic instruments

We additionally partitioned the daytime napping instrument into two further sub-instruments:

i) an 86-SNP instrument which consists of those SNPs that remained genome-wide

significant when in the published GWAS the authors excluded individuals who had sleep

apnoea (n=5553), ii) a 47-SNP instrument which comprised SNPs that remained

genome-wide significant on adjustment for excessive daytime sleepiness. Using the formula

F=(𝛃2/SE2) to approximate average instrument strength for these additional instruments in

sensitivity analyses, we calculated the F-statistic for each of these additional instruments,

which yielded F=98.1 and F=47.0, respectively indicating good instrument strength.

Statistical analyses

i. Main analyses

Using PLINK 2.0 we performed linear regressions between each of the daytime

napping genetic variants and our outcomes, adjusting for 10 principal components

to minimise issues of residual confounding by population stratification. For our
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MR analyses, inverse-variance weighted (IVW) MR was implemented, with

standard sensitivity analyses including MR-Egger and the Weighted Median

Estimator (WME). The IVW, also known as ‘conventional MR’ estimates the

effect of an exposure (e.g. daytime napping) on a given outcome (e.g. visual

memory/reaction time) by taking an average of the genetic variants’ ratio of

variant-outcome (SNP→Y) to variant-exposure (SNP→X) association, which is

calculated using the principles of a fixed-effects meta-analysis [24]. MR-Egger

regression (which yields an intercept term to denote the presence or absence of

unbalanced horizontal pleiotropy) [25] and the WME can give more robust

estimates when up to 50% of the genetic variants are invalid and thus, do not meet

all MR assumptions [26]. Results are expressed as expß-coefficients for

log-transformed outcomes, which should be interpreted as % differences in the

outcome for every 1-unit increase in daytime napping frequency.

ii. Sensitivity analyses

a. To ensure that our results were robust we performed all of our MR

analyses additionally using a 47-SNP and 86-SNP daytime napping

instrument, as described earlier. We confirmed a priori before

implementing our analyses that these instruments were of adequate

strength (via F-statistics).

b. To mitigate potential issues with sample overlap between the discovery

GWAS for daytime napping and our analytical dataset (both used UKB)

we additionally performed our MR analyses using a reduced 17-SNP

daytime napping instrument. This instrument consisted of the SNPs that

were replicated (at p<5*10-8) [22] in an independent cohort (23andMe,

N=541,333), as an a priori F-statistic confirmed that it was suitable for

use in our MR analyses (F=67.1).

iii. Testing of MR assumptions

a. Associations between genetic instrument and exposure instrumented:

GWAS robust: this assumption was met, as the daytime napping variants

we instrumented here have been robustly associated with this phenotype in

a recent very large-scale GWAS.

b. No evidence of horizontal pleiotropy (no association between genetic

instruments and the outcome, other than via the exposure under study): we
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tested this assumption by implementing MR-Egger and WME sensitivity

analyses, as detailed above.

c. No associations between genetic variants and confounders of the

relationship under study: to assess this assumption we regressed a number

of common confounders on our main instrument (92 SNPs) and used a

Bonferroni multiple testing correction of 0.05/92=0.0005. The list of

confounders we selected was based on recent literature [8] and included:

years of full-time education, deprivation (Townsend deprivation quintiles),

smoking (ever/never/ex-smoker), physical activity (days of moderate

activity for more than 10 minutes), body mass index (BMI) (kg/m2), alcohol

consumption (1-8 times per month/16 times per month-daily/rarely or

never), prevalent type-2 diabetes (No/Yes), prevalent hypertension

(No=not on antihypertensive medication, Yes=on antihypertensive

medication), prevalent cardiovascular disease (No/Yes).

Results
Sample characteristics

In our sample 53% of participants were female with a mean age of 57 years, spent an average

of 15 years in full-time education and 22% were in the most deprived quintile. The mean

reaction time was 555 milliseconds and the mean number of visual memory errors recorded

was 4, while average BMI was 27.3kg/m2. At baseline, there were 20,228 participants with

diabetes, 29,747 with CVD, 93,092 on antihypertensive medication. Fifty per cent reported

consuming alcohol between 16 times per month-daily. Participants did an average of 3.6 days

of moderate physical activity for more than 10 minutes and 27% reported ever smoking.

Main MR results

Associations between daytime napping and cognitive function using a 92-SNP genetic

instrument

Figures 1 and 2 shows that using our ‘Main’ instrument we found no associations between

daytime napping and reaction time or visual memory. We also found no evidence of

horizontal pleiotropy using MR-Egger and WME approaches (all MR-Egger intercept

p-values >0.05).

Sensitivity analyses
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Associations between daytime napping and cognitive function using a 47- and 86-SNP

genetic instrument

As results reported in Figures 1 and 2, sensitivity analyses using a 47-SNP instrument

(adjusted for excessive daytime sleepiness) also showed no associations with reaction time or

visual memory. Similar results emerged for the 86-SNP instrument (excluding individuals

with self-reported sleep apnoea) with no evidence of associations with either of the two

cognitive function measures. For reaction time the MR-Egger intercept p-value indicated the

presence of unbalanced horizontal pleiotropy using both the 47- and 86-SNP instruments.

Thus, we excluded one SNP that was the most strongly associated with reaction time

(rs2099810), re-ran our MR analyses and the MR-Egger intercept had p>0.05. The MR-Egger

slopes, as well as the IVW and WME results, remained unchanged and are therefore not

presented. However, we did not detect any issues with horizontal pleiotropy for visual

memory, with both MR-Egger intercept p-values >0.05.

Association between daytime napping and cognitive function using a 17-SNP instrument with

no sample overlap

Using this restricted instrument to ensure no overlap between our exposure and outcome

samples, across all three MR approaches we observed no associations with reaction time or

visual memory. MR-Egger detected no issues with unbalanced horizontal pleiotropy

(p>0.05). Results are presented in Figures 1 and 2.

Testing MR Assumption III

Associations between our main 92-SNP daytime napping genetic instrument and common

confounders

After a Bonferroni correction we observed that 12 variants were associated with education,

two with deprivation, four with smoking, two with physical activity, 19 with BMI, one with

alcohol consumption, three with diabetes, eight with hypertension and one with CVD. We

present these associations in Supplementary Table 3.

Figure 1. Associations between daytime napping and reaction time in UKB including

sensitivity analyses
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Note. N=378,932, instrument details: Main=92-SNP main daytime napping instrument from

Dashti et al, 2021, Adjusted= 47-SNP instrument adjusted for excessive daytime sleepiness,

Restricted= 86-SNP instrument excluding individuals with self-reported sleep apnoea,

23&Me= 17-SNP instrument used as it has no sample overlap with UKB.

IVW=inverse-variance weighted, WME=weighted median estimator, 95%CI=95%

confidence interval. Exp(beta): exponentiated beta (e.g. an exponentiated beta of 1.01 in

reaction time represents an estimated 1% increased/slower reaction time for every 1-unit

increase in daytime napping frequency).

Figure 2. Associations between daytime napping and visual memory in UKB including

sensitivity analyses

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 29, 2021. ; https://doi.org/10.1101/2021.09.28.21264215doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.28.21264215
http://creativecommons.org/licenses/by-nc-nd/4.0/


Note. N=378,932, instrument details: Main=92-SNP main daytime napping instrument from

Dashti et al, 2021, Adjusted= 47-SNP instrument adjusted for excessive daytime sleepiness,

Restricted= 86-SNP instrument excluding individuals with self-reported sleep apnoea,

23&Me= 17-SNP instrument used as it has no sample overlap with UKB.

IVW=inverse-variance weighted, WME=weighted median estimator, 95%CI=95%

confidence interval. Exp(beta): exponentiated beta.

Discussion

Using a comprehensive Mendelian randomisation design, we show no evidence of

associations between self-reported habitual daytime napping and reaction time, or visual

memory in the UK Biobank.

To our knowledge, no prior studies have used MR to try to disentangle the relationship

between daytime napping and cognitive function. Nonetheless, a recent MR study found

tentative evidence that daytime napping may reduce AD risk [16]. Furthermore, previous MR

studies have found that sleep duration is causally associated with cognitive function [14] and

AD risk [15]. Despite evidence of cross-sectional associations between daytime napping and

cognitive outcomes [7,8], and the relationship between cognitive function and AD [27], we
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expected to find a causal link between daytime napping and reaction time, or visual memory.

However, we found no evidence to support this hypothesis.

More reliable cognitive measures may be required to identify these effects. In this regard, our

results may be influenced by test characteristics (e.g., task sensitivity and difficulty, timing,

or instructions) [3]. Furthermore, UKB cognitive assessments are not standardised and were

designed specifically for this cohort. However, it is important to establish that, despite these

limitations, UKB cognitive data is a valuable resource for researchers seeking determinants

of cognitive function [21].

Moreover, individual differences in the experiences with napping, for example, the presence

of sleep apnoea [28] and daytime sleepiness [3], may affect the degree of the cognitive

benefit generated by naps. In this regard, we partitioned the daytime napping instrument into

two sub-instruments (one excluding individuals who had sleep apnoea and the other adjusting

for excessive daytime sleepiness). Still, no evidence of associations between self-reported

daytime napping and reaction time, or visual memory was found. However, other factors such

as slow waves production, the quality of the prior sleep period or the presence of sleep inertia

could also influence napping restoration [3], which could lead to different effects on

cognition. The association between napping and cognitive function may also be influenced by

depression, as the frequency of napping has been associated with depressive symptoms

[7,29,30]. Also, the relationship between depression and cognition is well established [31,32].

In addition, we only analysed the frequency of napping. However, observational studies have

shown that the length and timing of naps could also affect cognitive function [10].

Unfortunately, information on these dimensions is not available in UKB. Regarding length,

previous studies reported that, unlike long naps, the beneficial effects of brief naps are

evident almost immediately after waking but last for a shorter period of time [10]. Nap’s

timing also determines its effect on cognition, with the post-lunch dip period being the most

favourable time to take a nap to overcome the temporary drop in alertness and performance

evidence during this period [33].

To validate our MR findings, it was checked that the three core assumptions that underlie MR

were met. Assumption I was met as we instrumented the best available genetic variants as

they have been robustly associated with daytime napping in a recent large-scale GWAS [22].

MR-Egger and WME sensitivity analyses were implemented to check assumption II. No
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evidence of horizontal pleiotropy was found, which corroborates that the association between

our genetic variants (for the exposure) and outcomes were only via the exposure under study.

Finally, assumption III was tested by performing regressions between our genetic instruments

and unobserved confounders, and we found that some of the variants were associated with

common confounders. These associations should be further investigated, as they may

constitute vertical, rather than horizontal pleiotropy.

Limitations

Limitations of the study should be noted. First, our exposure and outcome samples

overlapped by 77%. However, sensitivity analyses using a reduced 17-SNP daytime napping

instrument, replicated by the GWAS authors [22] in an independent cohort (23andMe),

confirmed that it was suitable for use in our MR analyses. Using this reduced instrument, we

observed no associations with reaction time or visual memory. Second, participants were only

white European; future work should examine if these findings are replicated in other

ancestries. Third, future instruments for the length and timing of daytime napping are

necessary. Fourth, another limitation of our study was the self-report nature of the exposure

under study, but napping is notoriously difficult to measure using objective methods.

However, in UKB there was consistency between self-reported sleep measures and

accelerometer-derived daytime inactivity duration, which increases confidence in the SNPs

for daytime napping.

Conclusions

In summary, our Mendelian randomisation study of daytime napping and reaction time, and

visual memory suggests that these associations are not likely to be causal. The lack of

evidence for an association in the present study may indicate that other cognitive outcomes

(e.g. alertness) may be affected by habitual daytime napping and should be studied in the

future.
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