


ting area since the dining area is estimated as 50 % of the total restaurant area (based on

typical restaurant design guides [48]; change of this factor does not qualitatively change the

observations). The occupancy information in these POIs between hours 12:00 - 13:00 and

18:00 - 19:00 over seven days starting from March 1, 2020 is obtained from the data sets

created by Chang et al. [44] who developed a mobility network based SEIR model using

the SafeGraph data. These two time periods represent typical lunch and dinner times, and

hence highest occupancy periods of any day. The pdf of the averaged number of susceptible

individuals in restaurants (total occupancy minus one) between hours 12:00 - 13:00 and 18:00

- 19:00 over ten US cities is shown in Fig. 4. Also, shown in the figure is an exponential fit

and the corresponding fitting parameter.

Figure 4: Pdf of number of susceptible individuals in full service restaurants at ten US cities,

from SafeGraph data.
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3 Results and discussion

3.1 Spatial distributions of particle concentration and infection

probability for fixed conditions

First, we present the spatial distribution of the virus concentration (RNA copies/m3 of air)

with the source at x = 2.5m and y = 2.5m from the origin (at the bottom left corner) of a

10m x 10m x 3m room after 15 minutes of aerosol exhalation by speech and breath. In Fig.

5 the first row (a-c) presents results with a constant viral load ρ = 109 copies/ml, but with

increasing ACH. Note that the third column represents a case without wall reflections and

hence can simulate outdoor conditions. The second row of Fig. 5 (d-f) represents a constant

but five times higher viral load of ρ = 5 × 109 copies/ml. The results demonstrate strong

inhomogeneity of virus concentration and also show that contours scale linearly with ρ for

the same ACH due the linear nature of the governing Eqn. 3. Using the dose response model

(Eqn. 12) the corresponding contours of probability of infection are shown in Fig. 6. Indeed

near unity Ps+b are found near the source, and there is decay with distance from the source.

The Ps+b contours do not scale linearly with ρ due to the nonlinear nature of the dose response

model. Increasing ACH invariably reduces virus concentration for a given ρ. However, the

reduction in the probability of infection may not be proportional to the reduction of the

virus concentration due to the non-linearity involved in the dose response. Interestingly, the

simulated outdoor conditions (c, f) show much smaller infection probability both near and

far from the source w.r.t. the confined cases. This can be attributed to the inherently higher

ACH inside the volume of interest, but primarily due to absence of confinement which allows

the virus concentration to freely decay with space.
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(a) ρ = 109 copies/ml

ACH = 2 h−1

(b) ρ = 109 copies/ml

ACH = 5 h−1

(c) ρ = 109 copies/ml

ACH = 12 h−1, no walls

(d) ρ = 5× 109 copies/ml

ACH = 2 h−1

(e) ρ = 5× 109 copies/ml

ACH = 5 h−1

(f) ρ = 5× 109 copies/ml

ACH = 12 h−1, no walls

Figure 5: Contour plots of spatially resolved virus concentration (RNA copies/m3) at time

t = 15 minutes from start of expiration event (source located at x = 2.5m, y = 2.5m).
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(a) ρ = 109 copies/ml

ACH = 2 h−1

(b) ρ = 109 copies/ml

ACH = 5 h−1

(c) ρ = 109 copies/ml

ACH = 12 h−1, no walls

(d) ρ = 5× 109 copies/ml

ACH = 2 h−1

(e) ρ = 5× 109 copies/ml

ACH = 5 h−1

(f) ρ = 5× 109 copies/ml

ACH = 12 h−1, no walls

Figure 6: Contour plots of spatially resolved probability of infection Ps+b(x, y) at time t = 15

minutes from start of expiration event (source located at x = 2.5m, y = 2.5m).

3.2 Statistical distributions of secondary infections generated from

realistic input distributions

A simulation based on the algorithm presented in Fig. 1 is run for each data point available

from the predefined SafeGraph dataset, resulting in a sample size of Ns = 103679. We place

one infected individual at each POI, at random locations within its premises. As such, most

inputs, including viral load, ACH, exposure time, speaking time, source location (x0, y0),

are randomized. ACH is generated from a log-normal distribution with a median ACH=

2.16 hr−1, such that µACH = 0.7701, σACH = 0.7554 based on measurements by Bohanon

et al. [49]. Room height H = 3 m, height of source (seated) z0 = 1 m, indoor conditions

(T = 21.7oC, RH = 0.50, UVindex = 0), and dose response constant rv = 1/1440 are held
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constant. The resulting distribution of number of secondary infections - pdf of Z is presented

in Fig. 7. An analytical solution g(Z) to be derived in sub-section 3.3 is also shown in the

figure.

0 10 20 30 40

10-4

10-2

100

Figure 7: Pdf of the number of secondary infections: Z and negative binomial fit. The

analytical function g is given by Eqn. 22. g(µ = 13.84, σ = 3.63, α = 1.123×10−10, ν = 7.71).

The stretched tailed nature of the simulated pdf is immediately apparent. This shows that

there is small but finite probability of tens of secondary infections per infected individual. For

this simulation the mean(Z)s = 〈Z〉s = 0.14 indicating that over this one hour, on average

less than 1 person got infected per infector. The calculated total number of infections

is 14482, with many of the infections occurring in large superspreading events. As such,

only 3.57 % of the infected individuals infected 80 % of the population over this time.

This could also be the reason why it is generally difficult to culture the virus from the air,

though that was unequivocally demonstrated by Lednicky et al. [50]. High probability of
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infection, which as shown in the paper typically occurs at high viral load, could be correlated

with high probability of virus detection in the air. Direct virus detection from air could

therefore necessitate sampling from a large population of infected individuals. Clearly, the

finite probability of Z >> 〈Z〉 recovers the inherently overdispersed nature of SARS-CoV-2

transmission dynamics. Fitting a negative binomial probability distribution function to the

Z-pdf yields a good fit, with a dispersion parameter k = 0.029. While the fit quality worsens

at the pdf tails, the dispersion parameter is in the same order as the corresponding values

for SARS and measles estimated by Lloyd-Smith et al. [1]. However, it is to be noted that

we are considering only infections over a period of about 1 hour on average, as opposed to

the entire course of infection, hence 〈Z〉 should not be interpreted as R0. Similarly, the

qualitative k value thus obtained should be interpreted with care.

Figure 8 shows the joint pdf of ρ and Z. The close correlation of the two random

2 4 6 8 10 12
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Figure 8: Joint pdf of viral load and number of secondary infections.

variables across nearly six orders of magnitude is immediately apparent from this figure.
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While correlation may not imply causality in general, it is reasonable in this case that the

extreme variation in ρ is causing a similar variation in Z, with other parameters controlling

the slope and strength of the correlation.

We present the jpdf of ACH and Z in Fig. 9. It is apparent that the highest number of

infections Z occur at lower air exchange rates, as expected; however, the majority occur at

an intermediate air exchange rate of about 1-1.5 ACH, in part because very low and very

high air exchange rates are simply less common. Furthermore, it is also clear that dispersion

of Z and ACH are indeed negatively correlated. The effect of universal, high ventilation

rates, and masks will be taken up later.
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Figure 9: Joint pdf of ACHand Z.
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3.3 Derivation of the analytical pdf of Z: g(Z)

The viral load pdf from Yang et al. [47] can be well approximated by a log-normal distribution

with parameters µ and σ given by µ = 13.84 and σ = 3.63. This is shown in Yang et al. and

also shown in Fig. 3. As such, we used the following pdf of viral load f(ρv) for generating

inputs into the simulation

f(ρv) =
1

ρvσ
√

2π
e−(ln(ρv)−µ)

2/2σ2

(15)

Due to its extremely large (over O(12)) variation, our analysis shows that viral load ρ is one

of the most dominant variables in controlling overdispersion of secondary infections Z, as is

apparent from Fig. 8. This result can also be presented in terms of secondary attack rate

- a more generalized descriptor, defined as Z̃ = Z/n where n is the number of susceptible

individuals present at the given POI over the period of interest τ . Z̃ is the sample space

variable corresponding to Z̃. Variation of Z̃ w.r.t. ρ is shown in Fig. 10. Clearly, this plot

reflects the dose-response function (Eqn. 12) on a macro scale given the dominant influence

of ρ in controlling probability of infection and eventually secondary attack rates. Therefore,

we propose a function similar to Eqn. 12 to model the response of Z̃ to ρ variation. This is

shown below:

Z̃ = 1− e−αρ (16)

We can also write

ρ = − 1

α
ln(1− Z̃) (17)

The constant α can be estimated as the inverse of the average number of virions inhaled

per unit volume of mucosalivary liquid ejected that is required for infection probability of

1 − e−1 = 0.63. For the average room volume 〈V 〉 = 6.34 × 102 m3, average speaking time

〈ts〉 = 1469 s, average exposure time 〈τ〉 = 3914 s, average air change rate, 〈ACH〉 = 2.87

hr−1, and deposition parameter based on average room area and volume β0 = 0.002 s−1, α

can be estimated as

α =
rvQ̇l〈ts〉V̇b
〈V 〉

∫ 〈τ〉
0

ψ(t)e−(〈ACH〉/3600+β0)tdt (18)

ψ(t) is given by Eqn. 9, and Q̇l = 2.223 × 10−6ml/s. Note that all the 〈〉 quantities

mention averages over the distributions used in the present simulation. Equation 18 yields
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α = 1.123×10−10 ml/copies. The comparison of Eq. 16 and the simulation results are shown

in Fig. 10.

Figure 10: Scatter plot of viral load (ρ) vs secondary attack rate (Z̃). The black dot curve

shows Eqn. 16 with α = 1.123× 10−10 ml/copies.

With the functional form of the pdf of the viral load known (given by Eqn. 15) we can

immediately substitute Eqn. 17 into Eqn. 15 to eventually derive the pdf of Z̃ using the

generalized equation below.

φ(Z̃) = f

(
− 1

α
ln(1− Z̃)

) d
(
− 1
α
ln(1− Z̃)

)
dZ̃

(19)

Using the log-normal form of f we derive the analytical function below which could be used

to model the pdf of secondary attack rate Z̃: φ(Z̃). However, the same method should be

applicable to other functional forms of f , like a Weibull distribution as in [10] instead of
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log-normal.

φ(Z̃) =
1(

−|1− Z̃|ln(1− Z̃)
)
σ
√

2π
e−{ln(− 1

α
ln(1−Z̃))−µ}2/2σ2

(20)

Comparison of Eqn. 20 with the simulation results is shown in Fig. 11.

0 0.2 0.4 0.6 0.8 1

10-2

100

102

Figure 11: Pdf of Z̃ and its comparison with the analytical result given by Eqn. 20

It is evident that Eqn. 20 describes the simulation data to good quantitative accuracy.

It is also remarkable that very important effects of area, ACH, virus kinetics, exposure

and speaking times could be encapsulated within one constant α. It is to be recognized

that the equation is valid only for Z̃ < 1. This is an inherent feature emanating from the

derivative of the functional form of the dose response model which yields the 1− Z̃ term in

the denominator. Importantly, the equation can describe the range 0 ≤ Z̃ < 1 with high

degree of veracity. Now, we can write Z = N(1− e−αρ) using Eqn. 16. For a fixed α, clearly

N and 1− e−αρ are independent random variables. Therefore, for any given pdf of N given
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by h(N), pdf of Z/N given by φ(Z/N) and a known α, and using the general equation that

describe the pdf of the product of two independent random variables, we can write the pdf

of Z given by

g(Z) =

∫ ∞
0

h(N)φ(Z/N)
1

N
dN. (21)

Using the exponential distribution h(N, ν) = 1
ν
e−

N
ν shown in Fig. 4 we derive for Z < N

g(Z) =

∫ ∞
0

e−
N
ν

−νσ
√

2π(N −Z)ln(1−Z/N)
e−{ln(− 1

α
ln(1−Z/N))−µ}2/2σ2

dN (22)

It is to be noted that the constants µ, σ are properties of the viral load distribution, ν is the

constant of the occupancy distribution, and α encapsulates τ, ts, ACH,A, V, t 1
2

etc. according

to Eqn. 18. It is apparent that the pdf g(Z) is stretched to higher (lower) Z values when

µ, σ, ν or α increases (decreases). The remarkable match between this analytical function:

g - the analytical pdf of the number of secondary infections and that obtained from the

simulation data has been shown in Fig. 7. We revisit it here for further discussion. It is

evident that the stretched tail of the pdf of Z results from the two stretched exponential

functionals of Z and N . This can be verified by noting that when either σ → 0 or ν → 0

the overdispersion of Z vanishes. The first stretched exponential arising from the lognormal

distribution of viral load ρv and the latter from the exponential distribution of number of

people at the different POIs. Therefore, it is the joint contribution of overdispersed viral load

and overdispersed occupancy that results in overdispersion of secondary infection numbers

causing superspreading events. This is shown here with a single equation. The 〈Z〉 obtained

from the analytical pdf, given by 〈Z〉 =
∫∞
0
Zg(Z)dZ. We find mean and standard deviation

as 〈Z〉 = 0.13, std(Z) = 0.99, respectively, in comparison to 〈Z〉s = 0.14 and std(Z)s = 0.87

from the simulations. The analytical pdf g(Z) is expected to be a generalized result and

could be applied for any large number of indoor POIs, without much restriction on their

type.

3.4 Variants and mitigation measures

Finally, we test whether the derived Eqn. 22 can describe overdispersed transmission associ-

ated with a different viral load distribution equally well. To this end, we generate a viral load
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distribution with a mean which is 1000 times the mean of the original distribution presented

in Fig. 3. Thus, while Fig. 3 represents the pdf of the original variant, the new log-normal

distribution characterized µ = 20.67 and σ = 3.63 might represent the pdf of viral load of

the δ−variant infected individuals. Early data from Li et al. [51] suggest that the viral

loads of the δ−variant could be as high as “1000 times greater compared to A/B lineage

infections during initial epidemic wave in China in early 2020”. The simulation results in

terms of Z-pdf are presented in Fig. 12. The greater transmissibility of the δ−variant under

the assumption of 1000-fold higher mean viral load is immediately apparent. In comparison

to the 〈Z〉 = 0.13 for the original variant, the 〈Z〉 = 2.64 for δ. Therefore, just based

on viral load, according to the calculations and model, δ−variant could be nearly 20 times

higher transmissible on average w.r.t. the original variant, over about an hour of contact.

Interestingly, with just increased µ, Eqn. 22 can capture the pdf of Z for the δ−variant,

remarkably well, alongside the one for the original variant. However, it is to be recognized

that there is some uncertainty on the assumption that mean viral load of the δ-variant is 1000

times higher than the original variant. Data also suggest that viral load and infectiousness

potential (using a proxy of culture-positivity for example), while monotonic in nature, may

not demonstrate a linear relationship [52]. Furthermore, 〈Z〉 6= R0. Hence, the enhancement

factor thus found is valid only within the context of the assumptions and scope of this work.
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Figure 12: Pdf of Z and its comparison with the analytical result given by Eqn. 22

for original variant (red circle symbols, red bold line)

g(µ = 13.84, σ = 3.63, α = 1.123× 10−10, ν = 7.71) and for δ−variant (blue square symbols,

blue bold line) g(µ = 20.67, σ = 3.63, α = 1.123× 10−10, ν = 7.71).

Finally, we explore the effect of adopting uniformly high ventilation rates and masks,

on the distribution of secondary infections. To that end, we keep the ventilation rates

constant at ACH = 5 hr−1 and assume that the entire population (including the infectors and

susceptibles) are wearing masks that provide 50% reduction by volume of exhaled aerosols

and 50% reduction in the correspondingly inhaled aerosols. The results are shown in Fig 13.
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Figure 13: Effect of masking, fixed ventilation rates, vaccines, and reduced occupancy. Solid

red and blue lines correspond to the analytical solutions given by Eqn. 22 for the original

and δ−variant respectively, for 〈ACH〉 = 2.9 hr−1 and without masks, as shown in Fig.

12. For fixed ACH = 5 hr−1, and with masks blocking 50 % volume of aerosols during

inhalation and exhalation, the dashed red line shows the analytical solution for original

variant g(µ = 13.84, σ = 3.63, α = 2.36 × 10−11, ν = 7.71) while the dashed blue line shows

the analytical result for δ−variant g(µ = 20.67, σ = 3.63, α = 2.36 × 10−11, ν = 7.71). The

solid green line: g(µ = 20.67, σ = 3.63, α = 2.81 × 10−11, νv = 4.01) shows the effect of

80% vaccination coverage, with 60% vaccine efficacy, with all individuals wearing masks

that block 50% of the aerosols during exhalation and inhalation. The dash-dotted green

line: g(µ = 20.67, σ = 3.63, α = 2.81× 10−11, νv = 2.00) shows the effect of 80% vaccination

coverage, with 60% vaccine efficacy, with all individuals wearing masks that block 50% of

the aerosols during exhalation and inhalation along with occupancy restriction to 50% of the

original occupancy. The top left inset shows the zoomed in view of the left side of the pdfs.

Please refer Table 3 in the supplementary material for detailed values.
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We observe that such interventions result in significant reduction in transmissibility for

the original variant; reducing the mean to 〈Z〉 = 0.04 (from 〈Z〉 = 0.13 obtained without

any interventions) with significant reduction in the extension of the tail. Such intervention

effect remains substantial, yet less pronounced for the δ-variant where the 〈Z〉 = 1.69 (w.r.t.

〈Z〉 = 2.64 obtained without any interventions) and tail remains sufficiently stretched with

some shift in the overall pdf towards lower Z. Once again, we note that these numbers are

obtained over nearly an hour of exposure time on average. Note that, in our model, α does

not change between the original and the δ variant. Only the µ increases, resulting in an

increase in the higher proportion of secondary attack rates close to unity as the virus strain

switches from the original variant to the δ−variant. A more detailed analysis of the influence

of individual parameters: mean viral load, mean occupancy, and mean ventilation rates on

the mean and standard deviation of Z could be found in the supplementary material (section

5).

Within the scope of the present study - social gatherings in restaurants, we ask what kind

of spread could be expected for the δ−variant given the period of exposure and available

occupancy data, in a population where a large fraction is already vaccinated? This is shown

in Fig. 13 by the green curves. Using the realistic ACH distribution and with masks that

can reduce both emission and inhalation of aerosol volumes by 50%, respectively, we do

a basic calculation including the effect of vaccination. Assuming vaccine efficacy ηvac =

0.6 and vaccination coverage efficiency ηcov = 0.8 representing fraction of the population

vaccinated, we estimate the new population of susceptible individuals at a given POI as

nv = (1− ηvacηcov)n. We do not consider any change in viral load or change in distribution

of infectious cases. Fitting an exponential distribution to nv, the new constant νv = 4.01.

Clearly, from Fig. 13 we observe a significant drop in the number of secondary infections

and superspreading events. The pdf of the number of secondary infections with the δ-variant

with partially effective masks and vaccines is much less stretched than the original variant

without masks or vaccine. Still the finite risk of superspreading event sustains. However, with

80% vaccination and 50% reduced occupancy, coupled with masks, a significant reduction

in overdispersion is attained. This behooves the need for rapidly vaccinating the population

alongside physical intervention measures like high-quality masks, reduced occupancy, and
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across the board higher ventilation rates.

4 Conclusions

Overdispersion leading to superspreading events is a major driving force of the Covid-19

pandemic. Understanding the factors that lead to overdispersion in individual infectivity

are also considered long standing scientific problems. Coupling an aerosol mixing model

with real-world inputs: exhaled aerosol size distribution for speech and breath, measured

viral load distribution, occupancy information from SafeGraph for full-service restaurants

in major US cities, realistic ventilation rate distributions, we explore the overdispersion in

the number of secondary infections per infector. The simulated results demonstrate that

aerosol transmission route is consistent with the overdispersed individual infectivity with

viral load variability being a dominant factor that controls secondary attack rates alongside

ventilation rate, exposure time, and speaking time. We derive analytical expressions that

can accurately and probably for the first time, describe the simulated pdfs of the secondary

attack rates and number of secondary infections, respectively. The function for the secondary

infection number pdf elucidates quantitatively, how overdispersed distributions of viral load

and occupancy, jointly control the overdispersion in the number of secondary infections per

infector. Finally, given the input data, modeling assumptions and the scope of the study, it

appears significant reduction in transmissibility (both the average, as well as the dispersion)

of the highly transmissible δ−variant necessitates all possible mitigation measures: efficient

masks, high ventilation rates, and reduced occupancy, even after a significant fraction of the

population has been vaccinated.
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