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Abstract: In this paper we use the technique of functional data analysis to model daily hospitalized, 8 
deceased, ICU cases and return home patient numbers along the COVID-19 outbreak, considered 9 
as functional data across different departments in France while our response variables are numbers 10 
of vaccinations, deaths, infected, recovered and tests in France. These sets of data were considered 11 
before and after vaccination started in France. We used some smoothing techniques to smooth our 12 
data set, then analysis based on functional principal components method was performed, clustering 13 
using k-means techniques was done to understand the dynamics of the pandemic in different French 14 
departments according to their geographical location on France map and we also performed canon- 15 
ical correlations analysis between variables. Finally, we made some predictions to assess the accu- 16 
racy of the method using functional linear regression models. 17 
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 20 

1. Introduction 21 

1.1 Background and literature review 22 

The modeling of COVID-19 pandemic across the globe has been approached using different tech- 23 
niques in mathematics and statistics by different researchers but the use of functional data analy- 24 
sis (FDA) has been done by few scientists. Functional data analysis is useful in many fields such 25 
as medical sciences, biology, statistical analysis and econometrics while several books like [1] 26 
have treated the theoretical aspects and methodology and more recently, researchers have dealt 27 
with FDA application to COVID-19 modeling [2-4]. 28 

The COVID-19 pandemic is still evolving in France as there has been three waves with possibil- 29 
ity of a fourth wave due to a more contagious variant (Delta variant) which may lead to another 30 
lockdown following three lockdowns alongside with several non-pharmaceutical measures to 31 
mitigate the spread of the diseases. France has a total of 5,911,601 cases as at 22/07/2021, 32 
111,554 deaths representing 2% of the total cases, 5,162,757 having recovered from the disease 33 
representing 98% of the total cases and 637,290 currently infected patients with 637,431 (99.9%) 34 
in mild condition while 859 (0.1%) are in critical condition.  35 

Some researchers have worked on French public data on COVID-19 evolution in France which 36 
we shall point out few as there are many more. The robust phenomenological approach to France 37 
COVID-19 data was investigated by [14] and a new method to calculate the cumulative cases in 38 
France was proposed which illustrates the epidemic and endemic nature of the virus infection in 39 
France. [13] used methods like principal component analysis, generalized additive model and 40 
hierarchical ascendant classification to study the impacts of population age structure, epidemic 41 
spread and transmission mitigation policies on COVID-19 morbidity or mortality heterogeneity in 42 
France. [15] used ARIMA models with different parameters to forecast the spread of COVID-19 43 
across nine countries in Europe, Asia and American continents and the study deduced that the 44 
method is useful for the prediction of the pandemic at different stages.  45 

Some recent works use functional data analysis for the modelling of COVID-19 pandemic as fol- 46 
lows: [2] applied functional data analysis to United States data by using FCPA (Functional 47 
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Principal Component Analysis) and FCCA (Functional Canonical Correlation Analysis) tools and 48 
they finally use functional time series to fit the cumulative confirmed cases in the United States 49 
and make forecasts based on the dynamics of FPCA. [3] worked on the imputation of missing 50 
data of COVID-19 hospitalized and intensive care curves in Spain regions. They used function- 51 
on-function regression technique to estimate missing values and Canonical Correlation Analysis 52 
was performed to interpret the relationship between hospital occupancy rate and illness response 53 
variables. The shapes of an epidemic curve using functional data analysis to characterize COVID- 54 
19 in Italian regions and their association with mobility, positivity, socio-demographic structure 55 
and environmental covariates was worked on by [4]. The researchers have used different methods 56 
of functional data analysis like function-on-function regression techniques, clustering methods 57 
and smoothing techniques for the functional data considered.   58 

1.2 Time series and curve fitting 59 

Figure 1a gives the time series of recent daily cases of COVID-19 in France which shows station- 60 
arity with rolling values (window=12) appearing to be varying slightly. Also, the statistics are 61 
smaller than the 5% (p-value = 0.02) critical values so we can say with 95% confidence that this 62 
is a stationary series. Also, in Figure 1c we plotted three French departments (Nord, Paris and 63 
Essonne) with more prevalent COVID-19 hospitalization cases and Figure 1d shows the fitness 64 
curve of two of the French departments (Paris and Seine-Maritime) while all departments have 65 
root mean square error in the interval 0.51 ≤ 𝑅𝑀𝑆𝐸 ≤ 17.38 with Essonne department having 66 
the highest RMSE and Lozère department having the lowest RMSE. We present other RMSE 67 
values in Table 1. We present also (Figure 1b) a deep learning forecasting result using Gated Re- 68 
current Units (GRU) for France data between the beginning of the pandemic in France till Sep- 69 
tember 3 2021 by training 80% of the data and testing 20%. The predicted cases curve values 70 
decline over the whole-time. In Appendix B, we present the spectral analysis of the time series in 71 
Figure 15 in order to study the periodicity of the new cases of COVID-19 in France and to present 72 
a smoothed version without noise of the data. 73 

 74 

 75 

 76 

 77 

 78 

 79 

 80 

 81 

 82 

 83 

 84 

 85 

 86 

 87 

 88 

 89 

0 50 100 150 200

0
10
0

20
0

30
0

40
0

Days

Fr
en

ch
 D

ep
t

- - -   Paris     — Nord      --- Essonne 

 

(a) 
 

(b) 
 

(c) 
 

(d) 
 

(dt 
 

19/03/20          29/10/20 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted September 28, 2021. ; https://doi.org/10.1101/2021.09.25.21264106doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.25.21264106


 3 
 

 

Figure 1. (a) Time series modelling of daily new cases between 01/05/2021 to 15/07/2021 in France. (b) GRU deep learning fore- 90 
casting method for daily new cases between 25/02/2020 to 03/09/2021 in France. (c) Daily hospitalization cases in three French 91 
departments: Nord, Paris and Essonne. (d) Fit curve for hospitalization cases in Paris and Seine-Maritime. 92 

Table 1. RMSE confidence interval for all French departments for the fitness curve of the four functional data 93 
                         RMSE before vaccination started                       RMSE after vaccination has started 94 

Hospitalized 0.51 ≤ 𝑅𝑀𝑆𝐸 ≤ 17.38 1.00 ≤ 𝑅𝑀𝑆𝐸 ≤ 18.00 

ICU 0.05 ≤ 𝑅𝑀𝑆𝐸 ≤ 2.60 0.35 ≤ 𝑅𝑀𝑆𝐸 ≤ 5.20 

Daily return home 0.25 ≤ 𝑅𝑀𝑆𝐸 ≤ 12.40 1.10 ≤ 𝑅𝑀𝑆𝐸 ≤ 17.50 

Daily deceased 0.04 ≤ 𝑅𝑀𝑆𝐸 ≤ 4.52 0.32 ≤ 𝑅𝑀𝑆𝐸 ≤ 4.10 

 95 
The aim of this paper is to model the prevalence of the virus in France by using several functional techniques like FCCA, K-means 96 
clustering and FPCA and to finally make some predictions about the evolution of the disease in France. The analysis was done using 97 
both Python and R packages. We considered as functional variables numbers of ICU cases, daily deceased, daily return home and 98 
hospitalization which are given as 𝑋!, 𝑋", 𝑋# and 𝑋$. Our response variables given as 𝑌!, 𝑌", 𝑌#, 𝑌$, 𝑌% and 𝑌& are numbers of 99 
recovery, deaths, infected, vaccination, vaccination per 1000 population and number of tests. We collated data from [10], [11] and 100 
[12]. The paper is divided as follows: in Section 2 we describe the various smoothing methods employed in the analysis of the 101 
shapes of the functional data used and in Section 3 we present the functional principal components analysis results and their 102 
interpretation to the dynamics of COVID-19 prevalence in French departments, Section 4 is dedicated to the result of canonical 103 
correlation of the variables. In Section 5 we present the clustering result using K-means method and how it appears on the map of 104 
France, In Section 6 we made some predictions for some response variables and also performed the function-on-function linear 105 
regression and finally in Section 7 we opened up some perspectives and gave conclusion of the analyses. 106 

 107 
2. Data smoothing 108 
The first step in analyzing functional data is to smooth the curves. In this Section we use different smoothing techniques which we 109 
shall illustrate and give some basic explanation of the techniques we deployed for smoothing our functional data. We plotted the 110 
mean of the data set and the cross-sectional mean, which corresponds to the karcher-mean under the 𝕃" distance [8]. We used the 111 
elastic_mean(fd) and fd.mean tool in Python to do the plotting of Figure 2.  112 
 113 
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Figure 2. L2 (blue) and elastic (yellow) means of the functional data: (a) hospitalized cases, (b) hospitalized when vaccination has 117 
started, (c) ICU cases, (d) ICU cases when vaccination has started, (e) daily return home, (f) daily return home when vaccination 118 
has started, (g) daily deceased and (h) daily deceased when vaccination has started. 119 
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We observed that the elastic mean better captures the geometry of the curves compared to the standard L2 mean for some of the 121 
functional data set we considered, since it is not affected by the deformations of the curves. This phenomenon can be seen in 122 
Figures 2a, 2b, 2c, 2e, 2f and 2g, Figures 2d and 2h showing a bad shape for elastic mean.  123 
 124 
B-Spline smoothing technique 125 
 B-spline technique is one of the tools used in smoothing a functional data and this can be done by changing the number of elements 126 
(n = 2,3,4,…) in the basis functions [9]. Sometimes one can use the Fourier basis for the functions to further see the variations in 127 
the curves. We give a mathematical expression on the basis functions below: 128 

𝑓(𝑡) = ∑ 𝑏' ∝' (𝑡)(
')!                                (1) 129 

For this analysis we choose n= 7 as our number of elements and the tool in Python named basis.BSpline was used to perform the 130 
plotting of the functional data. The result of this smoothing technique can be seen in Figure 3. 131 

 

(a)  

 

 

(b)  

 

(c)  
 

 
(d)  

 132 

 
(e)  

 

 
(f)  

 133 

V

a

l

u

e

s 

V

a

l

u

e

s 

V

a

l

u

e

s 

V

a

l

u

e

s 

V

a

l

u

e

s 

V

a

l

u

e

s 

Time Time 

Time Time 

Time Time 

(dt 
 

(dt 
 

19/03/20    29/10/20 27/12/20 30/06/21 

19/03/20    29/10/20 27/12/20 30/06/21 

19/03/20    29/10/20 27/12/20 30/06/21 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted September 28, 2021. ; https://doi.org/10.1101/2021.09.25.21264106doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.25.21264106


 6 
 

 

 
(g)  
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 134 
Figure 3. Smoothed curves for the shape of COVID-19 epidemic in all departments in France: ((a) hospitalized cases, (b) 135 
hospitalized when vaccination has started, (c) daily deceased, (d) daily deceased when vaccination has started, (e) daily return 136 
home, (f) daily return home when vaccination has started, (g) ICU cases and (h) ICU cases when vaccination has started). 137 
 138 
In Appendix A Figure 14, we presented the correlation coefficient between all the departments in France based on the functional 139 
data in consideration, in order to see how well our data is well correlated between the departments and it was observed that there is 140 
a high correlation between various departments with except in few cases where we observed low correlation as we can see in the 141 
contour plots presented in Figures 14a to 14h. 142 
 143 
Smooth interpolation and monotone cubic spline interpolation 144 
We used spline interpolation of order 3 and then smooth the interpolation using the smoothness parameter equal to 1.5 in the cubic 145 
spline smoothing. This technique is demonstrated using interpolation and smoothness_parameter package in Python. We also use 146 
the monotone technique and a piecewise cubic Hermite interpolating polynomial (PCHIP) using a Python package called monotone. 147 
We present some of the results on Figure 4. 148 
 149 
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Figure 4. (a) Hospitalized cases interpolation smoothing, (b) hospitalized monotone smoothing, (c) ICU cases interpolation 152 
smoothing, (d) ICU cases monotone smoothing, (e) daily deceased interpolation smoothing and (f) daily deceased monotone 153 
smoothing.  154 
From graphs presented in Figure 4 one can deduce that cubic spline smoothing curves exhibit oscillations and oscillations are 155 
important to know the low and high data thresholds in case the consecutive data points experience a significant change in slope. We 156 
also observed that PCHIP is smooth and non-oscillatory despite some sharp increase as the U-shape of the curve deepens.  157 
 158 
Kernel smoothing 159 
We also performed Kernel smoothing to show how cross validation score varies over a range of different parameters used in the 160 
smoothing methods. The essence of this section is to estimate the smoothing parameter h that better represents the functional data 161 
and this smoothing parameter was selected by generalised cross-validation criteria. The non parametric method of smoothing for 162 
the functional data is based on smoothing matrix M given below: 163 

𝑚*' =	
!
+
𝐾(,!-,"

+
),      (2) 164 

𝑀(ℎ) = @𝑠'(𝑡*)B = 	
.(

#!$#"
% )

∑ .(
#&$#"
% )'

&()

,        (3) 165 

where K() is the Kernel function. 166 
We plotted on Figure 5 the smoothed curves of the functional data set for three different smoothing methods and also show the 167 
scores through generalised cross-validation (GCV) for these different smoothing methods. The results show a comparable behavior 168 
of these scores by varying the smoothing parameter h. 169 
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Figure 5. Kernel smoothing method for (a) hospitalized cases, (b) hospitalized when vaccination has started, (c) ICU cases, (d) ICU 173 
cases when vaccination has started, (e) daily return home and (f) daily return home when vaccination has started. 174 
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3. Functional principal component analysis (FPCA) 179 
Principal component analysis is a dimension reduction analysis tool in multivariate statistics while functional principal component 180 
analysis (FPCA) is a dimension reduction with high variance in functional data analysis [6], [7]. Let 𝑥*(𝑡) be a given set of 181 
functions and let 𝛼 be a weight, FPCA is computed as follows: 182 

- It finds the principal component weight function 𝛼!(𝑡) for which the principal component score is given by 183 
𝑓'! = ∫𝛼!(𝑡)𝑥*(𝑡)𝑑𝑡 ,                      (4) 184 

while maximizing ∑ 𝑓*!"'  is subjected to  185 

∫𝛼"(𝑡)𝑑𝑡 = ‖𝛼!‖" = 1.                (5) 186 
- Next, the weight function 𝛼"(𝑡) is computed and the principal component score maximizes ∑ 𝑓*""' , and is subject to the 187 

constraint ‖𝛼"‖" = 1 and to the additional constraint  188 
∫𝛼"(𝑡)𝛼!(𝑡)𝑑𝑡 = 0.                 (6) 189 

- Then, the process is repeated for as many iterations. 190 
In our analysis we used a tool called pca.fd for the principal component analysis. We present in this Section the 4 PCs values plot 191 
throughout the days considered and the principal component scores plot for all the different departments providing functional data 192 
being before vaccination started and during vaccination.  193 
 194 
Functional PCs 195 

- Hospitalization cases  196 
In Figure 6a we observed that PC1 peaked in the early days of the pandemic between February and March 2020 and then 197 
there was a decline after about 50 days becoming stationary till day 150 possibly due to mitigation measures promulgated 198 
during this period. The same phenomenon has been observed for PC 2. In Figure 6a, PC 4 shows a sinusoidal shape, 199 
peaked at day 100 which is around June 2020 with least values at day 30 and day 180 which are respectively in March 200 
and August 2020. Figure 6b shows the same sinusoidal shape for PC 4 and same shape for PC 3 but with a drift in the 201 
observation with a difference between the dynamics of hospitalization cases before and after vaccination has started in 202 
France. PC 1 in Figure 6b shows a decline across the infective period which may be due to the aggressive vaccination 203 
campaign in the country. 204 
 205 
- ICU cases 206 
  In Figure 6c we observed that from day 50 (around April 2020) till day 150 (around July 2020), the PC 1 value which 207 
is the major PC is stable throughout this period of various confinement measures in France and all PCs tend to show in- 208 
creasing behavior after the confinement measures have been relaxed and in Figure 6d, PC 1 has strictly positive values 209 
while PC 2, PC 3, PC 4 show negative values between February to June 2021. 210 
 211 
- Daily return home 212 
  In Figure 6e PC 1 peaked with a positive value at the beginning of the pandemic in France which validates the percent- 213 
age of recovery as presented in the introduction Section while PC1 in Figure 6f shows a positive decline across the days 214 
considered, with a disparity between the period of vaccination and without vaccination. 215 
 216 
- Daily deceased 217 
On the y-axis of Figures 6g and 6h, we observe that this is the only result with low values for the PCs because the deaths 218 
due to COVID-19 in France remain at a low level, while all PCs show almost the same pattern as that observed in previ- 219 
ously for the other variables. 220 
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         In Table 2, we present the PCs variance proportion and we observe that PC 1 is the most important PC. 221 

Table 2. PCA variance proportion for 4 PCs 222 
              Before vaccination started        After vaccination has started 223 

 PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4 

Hospitalized  0.945 0.039 0.008 0.005 0.938 0.041 0.012 0.004 

ICU 0.960 0.028 0.009 0.001 0.962 0.023 0.008 0.004 

Daily return home 0.925 0.045 0.015 0.007 0.953 0.030 0.009 0.004 

Daily deceased 0.965 0.017 0.013 0.003 0.914 0.055 0.016 0.010 

 224 
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Figure 6. Functional PCs for different functional data before the start of vaccination (19/03/2020 to 29/10/2020) and when 227 
vaccination has started (27/12/2020 to 30/06/2021): (a) hospitalized cases, (b) hospitalized when vaccination has started, (c) ICU 228 
cases, (d) ICU cases when vaccination has started, (e) daily return home, (f) daily return home when vaccination has started, (g) 229 
daily deceased and (h) daily deceased when vaccination has started. 230 
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 232 
Functional principal component scores and clusters 233 
We will now focus more on the departments in which the pandemic is more prevalent and also on PC 1 and PC 2, neglecting the 234 
other PCs. In Figure 7a, the Paris department (code number 75) and Nord department (code number 59) have a positive score in PC 235 
1 and negative score in PC 2 while the Essonne department is positive in both PCs. In Figure 7b, the Paris department and Essonne 236 
department (code number 91) are negative in both PCs while the Nord department is positive in PC 2 with the highest score and 237 
negative in PC1. In Figure 7c, Nord and Essonne departments are negative in PC 2 but positive in PC 1 while the Paris department 238 
is positive in both PCs. The Paris department and Essonne department are negative in both PCs in Figure 7d while the Nord depart- 239 
ment is positive in PC 2 and negative in PC1. In Figure 7e, Paris and Nord departments have positive scores in both PCs while the 240 
Essonne department is negative in PC2 and positive in PC 1. Nord department has the highest positive score in PC 1 for Figure 7f 241 
and negative for PC1, Paris department is positive in PC 2 and negative in PC while Essonne department is negative in both PCs. 242 
The Paris department has the highest positive score in PC 1 and negative in PC 2 in Figure 7g, Nord department is positive in both 243 
PCs while Essonne department is negative in PC 2 but positive in PC 1. Finally, in Figure 7h while Nord department is positive and 244 
highest in PC 2, Paris department is the lowest with negative score in PC 2. Both departments are negative in PC 1. The Essonne 245 
department is positive in PC 2 but negative in PC 1. 246 
  247 
The above description shows that there is a difference between the vaccination period in France and the period when measures like 248 
lockdown, social distancing etc. were only used to control the spread of the virus despite the fact that it has been proven medically 249 
that people can be vaccinated and still be infected. 250 

 

(a)  (b)  
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(c)  

 

(d) 

 

(e)  

 

(f) 

 

(g) (h)  

Figure 7. FPCA scores for different functional data before the start of vaccination (19/03/2020 to 29/10/2020) and when 251 
vaccination has started (27/12/2020 to 30/06/2021). (a) hospitalized cases, (b) hospitalized when vaccination has started, (c) ICU 252 
cases, (d) ICU cases when vaccination has started, (e) daily return home, (f) daily return home when vaccination has started, (g) 253 
daily deceased and (h) daily deceased when vaccination has started. Note that the numbering of points on the diagram are codes 254 
for each French department.  255 
 The diagrams of Figures 7a to 7h show the same shift toward positive values of PC 1. 256 
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 257 
 258 
4. Canonical Correlation Analysis (CCA) 259 
Canonical correlation is an aspect of multivariate statistical analysis method that is used to simultaneously correlate several metric 260 
dependent variables and several metric independent variables measured on or observed with similar experimental units. PCA is 261 
often used for dimensionality reduction of a particular data set through linear combinations of the initial variables which maximizes 262 
the amount of variance explained by these linear combinations while CCA finds linear combinations within a data set with the goal 263 
of maximizing the correlation between these linear combinations [7].  264 
Mathematically, it can also be expressed as two groups of n-dimensional variables X = [𝑥!, 𝑥", 𝑥#, … 𝑥2] and Y = K𝑦!, 𝑦", 𝑦#, … 𝑦3M, 265 

where, 𝑥* =

⎣
⎢
⎢
⎡
𝑥*!
𝑥*"
𝑥*#…
𝑥*(⎦
⎥
⎥
⎤
 , 𝑦* =

⎣
⎢
⎢
⎢
⎡
𝑦'!
𝑦'"
𝑦'#…
𝑦'3⎦
⎥
⎥
⎥
⎤
. 266 

The purpose of canonical correlation analysis is to find coefficient vectors 𝒂𝟏 = (𝑎!!, 𝑎"!, … , 𝑎5!)6  and 𝒃𝟏 = (𝑏!!, 𝑏"!, … , 267 
𝑏3!)6  to maximize the correlation 𝛽 = 𝑐𝑜𝑟𝑟(𝑋𝒂𝟏, 𝑌𝒃𝟏) while 𝑈! = 	𝑋𝒂𝟏  and 𝑉! = 	𝑌𝒃𝟏 , linear combinations of X and Y 268 
components respectively, constitute the first pair of canonical covariates. Then, the second pair of canonical variates can be found 269 
in the same way subject to the constraint that they are uncorrelated with the first pair of variables. By repeating this procedure,  270 
𝑟 = 𝑚𝑖𝑛{𝑝, 𝑞} pairs of canonical variates can be found and we will finally get two matrices A = [𝒂𝟏, 𝒂𝟐, 𝒂𝟑, …𝒂𝒓] and B = 271 
[𝒃𝟏, 𝒃𝟐, 𝒃𝟑, …𝒃𝒓] to transfer X and Y to canonical variates U and V following the below expression:  272 

𝑈(	´		; = 𝑋(	´		5𝐴5	´		;,																																			𝑉(	´		; = 𝑌(	´		5𝐵5	´		;	.                           (7) 273 
If X and Y are both centered, we can concatenate them and calculate the covariance matrix given as: 274 

𝐶 = 𝐶𝑜𝑣([𝑋	𝑌]) = 	 !
(-!

[𝑋	𝑌]6[𝑋	𝑌] = 	 g
𝐶<< 𝐶<=
𝐶=< 𝐶==

h,                                                  (8) 275 

where 𝐶<<  and 𝐶==  are within-set covariance matrices, and 𝐶<= = K𝐶=<M
6

 are between-set covariance matrices. The first 276 
canonical variates 𝒂𝟏 and 𝒃𝟏 maximize the equation below: 277 

𝛽! =	
𝒂𝟏'?+,𝒃𝟏

A𝒂𝟏'?++𝒂𝟏B𝒃𝟏
'?,,𝒃𝟏

,              (9) 278 

The subsequent pairs of canonical variates 𝒂𝒊 and 𝒃𝒊 (i³ 2) maximize: 279 
 280 

𝛽* =	
𝒂𝒊'?+,𝒃𝒊

A𝒂𝒊'?++𝒂𝒊B𝒃𝒊
'?,,𝒃𝒊

,               (10) 281 

subject to the constraint: 282 
𝒂𝒊6𝐶<<𝒂𝒋 = 0		∀	𝑗 < 𝑖, 283 

																		𝒃𝒊
6𝐶==𝒃𝒋 = 0		∀	𝑗 < 𝑖.            (11) 284 

 285 
The analysis was performed in R using a package CCA. We present the visualization results on Figures 8 and 9 and also present the 286 
correlation scores in tabular form (see Table 3). We used the variables as presented in Table 3. X are the variables in the first column 287 
of Table 3 i.e., total number of hospitalization, daily return home, deceased and ICU cases for all departments and Y variables are 288 
the response variables described earlier as presented in the first row of Table 3.   289 
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 291 

 
(g) 

 
(h) 

Figure 8. Helio plot for the correlation of French departments for (a) hospitalized cases, (b) hospitalized when vaccination has 292 
started, (c) ICU cases, (d) ICU cases when vaccination has started, (e) daily return home, (f) daily return home when vaccination 293 
has started, (g) daily deceased and (h) daily deceased when vaccination has started. 294 
 295 

  296 
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Figure 9. Canonical correlation visualization of (a) hospitalized cases, (b) hospitalized when vaccination has started, (c) ICU 300 
cases, (d) ICU cases when vaccination has started, (e) daily return home, (f) daily return home when vaccination has started, (g) 301 
daily deceased and (h) daily deceased when vaccination has started. 302 
 303 
The results presented in Figure 9 show the linear relations in the scatter plot as most of the variables show 95% significance level 304 
and from Table 3 there is high correlations between the variables considered. In Figure 8, the helio plot presents the relationships 305 
between the different departments in France. 306 
 307 
Figure 9a shows hospitalized cases with p-value < 0.05 for all canonical variate, Figure 9b shows hospitalized when vaccination 308 
has started with p-value < 0.05 except the last Canonical variate with p-value= 0.88, Figure 9c shows ICU cases with p-value < 309 
0.05 for all canonical variate, Figure 9d shows ICU cases when vaccination has started with p-value < 0.05 except the last two 310 
Canonical variate with p-value = 0.68 and p-value = 0.87 respectively, Figure 9e shows daily return home with p-value < 0.05 for 311 
all canonical variate, Figure 9f shows daily return home when vaccination has started with p-value < 0.05 except the last two 312 
Canonical variate with p-value = 0.14 and p-value = 0.34 respectively, Figure 9g shows daily deceased with p-value < 0.05 except 313 
the last Canonical variate with p-value= 0.08 and Figure 9h shows daily deceased when vaccination has started with p-value < 314 
0.05 except the last two Canonical variate with p-value = 0.08 and p-value = 0.46 respectively. 315 
 316 
 317 

(a) 

 

(b) 
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(g) (h) 
 320 
Figure 10. Canonical variate redundancy plot for (a) hospitalized cases, (b) hospitalized when vaccination has started, (c) ICU 321 
cases, (d) ICU cases when vaccination has started, (e) daily return home, (f) daily return home when vaccination has started, (g) 322 
daily deceased and (h) daily deceased when vaccination has started. 323 

Table 3. Canonical correlation scores 324 
                   Before vaccination started                              After vaccination has started 325 

 Hospitalized ICU Daily return home Daily deceased Hospitalized ICU Daily return home Daily deceased 

Deaths  0.996 0.926 0.859 - 0.989 0.689 0.745 - 

Recovered 0.970 0.973 0.941 0.961 0.838 0.865 0.846 0.797 

Test 0.950 0.937 0.911 0.816 0.685 0.750 0.776 0.736 

Vaccination - - - - 0.924 0.942 0.939 0.936 

Infected - 0.998 0.992 0.987 - 0.980 0.971 0.970 

Vaccination/1000 - - - - 0.901 0.885 0.917 0.841 

 326 
 327 
5. Clustering method 328 
The clustering of functional data is one method that statisticians are always interested in and in this Section we used the K-means 329 
and Fuzzy K-means techniques whose algorithm is already in Python skfd.ml.clustering and FuzzyCMeans. These methods will 330 
enable us to visualize how various departments are clustered based on our functional data and to give it the best interpretation based 331 
on their geographical location. The basic function used for the K-means clustering is a B-spline and results of our clusters are 332 
presented below. We present the result in the cluster form and also on the map of France with indication of the membership to the 333 
3 clusters (0, 1 or 2) to get a clearer view of the result. We only presented the result for two cases (daily hospitalized and daily 334 
deceased) for the period before vaccination begins in France and two cases (daily return and ICU cases) for the period when 335 
vaccination has started in France. In Figures 11a to 11d we present the clusters (0, 1 or 2) that each French departments belongs to. 336 
The result clustered French departments outside France to the same clusters which of course are not binded with mitigation measures 337 
and rules used in departments within France. Also, departments with close proximity with Paris are in the same cluster which is the 338 
same with departments having the same trend of the pandemic prevalence as presented in Figures 11a to 11d.   339 
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(e) 

 
(f) 

 342 

 
(g) 

 
(h) 

Figure 11. Clustering of all departments in France using K-means ((a) hospitalized, (b) daily deceased, (c) daily return home when 343 
vaccination has started and (d) ICU cases when vaccination has started) and Fuzzy K-means ((e) clusters for hospitalized, (f) clusters 344 
for daily deceased, (g) clusters for daily return home when vaccination has started and (h) clusters for ICU when vaccination has 345 
started).  346 

6. Prediction 347 
Function to scalar linear model 348 
In this Section we used functional linear regression model to predict two of our response variables. Let  349 

Y = < θ, X > 	+	𝜖,              (12) 350 
where 𝜃 is the unknown function of the model, X is a functional covariate belonging to some functional space ℍ which is 351 
endowed with an inner product <. , . >, Y is the response variable and 𝜖 is the random error term. Usually, ℍ is the space 352 
𝐿"([𝑎, 𝑏]) of square integrable functions on some real compact interval [𝑎, 𝑏] and 353 

< 𝑓, 𝑔 >	= 	∫ 𝑓(𝑡)𝑔(𝑡)𝑑𝑡E
F 	,                      (13) 354 

is the corresponding inner product, where the functions f, g ∈ 𝐿"([𝑎, 𝑏]). 355 
Then, we consider C= [0,1], so the equation (12) can be written as:  356 

𝑌	 = 	∫ 𝜃(𝑡)𝑋(𝑡)𝑑𝑡	 + 	𝜖E
F 	,             (14) 357 

where 𝜃 is a square integrable function which is is defined on C and 𝜖 is a random variable such that 𝔼(𝜖) = 0	and 𝔼(𝑋(𝑡)𝜖) = 358 
0. The equation 14 can be rewritten as:  359 

𝑌	 = Ψ(𝑋) + 𝜖	.            (15) 360 
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where Ψ represents the integral. 361 
We treated the functional data (hospitalization) as a curve whose prediction is linked to a scalar (number of deaths and tests) response 362 
variable. The data considered are data before vaccination started in France and we trained 80% of the data and 20% was tested. The 363 
visualization of the results is presented in the Figure 12 and the tabular form of the numerical results can be found in Table 4. The 364 
prediction affirms the fact that the relaxation in the mitigation measures observed during the period we predicted increases the 365 
number of deaths and tests in France which is why the predicted results are a bit higher than the observed values as seen in Figure 366 
12 and Table 4. 367 
 368 

 369 
— predicted  —actual 370 

 (a)  371 
 372 
 373 
 374 
 375 
 376 
 377 
 378 

Days 

Deaths 

(dt 
 

(dt 
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 379 
— predicted  —actual 380 

 (b)  381 
Figure 12. (a) Functional linear regression model prediction for number of deaths in France as response variable before vaccination 382 
begins and (b) Functional linear regression model prediction for number of tests in France as response variable before vaccination 383 
begins. 384 

Table 4. Comparison of the predicted and actual values 385 
              Deaths                                               Tests                                                                                          386 

Day Actual        Predicted        Actual Predicted 

1 49 86 269886 120499 

2 46 136 251301 126261 

3 50 86 248354 178764 

4 153 116 248910 264431 

5 26 82 96177 192823 

6 11 39 30345 75319 

7 53 97 247760 328075 

8 78 136 222942 124271 

9 43 124 206626 118126 

10 52 171 207651 237759 

11 150 175 214336 124387 

12 39 126 86361 229623 

13 27 42 23804 78612 

Days 

T

e

s

t

s 

(dt 
 

14/09/20 
29/10/20 
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14 81 72 223293 268357 

15 85 172 199948 360891 

16 63 168 191917 135525 

17 63 246 196259 199318 

18 130 146 210495 168640 

19 49 167 90639 160399 

20 32 59 25699 249580 

21 69 181 240612 294387 

22 66 185 217585 298154 

23 80 188 214258 150142 

24 76 194 231306 150122 

25 109 219 259073 64680 

26 54 209 114369 301318 

27 46 78 32368 45122 

28 95 198 299121 343681 

29 108 292 276013 274313 

30 104 165 279376 325882 

31 88 275 301465 284502 

32 178 320 322468 262879 

33 89 238 140298 312368 

34 85 169 40313 154521 

35 146 447 355160 390516 

36 262 376 321373 254298 

37 163 410 330328 419636 

38 162 329 357368 445595 

39 298 484 388884 217528 

40 137 206 165764 242920 

41 116 318 47485 223540 

42 257 430 430644 264886 

43 523 320 387569 256737 

44 244 548 379590 484870 

45 235 348 390099 417031 

 387 
 388 
 389 
 390 
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Function-on- function linear model 391 
We consider a functional input and functional output regression model where we treated y(t) as a scalar at each time t, i.e., 𝑥(𝑡) → 392 
𝑦(𝑡). The functional linear model with an intercept is of the form: 393 

𝑦(𝑡) = 𝛽G(𝑡) +	∫ β (𝑠, 𝑡)𝑥(𝑠)𝑑𝑠 + 	𝜖(𝑡).        (16) 394 
We used this method to perform a funtion-on-function linear regression on our set of functional data by using some curves to predict 395 
another set of curves while also estimating the slope 𝛽(𝑠, 𝑡) whose results in considered cases are presented in 3D diagrams of 396 
Figure 13. 	 397 
 398 
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 401 

(e)  (f)  
 402 

(g)  
 

 
(h)  

Figure 13. The 3D visualization of function-on-function regression for (a) hospitalized cases, (b) hospitalized when vaccination 403 
has started, (c) ICU cases, (d) ICU cases when vaccination has started, (e) daily return home, (f) daily return home when 404 
vaccination has started, (g) daily deaceased and (h) daily deaceased when vaccination has started. 405 
 406 
Figure 13a shows hospitalized cases with the slope on the interval −2.799063		 ≤ 𝛽(𝑠, 𝑡) 	≤ 1.980147 , Figure 13b shows 407 
hospitalized when vaccination has started with the slope on the interval −1.501887		 ≤ 𝛽(𝑠, 𝑡) 	≤ 1.076421, Figure 13c shows 408 
ICU cases with the slope on the interval −1.0733846		 ≤ 𝛽(𝑠, 𝑡) 	≤ 0.8411007, Figure13d shows ICU cases when vaccination 409 
has started with the slope on the interval −0.5646148		 ≤ 𝛽(𝑠, 𝑡) 	≤ 0.3661280, Figure 13e shows daily return home with the 410 
slope on the interval 	−0.6755000		 ≤ 𝛽(𝑠, 𝑡) 	≤0.7030529, Figure 13f shows daily return home when vaccination has started with 411 

Days

Da
ys

beta(s,t)

Days
Da
ys

beta(s,t)

Days

Da
ys

beta(s,t)

Days

Da
ys

beta(s,t)

0.7 0.4 

0.4 0.4 

19/03/20 

19/03/20 

29/10/20 

29/10/20 

27/12/20 

27/12/20 30/06/21 

30/06/21 

29/10/20 

29/10/20 30/06/21 

30/06/21 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted September 28, 2021. ; https://doi.org/10.1101/2021.09.25.21264106doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.25.21264106


 28 
 

 

the slope on the interval 	−0.4333295		 ≤ 𝛽(𝑠, 𝑡) 	≤0.4300995, Figure 13g shows daily deaceased with the slope on the interval 412 
	−0.3277864		 ≤ 𝛽(𝑠, 𝑡) 	≤0.4002531 and Figure 13h shows daily deaceased when vaccination has started with the slope on the 413 
interval 	−0.3284866		 ≤ 𝛽(𝑠, 𝑡) 	≤0.3641679. We observed that in all these Figures in this Section, the 3D surfaces yields results 414 
whose shapes look roughly similar to the slope curve, functional predictors curve and functional response curve.  415 
 416 
7. Perspectives and Conclusion 417 
 418 
We studied in this article the best way to summarize temporal information relating to the variations of variables linked to the epi- 419 
demic dynamics of COVID-19, such as hospitalized cases before and after vaccination has started, medical intensive care unit 420 
(MICU) cases before and after vaccination, daily return home cases before and after vaccination, and daily deceased before and 421 
after vaccination. Using the functional principal component analysis, it was shown that the first functional principal component well 422 
summarized the U or W shape observed for the data related to the first three principal components. This discovery confirms the 423 
importance of this first component for the explanation and the qualitative prediction from the observed data. The influence of vac- 424 
cination is visible, because the U or W shape is attenuated after vaccination, and does not come close to the shapes observed for 425 
seasonal influenza [16]. The subsequent functional principal components have poor predictive power, but the second component 426 
clearly shows the reducing influence of vaccination on all epidemic variables. A further, more in-depth study could undoubtedly 427 
show the predictive nature of this second component on the future success of a vaccination policy, by comparing different countries 428 
with different vaccination rates and by quantifying the phase of descent of the curves of the second component (for example by its 429 
slope at the second inflection and by the value of its minimum). 430 
 431 
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Figure 14. Correlation coefficients between all French departments contour plot. (a) hospitalized cases, (b) hospitalized when 433 
vaccination has started, (c) ICU cases, (d) ICU cases when vaccination has started, (e) daily return home, (f) daily return home 434 
when vaccination has started, (g) daily deceased and (h) daily deceased when vaccination has started.  435 
 436 
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 438 
Figure 15. Spectral analysis of daily new cases between 01/05/2021 to 15/07/2021 in France. 439 
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