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ABSTRACT (250 WORDS) 

Aging is believed to occur across multiple domains, one of which is body composition; 

however, attempts to integrate it into biological age (BA) have been limited. Here, we 

consider the sex-dependent role of anthropometry for prediction of 10-year all-cause 

mortality using data from 18,794 NHANES participants to generate and validate a new BA 

metric. Our data-driven approach pointed to sex-specific contributors for BA estimation: 

WHtR, arm and thigh circumferences for men; weight, WHtR, thigh circumference, 

subscapular and triceps skinfolds for women. We used these measurements to generate 

AnthropoAge, which predicted all-cause mortality (AUROC 0.876, 95%CI 0.864-0.887) and 

cause-specific mortality independently of race, sex, and comorbidities; AnthropoAge was a 

better predictor than PhenoAge for cerebrovascular, Alzheimer and COPD mortality. A 

metric of age acceleration was also derived and used to assess sexual dimorphisms linked 

to accelerated aging, where women had an increase in overall body mass plus an important 

subcutaneous to visceral fat redistribution, and men displayed a marked decrease in fat and 

muscle mass. Finally, we showed that consideration of multiple BA metrics may identify 

unique aging trajectories with increased mortality (HR for multidomain acceleration 2.43, 

95%CI 2.25-2.62) and comorbidity profiles. A simplified version of AnthropoAge (S-

AnthropoAge) was generated using only BMI and WHtR, all results were preserved using 

this metric. In conclusion, AnthropoAge is a useful proxy of BA that captures cause-specific 

mortality and sex dimorphisms in body composition, and it could be used for future 

multidomain assessments of aging to better characterize the heterogeneity of this 

phenomenon. 

Keywords: AnthropoAge, PhenoAge, biological age, chronological age, aging process, 

anthropometry, body composition  
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GRAPHICAL ABSTRACT 
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INTRODUCTION 

Aging is a complex phenomenon that researchers have been attempting to characterize for 

decades, and it is well known that chronological age (CA) does not fully capture its 

heterogeneity (Kennedy et al., 2014). Methods developed to quantify aging rates need to 

address the most common physiological changes that occur with aging and capture the 

variability of individual aging trajectories (López-Otín et al., 2013; Sebastiani et al., 2017). 

The concept of biological age (BA) goes beyond CA and refers to the underlying processes 

that modify the susceptibility for development of age-related diseases, disability, and 

functional impairment, ultimately increasing mortality risk (Belsky et al., 2015; Levine, 2013). 

Besides calculations derived from epigenetic and omics-based markers, previous efforts 

have used easily-accessible clinical tools to develop BA estimations, such as Phenotypic 

Age (PhenoAge), which uses CA and nine blood biomarkers (albumin, creatinine, glucose, 

C-reactive protein [CRP], mean corpuscular volume [MCV], red blood cell distribution width 

[RDW], alkaline phosphatase [ALP], white blood cell count [WBC] and lymphocyte 

percentage) for prediction of 10-year mortality risk (Levine et al., 2018; Liu et al., 2018). 

Aging is known to be a systemic process, but it is also believed to take place across domains 

that act in synergy to produce functional changes (Margolick & Ferrucci, 2015; P. ‐L. Kuo et 

al., 2020). In line with this idea, it has been shown that some BA estimations tend to be 

poorly correlated with each other (Li et al., 2020; Earls et al., 2019), while other studies have 

described BA metrics that capture distinct aspects of aging with unique genetic determinants 

(C. Kuo et al., 2021). We expect that a broader assessment of aging may provide a more 

comprehensive overview of its mechanisms, including additional aging domains not 

previously accounted for in BA estimations (Rivero-Segura et al., 2020). Changes in 

anthropometry and body composition have been one of the most extensively documented 

aspects of aging. Overall, aging is characterized by a linear decline in body length, while 
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body mass initially increases in early and middle adulthood but starts decreasing in older 

individuals (Fernihough & McGovern, 2015; P. ‐L. Kuo et al., 2020), a reduction in muscle 

mass that accelerates at older ages also occurs, as well as a gradual increase in fat mass 

that is accompanied by a redistribution of adipose tissue from subcutaneous to visceral 

depots (Wilkinson et al., 2018; Tchernof & Després, 2013); in general, this shift is reflected 

by a shortening and broadening of the upper body in relation to the lower body (Frenzel et 

al., 2020). Interestingly, these changes take place at different rates and magnitudes for men 

and women; to be specific, men appear to have a steeper decline in muscle mass, and the 

redistribution of adipose tissue is more prominent in women (P. ‐L. Kuo et al., 2020; Frenzel 

et al., 2020). These modifications may reflect changes in lifestyle, but they can also be 

attributed to physiological alterations that occur with aging. Particularly, decline in lean mass 

can be explained by impaired responses to anabolic stimuli due to systemic inflammation, 

intramuscular lipid accumulation, stem cell exhaustion, or mitochondrial dysfunction, 

resulting in a poor regenerative potential of skeletal muscle (López-Otín et al., 2013; 

Wilkinson et al., 2018). On the other hand, neuroendocrine disturbances such as decrease 

in sexual hormones (specially in post-menopausal women), insulin resistance and systemic 

inflammation can hinder the capacity of the subcutaneous adipose tissue to store lipids, 

resulting in a disproportionate accumulation of visceral and ectopic fat (Tchernof & Després, 

2013). Thus, changes in body composition can interact with each other, as well as with other 

genetic and environmental factors to produce unique age-related risk phenotypes that likely 

capture alterations in body homeostasis, including frailty, sarcopenic obesity, 

osteosarcopenia and metabolically unhealthy obesity (April-Sanders & Rodriguez, 2021; 

Atkins & Wannamathee, 2020; Fried et al., 2021). With all this, it is unsurprising that body 

composition is often recognized as one of the main domains in which aging takes place (P. 

‐L. Kuo et al., 2020). However, despite the overwhelming evidence supporting the 
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contribution of body composition and anthropometry to predict age and age-related 

outcomes, their proper implementation in the development of BA estimations has been 

limited (Kang et al., 2012; Negasheva et al., 2017). Here, we hypothesize that the integration 

of sex-based differences in multiple anthropometric measurements would result in the 

development of a reliable and easily implementable BA estimation that captures the body 

composition domain of aging. Moreover, we use a combination of PhenoAge and our new 

metric to investigate whether the simultaneous assessment of more than one domain of 

aging would identify unique trajectories with differences in mortality risk and body 

composition patterns. To test these hypotheses, we use anthropometric, laboratory and 

mortality data from two independent cycles of the National Health Examination Survey, with 

NHANES-III (1988-1994) used as the training cohort and NHANES-IV (1999-2008) as the 

validation cohort. 

RESULTS  

Anthropometric measurements included 

For the purposes of our study, we divided anthropometric measurements available in all 

NHANES cycles into five groups that represent the property of body composition that they 

likely capture. 1) Body length: height, upper arm length and upper leg length. 2) Body mass: 

weight and body mass index (BMI). 3) Visceral adiposity: waist circumference and waist-to-

height ratio (WHtR). 4) Subcutaneous adiposity: subscapular and triceps skinfolds. 5) 

Primarily lean mass: mid-upper arm circumference and mid-thigh circumference. (See 

Supplementary Table 1). 

Study population 

We included only participants ≥20 years old with complete anthropometric and mortality 

data, resulting in a total of 18,794 subjects (NHANES-III: 11,774, NHANES-IV: 7,020). A 

flowchart diagram of participant selection for each analysis is shown in Figure 1, and a 
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comprehensive overview of our study population is available in Supplementary Table 2. 

Briefly, among participants from both NHANES-III and NHANES-IV, 9,505 were female 

(50.6%) with a median CA of 45 years (IQR 31-64 years) and a median PhenoAge of 56.8 

years (IQR 42.6-76.2 years), most participants self-identified as non-Hispanic White (8,761, 

46.6%), followed by Mexican American (4,760, 25.3%), and non-Hispanic Black (4,246, 

22.6%). Regarding medical history, 9,268 participants (49.3%) had at least one comorbidity, 

with hypertension (26.6%) being the most frequent. When assessing the distribution of 

anthropometric measurements, we found that men had greater values than women for all 

measurements except for WHtR, subscapular skinfold and triceps skinfold (Figure 2). We 

obtained all-cause mortality follow-up data using information from the National Death Index 

through March 2020, and a total of 7,853 deaths (31.1%) were recorded, with a mean follow-

up of 191 months (IQR 131-288 months). Finally, we compared data from NHANES-III vs 

NHANES-IV and observed no significant differences in CA; however, median PhenoAge 

values were higher in NHANES-III (57.9 years [IQR 43.8-78.1] vs. 55.1 years [IQR 40.6-

72.6], p<0.001). We observed that all anthropometric variables significantly differed between 

individuals from both cohorts except for subscapular skinfold for men and BMI for women. 

Anthropometric measurements are associated with sex-specific mortality patterns 

We first sought to comprehensively characterize the non-linear relationship between 

anthropometric measurements and mortality risk independently of CA, comorbidities and 

race/ethnicity using Gompertz proportional hazards models (see Methods). Body lengths, 

particularly height and leg length, displayed an inverse linear relationship with mortality 

(Figure 2a-c). Weight and BMI had similar U-shaped curves as previously reported in 

numerous studies (Donini et al., 2020; Lavie et al., 2009), where mortality risk was the 

highest at lower values and virtually invariant thereafter, except for a small increase at 

extremely high values (particularly in women) (Figure 2d-e). Visceral adiposity measured 
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by WHtR was associated with a progressive risk increase for both genders (Figure 2f), while 

higher reserves of subcutaneous adiposity were related to a marked decline in mortality risk 

in women, and to a lesser extent in men (Figure 2g-h). Interestingly, mortality showed a 

similar behavior with arm and thigh circumferences as the one seen for BMI (Figure 2i-j); 

we initially established that these variables would capture primarily lean mass, but this has 

been shown to be influenced by age, gender, and total adiposity (Cavedon et al., 2020). 

Thus, lower values of BMI, arm and thigh circumferences confer a dramatic increase in 

mortality likely due to reduced muscle mass, while the slight risk increase observed at 

greater values could be attributed to higher fat-mass. In summary, highest mortality was 

observed for decreased total and lean mass, moreover, in most cases men had a higher 

mortality risk than women except for instances of very low subcutaneous adiposity and 

extreme obesity. 

Estimation of Anthropometric Age 

We then developed our own BA estimator which we termed Anthropometric Age 

(AnthropoAge) by adapting the methods previously described to develop PhenoAge using 

Gompertz models (Levine et al., 2018). As the relationship between anthropometry and 

mortality risk is heavily influenced by sex, we decided to perform variable selection 

separately for men and women. In women, AnthropoAge includes weight, WHtR, thigh 

circumference, subscapular skinfold, and triceps skinfold; while in men it only includes 

WHtR, thigh circumference, and arm circumference (Supplementary Table 3). Our data 

driven approach confirms that anthropometric variables contribute to BA and mortality risk 

in a sex-dependent fashion. Roughly, the best predictors are variables that capture visceral 

adiposity and lean mass for men, and variables that capture visceral and subcutaneous 

adiposity for women. Anthropometry is an unexpensive and easily implementable tool for 

clinical practice (Padilla et al., 2021); however, some of these measurements are not as 
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commonly used. To promote a wider application of the concept of anthropometric aging into 

large-scale epidemiological studies, we sought to develop a simpler version of AnthropoAge 

using exclusively BMI and WHtR given the robust association of changes in body fat 

distribution with aging (Bello-Chavolla et al., 2020; Tchernof & Després, 2013) and the 

relationships that these metrics displayed with mortality risk; the resulting metric was termed 

simplified AnthropoAge (S-AnthropoAge) (Supplementary Table 4). AnthropoAge and S-

AnthropoAge act as a proxy of BA and represent the predicted 10-year mortality risk based 

on an individual’s anthropometry. Notably, we found no significant discrepancies or 

systematic bias between AnthropoAge and S-AnthropoAge, with overall low bias (0.239 

years, 95% CI: 0.208 to 0.270) and a high intra-class correlation coefficient (ICC 0.9940, 

95%CI 0.9937-0.9943, p<0.001) (Supplementary Figure 3). 

Estimation of Anthropometric Age Acceleration 

Next, we calculated Phenotypic Age Acceleration (PhenoAgeAccel) as described elsewhere 

(Liu et al., 2018) and followed this method to obtain a new metric of age acceleration that 

we called Anthropometric Age Acceleration (AnthropoAgeAccel and S-AnthropoAgeAccel 

for the simplified version). These metrics represent the divergence of BA from CA, where 

values >0 indicate a 10-year mortality risk greater than that predicted by CA (accelerated 

aging) and values ≤0 represent an equal or lower risk (physiological aging). All of our newly 

developed metrics (AnthropoAge, S-AnthropoAge, AnthropoAgeAccel and S-

AnthropoAgeAccel) have been deployed within a ShinyApp along with the estimation of 

PhenoAge to facilitate their use for clinical and research purposes, available at 

https://bellolab.shinyapps.io/anthropoage/. 

BA estimates across sex and race/ethnicities 

There were no significant differences between men and women in AnthropoAge (45.3 years 

[IQR: 31.7 – 62.6] vs. 44.4 years [IQR: 31.5 – 62.8], p=0.671) nor AnthropoAgeAccel (-0.18 
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years [IQR: -1.88, 1.57] vs -0.21 years [IQR: -2.31, 2.04], p=0.4406) in the validation cohort. 

In contrast, both PhenoAge (56.3 years [IQR: 41.7 – 74.1] vs. 53.7 years [IQR: 39.4 – 71.2], 

p<0.001) and PhenoAgeAccel (-0.08 years [IQR: -2.92, 3.13] vs -2.01 years [IQR: -5.19, 

1.79], p<0.001) were significantly increased in men (Figure 3). On the other hand, we 

compared age acceleration metrics across race/ethnicities, and observed higher 

PhenoAgeAccel values in non-Hispanic Black participants, while AnthropoAgeAccel and S-

AnthropoAgeAccel were higher among Mexican Americans (Supplementary Figure 4). 

AnthropoAge and S-AnthropoAge predict 10-year all-cause mortality 

We evaluated the performance of AnthropoAge for prediction of all-cause mortality 

compared to PhenoAge, CA and individual anthropometric measurements. AnthropoAge 

had a significantly higher AUROC compared to CA, BMI, WHtR, thigh circumference and 

triceps skinfold. In the training cohort, AnthropoAge had a significantly lower AUROC 

compared to PhenoAge (p<0.001), however, they had a similar performance in the validation 

cohort (p=0.307) (Figure 4a-b). When assessing AUROC stratified by sex and by number 

of comorbidities, we observed that AnthropoAge performed similarly between men and 

women and had a better performance for subjects with 1 comorbidity. PhenoAge was slightly 

superior to AnthropoAge in subjects with ≥2 comorbidities (p=0.041), but there were no 

significant differences in any other subgroup (Figure 4c-d, Supplementary Table 5). 

Cause-specific mortality is heterogeneously predicted by different aging metrics 

We hypothesized that AnthropoAge and PhenoAge would assess different domains of 

aging. For this purpose, we evaluated whether AnthropoAge and PhenoAge were better at 

predicting distinct mortality causes. All metrics were overall strong to predict cause-specific 

mortality after adjustment by sex, ethnicity, and number of chronic comorbidities. However, 

AnthropoAge and S-AnthropoAge had better predictive performance for cerebrovascular, 

Alzheimer’s disease and chronic lower respiratory disease related mortality, while 
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PhenoAge was superior for diabetes and nephritis/nephrosis related mortality. All metrics 

had a roughly comparable performance for cardiovascular, cancer and influenza/pneumonia 

related mortality (Table 1, Supplementary Table 6). Next, we evaluated a possible 

interaction effect between BA and sex on cause-specific mortality. We found that 

AnthropoAge significantly interacted with female sex to predict cardiovascular disease (HR 

for interaction 1.014, 95%CI: 1.007-1.020), diabetes mellitus (HR for interaction 1.028, 

95%CI: 1.014-1.042), stroke (HR for interaction 1.022, 95%CI: 1.010- 1.034), and cancer 

(HR for interaction 0.989, 95%CI: 0.984-0.994) related mortality. These results a) suggest 

that AnthropoAge and PhenoAge could be assessing different aspects of aging and b) 

strengthen the notion that sex dimorphisms link changes in body composition to poor age-

related outcomes. 

Multidomain age acceleration increases mortality risk and comorbidity burden 

We also explored mortality trajectories of subjects with and without accelerated aging using 

Kaplan-Meier curves. Notably, subjects with accelerated aging displayed higher risk of 

overall mortality compared to those with physiological aging; this result was replicated for all 

age acceleration metrics (Figure 5a-c). Furthermore, we built an indicator of multidomain 

age acceleration with the following categories: physiological aging (both AnthropoAgeAccel 

and PhenoAgeAccel ≤0), accelerated AnthropoAge (AnthropoAgeAccel >0 but 

PhenoAgeAccel ≤0), accelerated PhenoAge (AnthropoAgeAccel ≤0 but PhenoAgeAccel >0) 

and multidomain acceleration (both AnthropoAgeAccel and PhenoAgeAccel >0) and found 

that individuals with multidomain acceleration had the highest risk of mortality (Figure 5d). 

Cases with accelerated AnthropoAge (HR 1.46, 95%CI: 1.35-1.59), accelerated PhenoAge 

(HR 1.74, 95%CI: 1.60-1.88) and multidomain acceleration (HR 2.43, 95%CI: 2.25-2.62) had 

higher risk for all-cause mortality compared to individuals with physiological aging after 

adjustment for age, sex, number of comorbidities, and ethnicity. A similar pattern was 
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observed with S-AnthropoAge (HR for multidomain acceleration: 2.22, 95%CI: 2.06-2.40). 

Aging metrics have been previously shown to be associated with comorbidity profiles (C. 

Kuo et al., 2021; Liu et al., 2018; Sayed et al., 2021), on that basis, we investigated whether 

specific comorbidity profiles were captured by anthropometric aging. Subjects with an 

increasing number of comorbidities had higher AnthropoAgeAccel and S-AnthropoAgeAccel 

independently of CA categories (Supplementary Figures 5a, 6a). Similarly, when using the 

multidomain aging indicator, subjects had a higher comorbidity burden in the multidomain 

acceleration category, indicating that simultaneous consideration of these metrics increases 

the likelihood of identifying accumulation of comorbidities (Supplementary Figures 5b, 6b). 

Accelerated aging determines specific body composition and biochemical phenotypes 

Next, we characterized body composition and biochemical profiles in 6,284 cases with 

complete DXA information (Figure 1). We stratified individuals by sex and compared those 

with AnthropoAgeAccel >0 (accelerated anthropometric aging) to those with 

AnthropoAgeAccel ≤0. These variables are presented as spider plots to facilitate 

interpretation and pattern-recognition (Figure 6), the following description summarizes the 

most relevant changes found in subjects with accelerated aging. In women, accelerated 

anthropometric aging was related to a larger overall body mass (comprising fat and lean 

mass), and an important accumulation of visceral adiposity (greater fat mass and fat-to-lean 

ratio in trunk, and greater WHtR) disproportionate to their subcutaneous fat reserves 

(smaller skinfolds, greater trunk-to-appendicular fat mass ratio); notably, these women also 

presented larger amounts of total and appendicular lean mass. Men with accelerated aging 

had markedly lesser amounts of fat and lean mass in all body compartments (the most 

dramatic difference was seen in appendicular lean mass). Although they had a lower 

subcutaneous adiposity, evidence of visceral fat accumulation was negligible; they also 

presented reduced bone mineral density. On the other hand, laboratory data showed that 
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women with accelerated anthropometric aging had a distinctive proinflammatory profile with 

greater CRP, WBC and ALP and lower albumin and lymphocyte percentage; they also had 

higher PhenoAge values. Meanwhile, in men with accelerated anthropometric aging the 

aforementioned changes were not present or were modest (ALP, WBC), however, these 

subjects had a significantly lower creatinine, which could be attributed to less muscle mass. 

Using S-AnthropoAgeAccel led to similar body composition patterns linked to accelerated 

aging, with the only major changes being 1) a more prominent accumulation of abdominal 

fat and reduction of bone mineral density in both sexes, and 2) no increase in lean mass in 

women with accelerated aging (Supplementary Figure 7). Finally, we sought to evaluate 

how multidomain acceleration would impact on body composition and biochemical profiles 

and found that most of the changes described above seem to be greatly augmented when 

both AnthropoAge and PhenoAge are accelerated (Supplementary Figure 8). Our findings 

denote sharp sexual dimorphisms in body composition and inflammatory biomarkers in 

individuals at higher risk of mortality, which requires further evaluation. 

DISCUSSION 

In this work, we developed a novel aging metric based on anthropometric parameters, 

aiming to predict 10-year mortality risk as a proxy of BA. We showed that AnthropoAge and 

S-AnthropoAge predict all-cause mortality independently of sex, CA, ethnicity, and number 

of chronic comorbidities. Notably, AnthropoAge and S-AnthropoAge were better predictors 

for Alzheimer’s, stroke, and chronic lower respiratory related mortality than PhenoAge. We 

also found that subjects with accelerated anthropometric aging have sharp sexual 

dimorphisms in body composition and in cause-specific mortality risk. Finally, we 

demonstrate that PhenoAgeAccel and AnthropoAgeAccel, when considered 

simultaneously, may identify aging phenotypes with unique comorbidity profiles and 
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differential risk of all-cause mortality, which may indicate domain or tissue-specific aging 

rates (Ahadi et al., 2020; C. Kuo et al., 2021). 

Body composition has been previously explored for the evaluation of BA, identifying sex-

based differences of anthropometric parameters that are linearly associated with CA (Kang 

et al., 2012; Negasheva et al., 2017). In contrast to these previous studies, AnthropoAge 

uses a non-linear approach to link body composition patterns to mortality risk, which has 

been speculated to be a better surrogate of BA; this in turn may clarify the relationship of 

body composition with aging and age-related outcomes beyond individual metrics such as 

BMI, given that these alone do not completely capture the complexity of this phenomenon 

(Donini et al., 2020; Lavie et al., 2009). Thus, inclusion of a richer diversity of variables 

paired with refined modeling methods may lead to more precise assessments of BA (Ahadi 

et al., 2020; Elliott et al., 2021; Sayed et al., 2021; Xia et al., 2020). 

In addition to aging mechanisms that may lead to changes in body composition, numerous 

studies have also drawn connections between body features and poor age-related outcomes 

such as disability, age-related diseases, and mortality (Kim & Won, 2022; Santanasto et al., 

2016; Schorr et al., 2018). Evidence suggests that the bidirectional relationship between 

aging and body composition can eventually turn into a vicious cycle that results in an 

aggravation of age acceleration (Salvestrini et al., 2019), and that this phenomenon is 

heavily influenced by sex dimorphisms (Goossens et al., 2021; MAGIC et al., 2010; Pomatto 

et al., 2018; Sampathkumar et al., 2020; Wells, 2007). A relevant addition of our study is 

that we characterized sexual dimorphisms in the context of accelerated anthropometric 

aging. Particularly, we observed that females with accelerated aging display increased body 

mass and a disproportionately larger collection of visceral fat in relation to subcutaneous fat, 

while males present a phenotype of deeply decreased lean and fat mass with a mild 

accumulation of visceral adiposity. Furthermore, anthropometric aging significantly 
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increased cardiovascular, diabetes and stroke-related mortality for women, and cancer-

related mortality for men. A plausible explanation for these findings could be post-

menopausal estrogens loss, which have been shown to elicit beneficial effects on several 

processes such as glucose and lipid metabolism in skeletal muscle, adipose tissue, and liver 

(Goossens et al., 2021), bone homeostasis (Khosla & Monroe, 2018), and cognitive function 

(Gurvich et al., 2018), among others. Peripheral estrogen production in subcutaneous 

adipose tissue can offer some of these beneficial effects (Sampathkumar et al., 2020), as a 

result, a marked shift from subcutaneous to visceral adiposity could precipitate 

cardiometabolic risk (Goossens et al., 2021; Schorr et al., 2018), as seen in women with 

accelerated aging from our study. On the other hand, men have been reported to have less 

muscle mitochondrial content and activity (Rosa-Caldwell & Greene, 2019) and greater 

systemic proinflammatory responses (Márquez et al., 2020), which may increase their 

susceptibility for inflammation-induced muscle loss as seen in several age-related diseases 

including chronic obstructive pulmonary disease and cancer (Machado et al., 2021; 

Montalvo et al., 2018). Thus, AnthropoAge, S-AnthropoAge and their age acceleration 

metrics widen our understanding of disparities in aging rates and longevity attributable to 

sex. Further studies are required to determine the extent to which sex differences in fat 

distribution and muscle functionality may aid in the estimation of BA and its relative 

performance in comparison to blood biomarkers. 

A previous analysis using data from the Baltimore Longitudinal Study of Aging proposed four 

domains to integrate functional, phenotypic, and biological aging rates including: body 

composition, energy regulation, homeostatic mechanisms, and neurodegeneration/ 

neuroplasticity (P. ‐L. Kuo et al., 2020). Similarly, the work by Kuo et al. demonstrated that 

PhenoAge and BioAge evaluate different domains of aging, with genetic data suggesting 

unique aging pathways for each BA indicator (C. Kuo et al., 2021; Levine, 2013). In line with 
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these findings, we observed that PhenoAge and AnthropoAge have distinct abilities to 

predict cause-specific mortality; furthermore, simultaneous consideration of both 

accelerated metrics establishes unique mortality risk trajectories and comorbidity profiles, 

which may better reflect the heterogeneity of aging rates. Consideration of multiple markers 

of aging may increase the likelihood of modeling complex interactions between different 

biological domains and it may prove useful to tailor specific strategies to reduce the burden 

associated with unhealthy aging (Scott et al., 2021). Our newly developed metric could 

represent a step further in this direction by providing a precise and easily implementable 

estimation of the body composition domain of biological aging. 

This study has numerous strengths that support the validity and clinical relevance of our 

findings. By using large population-based data, we were able to capture a diverse 

population, with a wide-range of body phenotypes and varying comorbidity burden. 

Furthermore, we aimed to shed light on the multidimensionality of the aging process by 

contrasting and combining multiple aging metrics. Lastly, AnthropoAge and S-AnthropoAge 

offer unique opportunities to translate the concept of BA onto clinical practice or routine use, 

as they can be implemented with simpler measurements compared to those using omics 

technologies or genomic data (Jansen et al., 2021; Li et al., 2020; Rivero-Segura et al., 

2020). Nonetheless, our results are subject to some limitations. First, despite taking 

races/ethnicities into account to estimate AnthropoAge and S-AnthropoAge, we found 

substantial differences in aging rates across racial and ethnic categories, this implies that 

specific validation studies may be required to adapt these metrics to different populations 

due to the marked racial and ethnic diversity in aging rates and body composition 

(Caleyachetty et al., 2021). Second, we were not able to assess how longitudinal changes 

in AnthropoAge, S-AnthropoAge and their accelerated metrics modify mortality risk; future 

longitudinal studies may allow to translate these metrics onto specific strategies to intervene 
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on aging rates by targeting body composition. Third, despite being readily accessible, the 

reliability of anthropometric parameters depends upon adequate techniques and 

reproducibility for their measurement, which may hinder their adequate usage (Wang et al., 

2000). 

In conclusion, we characterized the CA-independent contribution of body composition to 

mortality risk for men and women and implemented anthropometric measurements into the 

estimation of biological age, resulting in the development of complete and simplified versions 

of AnthropoAge and its age acceleration indicator AnthropoAgeAccel. These BA estimators 

capture mortality risk, comorbidity profiles and identify body composition phenotypes with 

marked sexual dimorphisms linked to accelerated aging, and they can be easily 

implemented into clinical practice to monitor and promote healthier aging. Finally, we 

showed that consideration of multiple BA metrics may address the aging process from 

different perspectives, thus improving the identification of aging trajectories and shedding 

light on its complexity and heterogeneity. 

METHODS 

NHANES 

NHANES is a nationally representative cross-sectional survey designed to assess health 

and nutritional status of US population conducted in waves by the Centers for Disease 

Control and Prevention (CDC). NHANES-III refers to the third wave conducted from 1988 to 

1994, and NHANES-IV (also known as continuous NHANES) corresponds to the ongoing 

wave, which comprises 2-year cycles starting in 1999 (in this study we used data up to 

2008). NHANES underwent National Center for Health Statistics (NCHS) Research Ethics 

Review Board approval, and all participants provided informed consent. Complete methods 

for recruitment, procedures, and study design for NHANES are described in detail elsewhere 

(NHANES - National Health and Nutrition Examination Survey Homepage, 2022). This 
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project was registered and approved by the Ethics and Research Committee at Instituto 

Nacional de Geriatría, project number DI-PI-006/2020. 

Body composition data 

In addition to demographic, socioeconomic and health-related questionnaires, a subset of 

NHANES underwent further biochemical and anthropometric evaluations. We only included 

anthropometric measurements available in both NHANES-III and IV (since calf and hip 

circumference were not available in all cycles, these parameters were not considered for 

this study). Normal distribution was assessed with the Anderson-Darling test and variable 

transformations were performed as specified in Supplementary Figure 1; an overview of 

measuring techniques is provided in Supplementary Table 1. For a subset of NHANES-IV, 

whole-body Dual X-ray Absorptiometry (DXA) assessments were acquired using Hologic 

QDR 4500A fan-beam bone densitometers. 

All-cause and cause-specific mortality data 

We obtained all-cause mortality follow-up data using information from the National Death 

Index for NHANES-III and IV through March 2020. Cause-specific mortality information was 

evaluated for 8 out of 10 underlying causes of death: cardiovascular, chronic lower 

respiratory disease, cerebrovascular disease, malignant neoplasms, Alzheimer’s disease, 

diabetes mellitus, influenza/pneumonia, and nephritis/nephrosis; excluding accidents and 

non-specified causes of death (NCHS Data Linkage - Mortality Data, 2022). Follow-up time 

was estimated from date of initial interview to last follow-up in person-month time. 

Estimation of biological age 

PhenoAge: PhenoAge was previously developed in NHANES-III and validated in NHANES-

IV by Levine et al. (Levine et al., 2018; Liu et al., 2018) using a Gompertz proportional 

hazards model to predict 10-year mortality risk based on CA and the nine blood biomarkers 
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previously mentioned. We obtained PhenoAge values by using the equation described 

elsewhere (Liu et al., 2019). 

AnthropoAge: We used a similar approach to develop AnthropoAge using proportional 

hazards regression models with the parametric Gompertz distribution. First, we fitted two 

Gompertz models to predict all-cause 10-year mortality risk: the first one had only CA as 

predictor, and the second had anthropometric measurements as predictors. We equated the 

risk from both models and solved for age to convert the mortality risk into units of years, thus 

obtaining AnthropoAge (for a detailed description see Supplementary Methods). 

Importantly, we used orthogonal polynomials to model the non-linear relationship between 

anthropometry and mortality risk, adjusted for CA and with ethnicity being included in the 

shape parameter of the Gompertz distribution. To select which anthropometric variables 

would be included and the optimal number of degrees for orthogonal polynomials, we 

systematically tested all possible combinations and chose the best model according to 

minimization of the Bayesian Information Criterion (BIC). We controlled for variable 

correlation (Supplementary Figure 2) and multicollinearity by dropping variables with a 

Variance Inflation Factor (VIF) ≥10. All Gompertz models were carried out with the flexsurv 

R package, which allows modeling of time-to-event data using any parametric distribution; 

in particular, the Gompertz distribution assumes an exponential rise in mortality rate as the 

population ages (Jackson, 2016; Wilson, 1994). To assess average bias and limits of 

agreement between AnthropoAge and S-AnthropoAge we carried out Bland-Altman 

analyses with the blandr R package. 

Estimation of age acceleration 

Following the methods by Liu et al. used to calculate PhenoAgeAccel (Liu et al., 2018), we 

developed a metric to estimate aging acceleration. We regressed AnthropoAge onto CA in 

a least-squares linear regression and extracted residuals from this model, which represent 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 13, 2022. ; https://doi.org/10.1101/2021.09.23.21263703doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.23.21263703
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

 

 

20 

the deviation of anthropometric age from CA; a noteworthy difference from method originally 

described is that AnthropoAgeAccel and S-AnthropoAgeAccel were calculated separately 

for men and women. 

Assessment of AnthropoAge performance 

We validated the utility of AnthropoAge for prediction of 10-year all-cause mortality in 

NHANES-IV using Gompertz proportional hazard regression models and the area under 

receiver operating characteristic curves (AUROC) and compared its performance with 

PhenoAge, CA, and individual anthropometric measurements using non-parametric ROC 

tests with bootstrapping (B=1,000) in the pROC R package (Robin et al., 2011). 

Cause-specific mortality analysis 

We evaluated cause-specific mortality using Fine & Gray semiparametric competitive risk 

regression models with the survival R package (Therneau et al., 2022) to contrast predictive 

performance between AnthropoAge, S-AnthropoAge and PhenoAge in subjects with 

complete mortality data. All models were adjusted by sex, ethnicity, and number of chronic 

comorbidities. Predictive performance was assessed by the C-statistic and BIC differences 

(BIC = BICModel-1 - BICModel-2), where a BIC < -2 indicates that the first model is better, a 

BIC > 2 indicates that the second model is better, and a BIC in between indicates that 

both models are comparable for the prediction of a specific outcome. 

Assessment of mortality trajectories 

We used Kaplan-Meier curves and the log-rank test with the survival R package to compare 

mortality trajectories between subjects with physiological and accelerated aging for all 

metrics (AnthropoAgeAccel, S-AnthropoAgeAccel and PhenoAgeAccel). We also plotted 

Kaplan-Meier curves to compare mortality between categories from the multidomain aging 

indicator. 

Body composition and biochemical phenotypes 
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We evaluated sex-specific differences in body composition and biochemical profile between 

subjects with accelerated and non-accelerated aging using laboratory data, anthropometry 

and DXA measurements from NHANES-IV cycles. Regarding DXA, we divided fat mass and 

lean mass variables by squared height, resulting in standardized fat mass and lean mass 

indexes (FMI and LMI, respectively); this was done for whole-body, trunk and appendicular 

compartments. We also calculated fat-to-lean ratios (fat mass divided by lean mass) in 

whole-body and trunk and a trunk-to-appendicular fat ratio (trunk fat mass divided by 

appendicular fat mass) to assess disproportionate fat accumulations. All variables were Z-

transformed to facilitate visualization using spider plots with the fmsb R package. 

Comparisons between categorical and continuous variables were performed with the chi-

squared and the Mann-Whitney U test, respectively. All statistical analyses were conducted 

using R version 4.1.1 and p-values thresholds are estimated for a two-sided significance 

level of =0.05. 

ACKNOWLEDGMENTS  

This project was registered and approved by the Research Committee at Instituto Nacional 

de Geriatría, project number DI-PI-006/2020. NEAV, CAFM, AMS, ECG, and ESC are 

enrolled at the PECEM Program of the Faculty of Medicine at UNAM. NEAV and ESC 

supported by CONACyT. The graphical abstract and figure 1 were designed using resources 

created by Victoruler, Smashicons, Freepik and Surang from www.flaticon.com 

AUTHOR CONTRIBUTIONS 

Research idea and study design: CAFM, AMS, ECG, NEAV, LMGR, OYBC; data 

acquisition: CAFM, AMS, ECG, OYBC; analysis/interpretation: CAFM, AMS, OYBC; 

statistical analysis: CAFM, AMS, OYBC; manuscript drafting: CAFM, AMS, ECG, LZR, LFC, 

DABG, NEAV, ESC, ACM, AVV, CDPC, DRG, LMGR, OYBC; supervision or mentorship: 

OYBC. Each author contributed important intellectual content during manuscript drafting or 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 13, 2022. ; https://doi.org/10.1101/2021.09.23.21263703doi: medRxiv preprint 

http://www.flaticon.com/
https://doi.org/10.1101/2021.09.23.21263703
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

 

 

22 

revision and accepts accountability for the overall work by ensuring that questions pertaining 

to the accuracy or integrity of any portion of the work are appropriately investigated and 

resolved. 

DATA AVAILABILITY: All code, datasets and materials are available for reproducibility of 

results at https://github.com/oyaxbell/anthropoage/  

CONFLICT OF INTEREST/FINANCIAL DISCLOSURE: Nothing to disclose. 

FUNDING: This study was supported by Instituto Nacional de Geriatría. 

 

REFERENCES 

Ahadi, S., Zhou, W., Schüssler-Fiorenza Rose, S. M., Sailani, M. R., Contrepois, K., Avina, 

M., Ashland, M., Brunet, A., & Snyder, M. (2020). Personal aging markers and 

ageotypes revealed by deep longitudinal profiling. Nature Medicine, 26(1), 83–90. 

https://doi.org/10.1038/s41591-019-0719-5 

April-Sanders, A. K., & Rodriguez, C. J. (2021). Metabolically Healthy Obesity Redefined. 

JAMA Network Open, 4(5), e218860. 

https://doi.org/10.1001/jamanetworkopen.2021.8860 

Atkins, J. L., & Wannamathee, S. G. (2020). Sarcopenic obesity in ageing: Cardiovascular 

outcomes and mortality. British Journal of Nutrition, 124(10), 1102–1113. 

https://doi.org/10.1017/S0007114520002172 

Bello-Chavolla, O. Y., Antonio-Villa, N. E., Vargas-Vázquez, A., Viveros-Ruiz, T. L., Almeda-

Valdes, P., Gomez-Velasco, D., Mehta, R., Elias-López, D., Cruz-Bautista, I., 

Roldán-Valadez, E., Martagón, A. J., & Aguilar-Salinas, C. A. (2020). Metabolic 

Score for Visceral Fat (METS-VF), a novel estimator of intra-abdominal fat content 

and cardio-metabolic health. Clinical Nutrition, 39(5), 1613–1621. 

https://doi.org/10.1016/j.clnu.2019.07.012 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 13, 2022. ; https://doi.org/10.1101/2021.09.23.21263703doi: medRxiv preprint 

https://github.com/oyaxbell/anthropoage/
https://doi.org/10.1101/2021.09.23.21263703
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

 

 

23 

Belsky, D. W., Caspi, A., Houts, R., Cohen, H. J., Corcoran, D. L., Danese, A., Harrington, 

H., Israel, S., Levine, M. E., Schaefer, J. D., Sugden, K., Williams, B., Yashin, A. I., 

Poulton, R., & Moffitt, T. E. (2015). Quantification of biological aging in young adults. 

Proceedings of the National Academy of Sciences, 112(30). 

https://doi.org/10.1073/pnas.1506264112 

Caleyachetty, R., Barber, T. M., Mohammed, N. I., Cappuccio, F. P., Hardy, R., Mathur, R., 

Banerjee, A., & Gill, P. (2021). Ethnicity-specific BMI cutoffs for obesity based on 

type 2 diabetes risk in England: A population-based cohort study. The Lancet 

Diabetes & Endocrinology, 9(7), 419–426. https://doi.org/10.1016/S2213-

8587(21)00088-7 

Cavedon, V., Milanese, C., & Zancanaro, C. (2020). Are body circumferences able to predict 

strength, muscle mass and bone characteristics in obesity? A preliminary study in 

women. International Journal of Medical Sciences, 17(7), 881–891. 

https://doi.org/10.7150/ijms.41713 

Donini, L. M., Pinto, A., Giusti, A. M., Lenzi, A., & Poggiogalle, E. (2020). Obesity or BMI 

Paradox? Beneath the Tip of the Iceberg. Frontiers in Nutrition, 7, 53. 

https://doi.org/10.3389/fnut.2020.00053 

Earls, J. C., Rappaport, N., Heath, L., Wilmanski, T., Magis, A. T., Schork, N. J., Omenn, G. 

S., Lovejoy, J., Hood, L., & Price, N. D. (2019). Multi-Omic Biological Age Estimation 

and Its Correlation With Wellness and Disease Phenotypes: A Longitudinal Study of 

3,558 Individuals. The Journals of Gerontology: Series A, 74(Supplement_1), S52–

S60. https://doi.org/10.1093/gerona/glz220 

Elliott, M. L., Caspi, A., Houts, R. M., Ambler, A., Broadbent, J. M., Hancox, R. J., Harrington, 

H., Hogan, S., Keenan, R., Knodt, A., Leung, J. H., Melzer, T. R., Purdy, S. C., 

Ramrakha, S., Richmond-Rakerd, L. S., Righarts, A., Sugden, K., Thomson, W. M., 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 13, 2022. ; https://doi.org/10.1101/2021.09.23.21263703doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.23.21263703
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

 

 

24 

Thorne, P. R., … Moffitt, T. E. (2021). Disparities in the pace of biological aging 

among midlife adults of the same chronological age have implications for future frailty 

risk and policy. Nature Aging, 1(3), 295–308. https://doi.org/10.1038/s43587-021-

00044-4 

Fernihough, A., & McGovern, M. E. (2015). Physical stature decline and the health status of 

the elderly population in England. Economics & Human Biology, 16, 30–44. 

https://doi.org/10.1016/j.ehb.2013.12.010 

Frenzel, A., Binder, H., Walter, N., Wirkner, K., Loeffler, M., & Loeffler-Wirth, H. (2020). The 

aging human body shape. Npj Aging and Mechanisms of Disease, 6(1), 5. 

https://doi.org/10.1038/s41514-020-0043-9 

Fried, L. P., Cohen, A. A., Xue, Q.-L., Walston, J., Bandeen-Roche, K., & Varadhan, R. 

(2021). The physical frailty syndrome as a transition from homeostatic symphony to 

cacophony. Nature Aging, 1(1), 36–46. https://doi.org/10.1038/s43587-020-00017-z 

Goossens, G. H., Jocken, J. W. E., & Blaak, E. E. (2021). Sexual dimorphism in 

cardiometabolic health: The role of adipose tissue, muscle and liver. Nature Reviews 

Endocrinology, 17(1), 47–66. https://doi.org/10.1038/s41574-020-00431-8 

Gurvich, C., Hoy, K., Thomas, N., & Kulkarni, J. (2018). Sex Differences and the Influence 

of Sex Hormones on Cognition through Adulthood and the Aging Process. Brain 

Sciences, 8(9), 163. https://doi.org/10.3390/brainsci8090163 

Jackson, C. (2016). flexsurv: A Platform for Parametric Survival Modeling in R. Journal of 

Statistical Software, 70(8). https://doi.org/10.18637/jss.v070.i08 

Jansen, R., Han, L. K., Verhoeven, J. E., Aberg, K. A., van den Oord, E. C., Milaneschi, Y., 

& Penninx, B. W. (2021). An integrative study of five biological clocks in somatic and 

mental health. ELife, 10, e59479. https://doi.org/10.7554/eLife.59479 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 13, 2022. ; https://doi.org/10.1101/2021.09.23.21263703doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.23.21263703
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

 

 

25 

Kang, Y. G., Chul-Young Bae, Young-Sung Suh, Jee Hye Han, Sung-Soo Kim, & Kyung 

Won Shim. (2012). A model for estimating body shape biological age based on 

clinical parameters associated with body composition. Clinical Interventions in Aging, 

11. https://doi.org/10.2147/CIA.S38220 

Kennedy, B. K., Berger, S. L., Brunet, A., Campisi, J., Cuervo, A. M., Epel, E. S., Franceschi, 

C., Lithgow, G. J., Morimoto, R. I., Pessin, J. E., Rando, T. A., Richardson, A., 

Schadt, E. E., Wyss-Coray, T., & Sierra, F. (2014). Geroscience: Linking Aging to 

Chronic Disease. Cell, 159(4), 709–713. https://doi.org/10.1016/j.cell.2014.10.039 

Khosla, S., & Monroe, D. G. (2018). Regulation of Bone Metabolism by Sex Steroids. Cold 

Spring Harbor Perspectives in Medicine, 8(1), a031211. 

https://doi.org/10.1101/cshperspect.a031211 

Kim, S., & Won, C. W. (2022). Sex-different changes of body composition in aging: A 

systemic review. Archives of Gerontology and Geriatrics, 102, 104711. 

https://doi.org/10.1016/j.archger.2022.104711 

Kuo, C., Pilling, L. C., Liu, Z., Atkins, J. L., & Levine, M. E. (2021). Genetic associations for 

two biological age measures point to distinct aging phenotypes. Aging Cell, 20(6). 

https://doi.org/10.1111/acel.13376 

Kuo, P. ‐L., Schrack, J. A., Shardell, M. D., Levine, M., Moore, A. Z., An, Y., Elango, P., 

Karikkineth, A., Tanaka, T., Cabo, R., Zukley, L. M., AlGhatrif, M., Chia, C. W., 

Simonsick, E. M., Egan, J. M., Resnick, S. M., & Ferrucci, L. (2020). A roadmap to 

build a phenotypic metric of ageing: Insights from the Baltimore Longitudinal Study 

of Aging. Journal of Internal Medicine, 287(4), 373–394. 

https://doi.org/10.1111/joim.13024 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 13, 2022. ; https://doi.org/10.1101/2021.09.23.21263703doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.23.21263703
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

 

 

26 

Lavie, C. J., Milani, R. V., & Ventura, H. O. (2009). Obesity and Cardiovascular Disease. 

Journal of the American College of Cardiology, 53(21), 1925–1932. 

https://doi.org/10.1016/j.jacc.2008.12.068 

Levine, M. E. (2013). Modeling the Rate of Senescence: Can Estimated Biological Age 

Predict Mortality More Accurately Than Chronological Age? The Journals of 

Gerontology Series A: Biological Sciences and Medical Sciences, 68(6), 667–674. 

https://doi.org/10.1093/gerona/gls233 

Levine, M. E., Lu, A. T., Quach, A., Chen, B. H., Assimes, T. L., Bandinelli, S., Hou, L., 

Baccarelli, A. A., Stewart, J. D., Li, Y., Whitsel, E. A., Wilson, J. G., Reiner, A. P., 

Aviv, A., Lohman, K., Liu, Y., Ferrucci, L., & Horvath, S. (2018). An epigenetic 

biomarker of aging for lifespan and healthspan. Aging, 10(4), 573–591. 

https://doi.org/10.18632/aging.101414 

Li, X., Ploner, A., Wang, Y., Magnusson, P. K., Reynolds, C., Finkel, D., Pedersen, N. L., 

Jylhävä, J., & Hägg, S. (2020). Longitudinal trajectories, correlations and mortality 

associations of nine biological ages across 20-years follow-up. ELife, 9, e51507. 

https://doi.org/10.7554/eLife.51507 

Liu, Z., Kuo, P.-L., Horvath, S., Crimmins, E., Ferrucci, L., & Levine, M. (2018). A new aging 

measure captures morbidity and mortality risk across diverse subpopulations from 

NHANES IV: A cohort study. PLOS Medicine, 15(12), e1002718. 

https://doi.org/10.1371/journal.pmed.1002718 

Liu, Z., Kuo, P.-L., Horvath, S., Crimmins, E., Ferrucci, L., & Levine, M. (2019). Correction: 

A new aging measure captures morbidity and mortality risk across diverse 

subpopulations from NHANES IV: A cohort study. PLOS Medicine, 16(2), e1002760. 

https://doi.org/10.1371/journal.pmed.1002760 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 13, 2022. ; https://doi.org/10.1101/2021.09.23.21263703doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.23.21263703
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

 

 

27 

López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The 

Hallmarks of Aging. Cell, 153(6), 1194–1217. 

https://doi.org/10.1016/j.cell.2013.05.039 

Machado, F. V. C., Spruit, M. A., Coenjaerds, M., Pitta, F., Reynaert, N. L., & Franssen, F. 

M. E. (2021). Longitudinal changes in total and regional body composition in patients 

with chronic obstructive pulmonary disease. Respirology, 26(9), 851–860. 

https://doi.org/10.1111/resp.14100 

MAGIC, Heid, I. M., Jackson, A. U., Randall, J. C., Winkler, T. W., Qi, L., Steinthorsdottir, 

V., Thorleifsson, G., Zillikens, M. C., Speliotes, E. K., Mägi, R., Workalemahu, T., 

White, C. C., Bouatia-Naji, N., Harris, T. B., Berndt, S. I., Ingelsson, E., Willer, C. J., 

Weedon, M. N., … Lindgren, C. M. (2010). Meta-analysis identifies 13 new loci 

associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat 

distribution. Nature Genetics, 42(11), 949–960. https://doi.org/10.1038/ng.685 

Margolick, J. B., & Ferrucci, L. (2015). Accelerating aging research: How can we measure 

the rate of biologic aging? Experimental Gerontology, 64, 78–80. 

https://doi.org/10.1016/j.exger.2015.02.009 

Márquez, E. J., Chung, C., Marches, R., Rossi, R. J., Nehar-Belaid, D., Eroglu, A., Mellert, 

D. J., Kuchel, G. A., Banchereau, J., & Ucar, D. (2020). Sexual-dimorphism in human 

immune system aging. Nature Communications, 11(1), 751. 

https://doi.org/10.1038/s41467-020-14396-9 

Montalvo, R. N., Counts, B. R., & Carson, J. A. (2018). Understanding sex differences in the 

regulation of cancer-induced muscle wasting. Current Opinion in Supportive & 

Palliative Care, 12(4), 394–403. https://doi.org/10.1097/SPC.0000000000000380 

NCHS Data Linkage—Mortality Data. (2022, July 28). https://www.cdc.gov/nchs/data-

linkage/mortality.htm 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 13, 2022. ; https://doi.org/10.1101/2021.09.23.21263703doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.23.21263703
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

 

 

28 

Negasheva, M. A., Zimina, S. N., Lapshina, N. E., & Sineva, I. M. (2017). Express Estimation 

of the Biological Age by the Parameters of Body Composition in Men and Women 

over 50 Years. Bulletin of Experimental Biology and Medicine, 163(3), 405–408. 

https://doi.org/10.1007/s10517-017-3814-y 

NHANES - National Health and Nutrition Examination Survey Homepage. (2022, September 

29). https://www.cdc.gov/nchs/nhanes/index.htm 

Padilla, C. J., Ferreyro, F. A., & Arnold, W. D. (2021). Anthropometry as a readily accessible 

health assessment of older adults. Experimental Gerontology, 153, 111464. 

https://doi.org/10.1016/j.exger.2021.111464 

Pomatto, L. C. D., Tower, J., & Davies, K. J. A. (2018). Sexual Dimorphism and Aging 

Differentially Regulate Adaptive Homeostasis. The Journals of Gerontology: Series 

A, 73(2), 141–149. https://doi.org/10.1093/gerona/glx083 

Rivero-Segura, N. A., Bello-Chavolla, O. Y., Barrera-Vázquez, O. S., Gutierrez-Robledo, L. 

M., & Gomez-Verjan, J. C. (2020). Promising biomarkers of human aging: In search 

of a multi-omics panel to understand the aging process from a multidimensional 

perspective. Ageing Research Reviews, 64, 101164. 

https://doi.org/10.1016/j.arr.2020.101164 

Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J.-C., & Müller, M. (2011). 

pROC: An open-source package for R and S+ to analyze and compare ROC curves. 

BMC Bioinformatics, 12(1), 77. https://doi.org/10.1186/1471-2105-12-77 

Rosa-Caldwell, M. E., & Greene, N. P. (2019). Muscle metabolism and atrophy: Let’s talk 

about sex. Biology of Sex Differences, 10(1), 43. https://doi.org/10.1186/s13293-

019-0257-3 

Salvestrini, V., Sell, C., & Lorenzini, A. (2019). Obesity May Accelerate the Aging Process. 

Frontiers in Endocrinology, 10, 266. https://doi.org/10.3389/fendo.2019.00266 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 13, 2022. ; https://doi.org/10.1101/2021.09.23.21263703doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.23.21263703
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

 

 

29 

Sampathkumar, N. K., Bravo, J. I., Chen, Y., Danthi, P. S., Donahue, E. K., Lai, R. W., Lu, 

R., Randall, L. T., Vinson, N., & Benayoun, B. A. (2020). Widespread sex dimorphism 

in aging and age-related diseases. Human Genetics, 139(3), 333–356. 

https://doi.org/10.1007/s00439-019-02082-w 

Santanasto, A. J., Goodpaster, B. H., Kritchevsky, S. B., Miljkovic, I., Satterfield, S., 

Schwartz, A. V., Cummings, S. R., Boudreau, R. M., Harris, T. B., & Newman, A. B. 

(2016). Body Composition Remodeling and Mortality: The Health Aging and Body 

Composition Study. The Journals of Gerontology Series A: Biological Sciences and 

Medical Sciences, glw163. https://doi.org/10.1093/gerona/glw163 

Sayed, N., Huang, Y., Nguyen, K., Krejciova-Rajaniemi, Z., Grawe, A. P., Gao, T., Tibshirani, 

R., Hastie, T., Alpert, A., Cui, L., Kuznetsova, T., Rosenberg-Hasson, Y., Ostan, R., 

Monti, D., Lehallier, B., Shen-Orr, S. S., Maecker, H. T., Dekker, C. L., Wyss-Coray, 

T., … Furman, D. (2021). An inflammatory aging clock (iAge) based on deep learning 

tracks multimorbidity, immunosenescence, frailty and cardiovascular aging. Nature 

Aging, 1(7), 598–615. https://doi.org/10.1038/s43587-021-00082-y 

Schorr, M., Dichtel, L. E., Gerweck, A. V., Valera, R. D., Torriani, M., Miller, K. K., & Bredella, 

M. A. (2018). Sex differences in body composition and association with 

cardiometabolic risk. Biology of Sex Differences, 9(1), 28. 

https://doi.org/10.1186/s13293-018-0189-3 

Scott, A. J., Ellison, M., & Sinclair, D. A. (2021). The economic value of targeting aging. 

Nature Aging, 1(7), 616–623. https://doi.org/10.1038/s43587-021-00080-0 

Sebastiani, P., Thyagarajan, B., Sun, F., Schupf, N., Newman, A. B., Montano, M., & Perls, 

T. T. (2017). Biomarker signatures of aging. Aging Cell, 16(2), 329–338. 

https://doi.org/10.1111/acel.12557 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 13, 2022. ; https://doi.org/10.1101/2021.09.23.21263703doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.23.21263703
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

 

 

30 

Tchernof, A., & Després, J.-P. (2013). Pathophysiology of Human Visceral Obesity: An 

Update. Physiological Reviews, 93(1), 359–404. 

https://doi.org/10.1152/physrev.00033.2011 

Therneau, T. M., until 2009), T. L. (original S.->R port and R. maintainer, Elizabeth, A., & 

Cynthia, C. (2022). survival: Survival Analysis (3.4-0). https://CRAN.R-

project.org/package=survival 

Wang, J., Thornton, J. C., Kolesnik, S., & Pierson, R. N. (2000). Anthropometry in body 

composition. An overview. Annals of the New York Academy of Sciences, 904, 317–

326. https://doi.org/10.1111/j.1749-6632.2000.tb06474.x 

Wells, J. C. K. (2007). Sexual dimorphism of body composition. Best Practice & Research 

Clinical Endocrinology & Metabolism, 21(3), 415–430. 

https://doi.org/10.1016/j.beem.2007.04.007 

Wilkinson, D. J., Piasecki, M., & Atherton, P. J. (2018). The age-related loss of skeletal 

muscle mass and function: Measurement and physiology of muscle fibre atrophy and 

muscle fibre loss in humans. Ageing Research Reviews, 47, 123–132. 

https://doi.org/10.1016/j.arr.2018.07.005 

Wilson, D. L. (1994). The analysis of survival (mortality) data: Fitting Gompertz, Weibull, and 

logistic functions. Mechanisms of Ageing and Development, 74(1–2), 15–33. 

https://doi.org/10.1016/0047-6374(94)90095-7 

Xia, X., Chen, X., Wu, G., Li, F., Wang, Y., Chen, Y., Chen, M., Wang, X., Chen, W., Xian, 

B., Chen, W., Cao, Y., Xu, C., Gong, W., Chen, G., Cai, D., Wei, W., Yan, Y., Liu, K., 

… Han, J.-D. J. (2020). Three-dimensional facial-image analysis to predict 

heterogeneity of the human ageing rate and the impact of lifestyle. Nature 

Metabolism, 2(9), 946–957. https://doi.org/10.1038/s42255-020-00270-x 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 13, 2022. ; https://doi.org/10.1101/2021.09.23.21263703doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.23.21263703
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

TABLES 

TABLE 1. Performance of Fine & Gray semiparametric competitive risk regression models to evaluate cause-specific mortality using 

AnthropoAge, S-AnthropoAge and PhenoAge. We show the C-statistic (95% confidence interval) and the difference in the Bayesian 

Information Criterion (BIC = BICModel-1 - BICModel-2) to contrast model predictions. BIC < -2 indicates that model 1 is better. BIC > 2 

indicates that model 2 is better. All models are adjusted for age, sex, race/ethnicity, and number of comorbidities. Hazard ratios with 

95% confidence intervals and standard errors for all models are available within supplementary material. 
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Cause-specific 

mortality 

Events 

(n) 

AnthropoAge  

 C-statistic 

S-

AnthropoAge  

 C-statistic 

PhenoAge  

 C-statistic 

BIC 

(AnthropoAge 

vs.  

 S-AnthropoAge) 

BIC 

(AnthropoAge 

vs.  

 PhenoAge) 

BIC 

(S-AnthropoAge 

vs.  

 PhenoAge) 

Cardiovascular 1197 
0.847 

(0.839-0.855) 

0.845 

(0.837-0.854) 

0.851 

(0.842-0.859) 
-0.490 2.976 3.466 

Diabetes 

Mellitus 
167 

0.845 

(0.819-0.87) 

0.843 

(0.818-0.869) 

0.876 

(0.854-0.899) 
0.580 77.499 76.918 

Stroke 343 
0.828 

(0.808-0.847) 

0.827 

(0.808-0.847) 

0.821 

(0.801-0.841) 
1.124 -51.242 -52.365 

Cancer 1190 
0.764 

(0.752-0.775) 

0.763 

(0.751-0.775) 

0.766 

(0.754-0.778) 
1.571 -0.704 -2.275 

Influenza or 

Pneumonia 
151 

0.859 

(0.833-0.885) 

0.857 

(0.83-0.883) 

0.855 

(0.827-0.883) 
-4.712 -6.196 -1.485 

Nephritis or 

Nephrosis 
76 

0.842 

(0.805-0.878) 

0.842 

(0.805-0.879) 

0.871 

(0.838-0.904) 
0.561 26.787 26.225 

Alzheimer 144 
0.878 

(0.862-0.895) 

0.878 

(0.862-0.895) 

0.859 

(0.84-0.877) 
2.270 -50.546 -52.815 

Chronic lower 

respiratory 
241 

0.843 

(0.826-0.861) 

0.844 

(0.826-0.862) 

0.835 

(0.816-0.853) 
3.749 -34.446 -38.195 
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FIGURES 

FIGURE 1. Flowchart diagram of participant selection from the National Health and Nutrition Examination Survey (NHANES) along with 

the key points from each analysis in our study. A brief conceptual framework is also provided at the top, illustrating how changes in 

body composition can modify aging rates, ultimately leading to accelerated aging and poor age-related outcomes, and this relationship 

is strongly influenced by sex and by changes in other domains of aging.  

 

FIGURE 2. Anthropometric variables predict 10-year all-cause mortality in a non-linear and sex-dependent fashion. Variables are 

grouped according to the property of body composition that they capture: body length (a-c), body mass (d-e), visceral adiposity (f), 

subcutaneous adiposity (g-h), primarily lean mass (i-j). We used Gompertz models stratified by sex and adjusted by CA and number of 

comorbidities, with race/ethnicity included in the shape parameter. 

 

FIGURE 3. AnthropoAge and PhenoAge scatter plots show that these BA metrics have different dispersion patterns with CA in both 

the training (a-b) and validation cohorts (c-d). The horizontal distances between each point and regression lines represent divergence 

from CA and were used to estimate age acceleration metrics, which are presented as density plots stratified by sex (e-h). Only 

AnthropoAgeAccel was calculated separately for each sex, as reflected by a more homogeneous distribution between men and women. 

 

FIGURE 4. Areas under the receiving operating characteristic curves (AUROC) for prediction of 10-year all-cause mortality demonstrate 

that AnthropoAge and S-AnthropoAge (not shown) have a comparable performance to PhenoAge, and that it outperforms CA and 
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individual anthropometric measurements (WHtR, thigh circumference, triceps skinfold and BMI) (a-b). This prediction is equally good 

between men and women (c), but superior in subjects with 1 comorbidity (b). There were no significant differences between the three 

BA metrics in any category except for subjects with ≥2 comorbidities. 

 

FIGURE 5. AnthropoAgeAccel (a), S-AnthropoAgeAccel (b) and PhenoAgeAccel (c) identify subjects with impaired survival linked to 

accelerated aging (values >0) visualized with Kaplan-Meier curves. Simultaneous consideration of AnthropoAgeAccel and 

PhenoAgeAccel shows that acceleration in multiple domains of aging produces a higher mortality risk (d). 

 

FIGURE 6. Spider plots stratified by sex show that subjects with accelerated AnthropoAge (AnthropoAgeAccel >0) display unique 

patterns of anthropometry, DXA-derived body composition and biochemical profiles (PhenoAge components). DXA variables were 

divided by squared height to obtain whole-body, trunk and appendicular fat mass and lean mass index (FMI and LMI, respectively), we 

also calculated fat-to-lean mass ratios and trunk-to-appendicular fat ratio. Variables were scaled and medians were compared using 

Mann-Whitney’s U test (p-value <0.05: *, <0.01: **, <0.001: ***). Spider plots assessing S-AnthropoAgeAccel and multidomain aging 

are shown in supplementary figures 7 and 8. 
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