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Highlights

• El Niño Southern Oscillation is a crucial driver to dengue outbreaks in Malaysia.

• A few different climate oscillations affect the dengue transmission pattern.

• Bayesian spatial dynamic model helps the development of early warning system.

• The model components can be added or modified under the hierarchical Bayes frame-

work.

Abstract

The disease dengue is associated with both mesoscale and synoptic scale meteorology.

Previous studies for south-east Asia have found very limited association between synoptic

variables and the reported dengue cases. It will immensely beneficial to establish more clear

association with rate of cases and the most relevant meteorological variables in order to

institute an early warning system.

A rigorous Bayesian modelling framework is provided to identify the most important co-

variates and their lagged effects for developing an early warning system in the Central Region

of Malaysia.

Along with other mesoscale environmental measurements, we also examine multiple syn-

optic scale Niño indices which are related to the phenomenon of El Niño Southern Oscillation

and an unobserved variable derived from reanalysis data. A probabilistic early warning sys-

tem is built based on a Bayesian spatio-temporal hierarchical model.

Our study finds a 46.87% of increase in dengue cases due to one degree increase in the

central equatorial Pacific sea surface temperature with a lag time of six weeks. We discover

the existence of a mild association between the rate of cases and a distant lagged cooling

effect related to a phenomenon called El Niño Modoki. These associations are assessed by

using a Bayesian spatio-temporal model in terms of estimated out-of-sample predictive ac-

curacy.
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With the novel early warning system presented, our results show that the synoptic mete-

orological drivers can enhance short-term detection of dengue outbreaks and these can also

potentially be used to provide longer-term forecasts.

Practical Implications:

In 2019, it was reported that there is a severe dengue upsurge in Malaysia. Reported cases

rose over 60% from 80,615 in the 2018 to 130,101 with 182 deaths (Rahim et al., 2021).

The disease has been described as a silent killer that the infection rate once surpassed that

of COVID-19. There is a need of an early warning system to alert the authority in order

to identify relevant risk factors and the forthcoming outbreak hot-spots. The Bayesian hi-

erarchical spatial dynamic model componentises different aspects of dengue dynamics into

one unified model. Its flexibility allows us to regularly review the disease dynamic under

changing environment and transmission mechanism such as the implementation of the Move-

ment Control Orders (MCO) during COVID-19. Practically, this prototype model should

be run at least once a week to generate forecasts which is fed with the dengue cases data

from weekly press release and meteorological information from publicly available sources.

By assessing the probability estimates, the alert has its intrinsic meaning and the sensitivity

can be adjusted effortlessly.

Key words: Bayesian spatio-temporal model, BYM2, dengue, early warning system, ENSO,

El Niño Modoki

Word count: 5757 words

1 Introduction

Dengue is a very harmful mosquito-borne viral infection worldwide. Gubler (1998) de-

scribes that the dengue virus (DENV) is transmitted by the bite of female Aedes aegypti

mosquitoes. To a lesser extent, Aedes albopictus is also a vector of indoor transmission

(Noor et al., 2018). Four serotypes of virus DENV-1, DENV-2, DENV-3 and DENV-4 fol-

lowing the human cycle are genetically similar (Mustafa et al., 2015). This viral infectious

disease which can lead to a wide spectrum of clinical manifestations such as acute onset high

fever, muscle and joint pain, myalgia, cutaneous rash, hemorrhagic episodes and circulatory

shock (Hasan et al., 2016). Its burden to the pubic health system is enormous. Bhatt et al.

(2013) estimate there are 390 million total annual infections throughout the world. In Asia,

dengue fever has been reported earliest by Skae (1902), followed by dengue hemorrhagic

fever and dengue shock syndrome epidemics in the twentieth century (Henchal and Putnak,

1990).
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Climate is a crucial determinant of dengue disease transmission by affecting its vector

dynamics (Morin et al., 2013). Local and global climate not only influence the spatial

distribution of infections (Johansson et al., 2009) but also the interanuual variability (Cazelles

et al., 2005). The climatic impact to a dengue outbreak is also known to be cumulative and

delayed (Lowe et al., 2018). Simple models cannot account for these complex spatial dynamic

dependencies.

The Selangor state together with the two adjacent federal territories namely Kuala Lumpur

and Putrajaya are collectively called the Central Region. It contributes most to the national

dengue hospitalisation in Malaysia. In the region, the dengue infection rates have increased

significantly in the past decade as reported by Abd Majid et al. (2021) and Salim et al.

(2021). Hii et al. (2016) emphasise that dengue is a climate-sensitive infectious disease. The

rapid change in climate drivers increases the risk of dengue outbreaks in the past decade.

A climate-based early warning system (EWS) has the potential to enhance surveillance and

control of the disease.

A significant relationship between dengue hospitalisations and covariates such as precipi-

tation, temperature, number of monthly rain days and El Niño-Southern Oscillation (ENSO)

phenomenon is found for 12 states of West Malaysia (Che Him et al., 2018b) . A similar study

by Che Him et al. (2018a) identifies two distinct spatial clusters via two generalised additive

models (GAM) for nine districts of the state of Selangor. Ahmad et al. (2018) conduct a

large scale study for 81 weeks including actively collected ovitrap and rain gauge data. A

variant of linear regression model is used to identify the entomological, epidemiological and

environmental drivers that contributed to the dengue outbreak of two locations in Selangor

state. Salim et al. (2021) develop a supporting vector machine model that incorporates en-

vironmental variables including temperature, wind speed, humidity, and rainfall to predict

dengue outbreaks.

Bayesian spatio-temporal hierarchical modelling framework for areal data (Lowe et al.,

2011, 2013, 2014; Stewart-Ibarra and Lowe, 2013) is widely used in dengue disease modelling

and prediction. Using spatio-temporal model as a toolkit, it can have a better capacity to

handle explicit contribution from covariates information and latent spatio-temporal depen-

dency. One popular choice of structured prior to capture spatially spill-over effect is a condi-

tional intrinsic Gaussian autoregressive prior (CAR; Besag et al., 1991). The spatio-temporal

autocorrelation, as a source of information that closer areal units and temporally close time

periods tend to have more similar values (Lee et al., 2018). With the fact that spatial and

temporal components are intrinsically interacted, a variety of CAR-based spatio-temporal

model is developed to tackle many real-world applications as investigated by Bernardinelli

et al. (1995), Knorr-Held (2000), Napier et al. (2016), Rushworth et al. (2014, 2017) and

Sahu (2021).
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The remainder of this paper is organised as follows. Section 2 describes the data used in

this study. Section 3 illustrates the components considered in the Bayesian spatio-temporal

models. The model implementation, validation, evaluation of the EWS are discussed in

Section 4. A detail discussion is delivered in Section 5.

2 Data

2.1 Environmental drivers related to dengue transmission

ENSO is a global scale of climate variation that the cycles have lasted between two and

seven years. Several previous studies have found there is an association between epidemic

dengue and ENSO in some world populations (Kovats et al., 2003). Different regions of

sea surface temperature (SST) are used to define ENSO (Rasmusson and Carpenter, 1982).

Ashok et al. (2007) define the anomalous warming events that occur in the central equatorial

Pacific (Niño4 region) as an alternative type of El Niño called El Niño Modoki which is

different from the conventional study region Niño3.4 (5◦N-5◦S, 170◦W-120◦W). McGregor

and Ebi (2018) highlight that the contrasting rainfall fields for conventional El Niño and

El Niño Modoki events hint at potential spatio-temporal inconsistencies of ENSO-health

associations. Salimun et al. (2014) find that, although displayed much warmer SST anomalies

in the Indian Ocean and regional seas in the Maritime Continent, the impact on the winter

rainfall during conventional El Niño in boreal winter season over Peninsular Malaysia is

minimal but significant higher during El Niño Modoki. Tangang et al. (2017) show that,

during winter, a strong La Niña leads to a significant decrease in wet precipitation extremes

over the Peninsular Malaysia due to the anomalous cyclonic circulation over strong La Niña.

Nevertheless, Hanley et al. (2003) demonstrate that Niño4 index is more relevant to La

Niña but poorly explain El Niño whilst the Niño1+2 index has the opposite characteristics.

These two SST indices altogether cover different types of ENSO and their impact on dengue

transmission.

Most high impact weather in synoptic scale occurs where the atmosphere is experiencing

rising motion. The vertical velocity measured by the omega equation is associated with

high impact weather and cyclones (Dostalek et al., 2017). In a study of the impact of

meteorological factors to the air pollution in China, Hou et al. (2018) indicate that the

vertical velocity has a short-term influence on PM2.5 level in the Pearl River Delta. It is

expected that the unobserved meteorological variable would add value to our understanding

on environmental association with the disease.

Wong et al. (2011) use a lagged 22 day mean air temperature to capture the second

generation gonotrophic cycle of Aedes mosquitoes to predict ovitrap index. Cheong et al.
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(2013) study the effects of temperature, rainfall and wind speed in Selangor with emphasis on

their lag times. The lag times of 51 days minimum daily temperature and 28 days bi-weekly

cumulated rainfall present positively associated with dengue hospitalisations. The effect from

mesoscale local temperature and rainfall is related to some major other synoptic climate

oscillations which influences the regional climate of Malaysia such as Indian Ocean Dipole

(IOD; Tangang et al., 2012). IOD can happen in conjunction with ENSO or independently.

Hong and Jin (2014) discover that the IOD-ENSO interaction is the cause of the generation

of Super El Niños. Hameed et al. (2018) also show that the IOD lagged Niño3.4 by three to

six months depending on location.

This study conjectures that air pollution has a profound effect on the mosquito vectors

especially ozone. Thiruchelvam et al. (2018) evaluate that the relationship between air

quality and dengue hospitalisations. It is asserted that the air pollution index (API) levels

do not have a significant effect on the reported cases. However, ozone is proven to have

a repellent effect on both Aedes aegypti and Aedes albopictus (Wan-Norafikah et al.,

2016). The API used by the Malaysian government follows the Pollutant Standard Index

(PSI; Swamee and Tyagi, 1999) by the United States Environmental Protection Agency

(USEPA). The API is an index that the highest value of the sub-indices of five pollutants

namely carbon dioxide, ozone, nitrogen dioxide, sulphur dioxide and particulate matter

with a diameter of less than 10 microns taken. Its impact on humans has been thoroughly

studied but its applicability to dengue transmission is questionable. Without knowing which

pollutant it refers to, the lagged value of API is meaningless. For this reason, it is worthwhile

to investigate individual pollutants separately.

2.2 Data source

The weekly counts of hospital admissions for dengue fever incidence (Ykt) in Selangor State

and two federal territories in Malaysia (indexed k) from 2013 to 2019 (indexed t) were

obtained from the Ministry of Health (MOH) Malaysia. Relevant demographic information

is obtained from the Department of Statistics Malaysia (DOSM). Nine Selangor districts and

two federal territories namely Kuala Lumpur and Putrajaya have been considered.

Environmental variables such as air pollution index, ozone concentration level (in part per

million) and temperature are provided by the Malaysian Department of Environment (DOE),

Ministry of Environment and Water whilst precipitation information (in mm) is provided

by the Malaysian Meteorological Department (MetMalaysia). All ozone concentration level

information in the federal territories Kuala Lumpur and Putrajaya are missing. These are

imputed by the average values of their adjacent districts.

The Niño4 and Niño1+2 SST indices (Huang et al., 2021) capturing sea surface tem-

perature anomalies in the central equatorial Pacific region (5◦N-5◦S, 160◦E-150◦W) and the
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region of coastal South America (0◦-10◦S, 90◦W-80◦W) are obtained from NOAA Climate

Prediction Center.

Gridded (2.5◦ × 2.5◦) reanalysis daily mean vertical velocity in pressure coordinates ob-

tained from the NCAR/NCEP Reanalysis (Kalnay et al., 1996) is aggregated into weekly

scale according to the epidemiological week (Epi week) defined by MOH.

Finally, the administrative district areal boundaries are extracted from The Humanitarian

Data Exchange and all studied districts are within one (2.5◦×2.5◦) grid cell in the reanalysis

dataset.

2.3 Exploratory Data Analysis

2.3.1 Basic characteristics

A total of 414284 dengue fever cases was reported in nine districts of Selangor and two federal

territories from January 2013 to December 2019 in the Central Region. The total numbers

of cases vary from 26422 in 2013 to 87967 in 2019. Since the outbreaks after summer in

2013, there is no clear annual trend until a severe upsurge in 2019 which surpassed three

fold of the total cases in 2013 (Fig. 1).

2.3.2 Temporal evolution and lagged effect dependency

The seasonality of dengue incidence rate (DIR) across Selangor is not as obvious as in other

geographical regions in existing literature such as Thailand in Lowe et al. (2016). The weekly

mean DIR peaks in the winter and finds another peak in the summer (Fig. 2).

Preceded by a weak El Niño events in 2014, the unusual 2015-2016 El Niño was one of the

strongest El Niño in history (Lian et al., 2017). The DIR is closely related to this upward

trend of both Niño1+2 and Niño4 indices during El Niño (Fig. 3). Taking out the effect of

Niño4, the partial correlation between DIR and Niño1+2 index is 0.0578 only although the

Niño1+2 and Niño4 are highly correlated (Fig. 4). These indices, refer to distant regions

in the central/eastern equatorial Pacific, can be regarded as leading indicators of Peninsular

Malaysia local climate.

Following Cheong et al. (2013), a distributed lag nonlinear model (DLNM; Gasparrini et

al., 2009 and Gasparrini, 2011) is used as an exploratory tool. The dataset is aggregated into

multiple single region time-series of dengue hospitalisations and environmental variables to

evaluate the lag time with quartic B-splines for the predictors and lag stratifications. The

relative risk (RR) at 90% quantile of temperature, ozone, rainfall, ozone, omega, Niño1+2

and Niño4 reach their maximum at a lag of 1, 10, 7, 15, 28, and 6 weeks respectively (Fig.

5). Capturing the effect of La Niña, for Niño4, the RR at 10% quantile reaches a local

minimum at lag of 10 weeks. The formation of ozone is heavily influenced by sunlight and
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temperature (Ghazali et al., 2010). Since high temperature and presence of sunlight are

the confounding factors, ozone has a strong immediate effect on dengue (Fig. 5c). The

incremental cumulative RRs of rainfall has a monotonic increasing trend and have a long-

range dependency throughout a long lag time. Fig. 5b shows a different pattern of short-term

drought and wet scenario, with a very strong and immediate effect during drought (lag time

0-5) and a more delayed association with wet weather peak at a lag of 7 weeks. On the

other hand, Fig. 5d shows a strong positive impact from the vertical velocity with a lag time

of 9 weeks. It is understood that rainfall and vertical velocity are related to ground-level

hydrology. A possible explanation is that drought makes people store water (Gagnon et al.,

2001). Pontes et al. (2000) also suggest that household storage of water during the drought

is correlated with the increase of Aedes aegypti vector abundance.

2.3.3 Regional variations

The Central Region area, especially districts adjacent to Kuala Lumpur, becomes hyper-

endemic for dengue transmission due to years of neglect (Ahmad Meer et al., 2018). Fig. 6

plots a map of DIR, temperature, rainfall level, ground-level ozone concentration level from

2013 to 2019. The districts of Gombak, Petaling, Klang and Hulu Langat generally recorded

higher DIR, mean temperature and ozone concentration level compared to other districts.

However, the capital city Kuala Lumpur has shown significant lower cases although among

the wettest in the region. This regional variation is regarded as a function of degree of ur-

banisation. An explicit formulation of this type of function is generally infeasible (Chandler,

2005). An entomological explanation to this variation is related to the abundance of the

breeding areas of Aedes aegypti and Aedes albopictus. In an entomological surveillance

study for two villages in Selangor, Noor et al. (2018) show that two species are indoor and

outdoor breeders respectively. The transmission of the dengue vector is a combined effect of

two species. Hence, this socio-economic difference between districts is a source of the step

change in the cases count.

Both federal territories Kuala Lumpur and Putrajaya have lower cases than the surround-

ing districts. It might be attributed to the increased activity of the enforcement agencies

and anti-dengue campaigns conducted in the capital city (Hassan et al., 2012).
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2.3.4 Spatial dependency

Without explicit spatial and temporal dependent terms, consider a Poisson generalised linear

model for the disease count Ykt defined in Section 2.2 of the form:

Ykt ∼ Poisson (µkt) ,

log µkt = log λkt + log ekt,

log λkt = β0 + β1Tempk,t−3 + β2Raink,t−10 + β3Ozonek,t−7 + β4omegat−15+

β5Niño12t−28 + β6Niño4t−6 + β7Niño4t−10 + β8Capitalk,

(1)

where Ykt is the expected number of cases in the district k at time t, ekt is the population

size in the district k at time t, Niño12t is the Niño1+2 index at time t, Niño4t is the Niño4

index at time t, Ozonekt is the ground-level ozone concentration level at time t in district

k, Capitalk is a binary variable indicates whether the district is Kuala Lumpur, Tempkt and

Rainkt is the temperature and total precipitation in the week t, omegat is vertical velocity of

air motion derived from weather model at time t. Note that here a lag of three weeks is used

for temperature as one week is not a practical lag time for an EWS. We calculate the associate

Moran’s I statistic (Moran, 1950) for the spatial neighbourhood matrices. The statistic is

0.7075 with a p-value of 0.001%. It indicates the spatial variation has not adequately been

captured through the generalised linear model.

2.3.5 Overdispersion

Overdispersion behaviour (Lawless, 1987) often exists in many disease count datasets. It

is suggested that a negative binomial model would nicely accommodate an extra-Poisson

variation in the dengue case (Lowe et al., 2011). We fit a negative binomial model using

maximum likelihood estimation through a built-in R (R Core Team, 2021) function glm.nb

with Equation (1) and the estimated dispersion parameter is 2.61. The amount of overdis-

persion is quite high. Such a statistical property can be easily described by a person is more

likely to be infected by disease through close contacts. It appears that the Poisson distribu-

tion is better suited to explain the “number of infected groups” rather than the total disease

count. Represented as a compound Poisson distribution with a logarithmically distributed

count per group (Quenouille, 1949), the negative binomial distribution turns out to be a

reasonable model.

3 Model developments

The Bayesian hierarchical modelling approach is a flexible framework to describe the statis-

tical properties in the previous Section. The components of the model formulation can be
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individually specified conditional to other parameters and data. In this Section, we will go

through the key components of our candidate models.

3.1 Negative binomial regression

To overcome overdispersion, we use the negative binomial parametrisation in which intro-

duces r as a universal control parameter for overdispersion (Gelman et al., 1995).

Ykt ∼ NB(µkt, r), (2)

The mean and variance of the random variable are E[Ykt] = µkt and Var[Ykt] = µkt + µ2
kt/r.

As r goes to infinity, the distribution of Ykt converges to the Poisson distribution.

3.2 Besag-York-Mollié model

The Besag-York-Mollié model (BYM; Besag, York and Mollié, 1991; Besag and Kooperberg,

1995) specifies the additive relationship of the overall risk level as an intercept, the fixed

effect by the covariates, the pure random effect θkt and the spatial variation component φk:

log λkt = β0 + xktβ + θkt + φk, (3)

where θkt is a normally distributed unstructured error and φk is the structured error modelled

by an intrinsic conditionally autoregressive model (ICAR). It has a conditional specification

that is normally distributed with a mean equal to the average of its neighbours (φk∼j) and

its variance decreased as the number of neighbours dk increases:

p (φk|φk∼j) = N

(∑
k∼j φk

dk
,
σ2
k

dk

)
. (4)

An alternative form of BYM (BYM2) model proposed by Riebler et al. (2016), Simpson

et al. (2017) and Morris et al. (2019) allows a clearer dependence structure with a spatial

correlation parameter ranging from a full spatial neighbourhood dependent variation and

pure residual randomness in which the terms φk and θkt combined to one entity φkt:

log λkt = β0 + xktβ +
(
φ∗
k

√
ρ/s+ θ∗kt

√
1− ρ/s

)
σ, (5)

where logit (ρ) ∼ N(0, 1), φ∗
k is the ICAR model, θ∗kt ∼ N(0, 1), s is the scaling factor

computed from the neighbourhood graph. Meanwhile, σ is the overall standard deviation of

two variations.
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3.3 Dynamic structure

Dynamic linear model (West and Harrison, 2006) enables a sequential model definition in the

time series context and information propagates conditional to existing information. Taking a

negative binomial model as a starting point, the Equation (2) is now a top-level observation

equation, the spatio-temporal structure is defined as follows:

Observation equation Ykt ∼ NB(log λkt + log ekt, r), r ∼ Γ(a, b)

System equation log λkt = α log λk,(t−1) + xktβ + φk + ωkt, φ ∼ BYM2 (s,W) ,

ωkt ∼ N(0, σ2
ω),

Initial information log λk,0 ∼ N [m0, σ
2
0], m0 ∼ N (0, A) ,

σ2
0 ∼ IG(a0, b0),

(6)

where the overdispersion parameter follows a Gamma distribution with hyperparameters

a and b, α is the autoregressive (AR) parameter to control temporal dependency between

adjacent time points, ωkt is the Gaussian distributed evolution error. Initial information

is required for this temporal structure, s is the scaling parameter controls the proportion

of a spatial and non-spatial variation, W is the neighbourhood information formulated as

a connected graph. The AR(1) model in the system equation could be understood as an

moving average model of infinite order MA(∞) which aggregates all its lagged unexplained

residuals as an additional piece of information. Sahu et al. (2009) impute the initial mean

by the observed grand mean for a spatial point reference modelling problem. Alternatively,

we choose to estimate the initial mean and set log λk0 to follow a normal distribution with

a non-informative prior for both m0 and σ2
0.

4 Modelling Results

We consider five models with different levels of complexity (Table 1). The regression part of

the model xktβ is specified by the following setup:

Tempk,t−3 + Raink,t−10 + Ozonek,t−7 + omegat−15 + Niño12t−28 + Niño4t−6+

Niño4t−10 + Capitalk.

No-U-turn sampler (NUTS) is used for Markov chain Monte Carlo (MCMC) sampling Hoff-

man et al. (2014). Nishio and Arakawa (2019) suggest that NUTS performance is better

than Gibbs sampling due to the high effective sample sizes and low autocorrelations in some

statistical applications.
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4.1 Model assessment

Expected log pointwise predictive density (elpd; Vehtari et al., 2017) is used to compare

model performance. The criterion is estimated by leave-one-out cross-validation to mimic

out-of-sample prediction data and the looic = −2 ˆelpdloo will be used for reporting to provide

typical Bayesian conventional scale of deviance information criterion (DIC; Spiegelhalter et

al., 2002). The overall fit of each model is summarised in Table 1. The negative binomial

family of models (Model B, C, D, E) outperform the Poisson model (Model A). The negative

binomial dynamic model (Model D) with the lowest looic fits the data better than the other

four models. The looic of the negative binomial spatial dynamic model (Model E) and Model

D differ by within one standard error.

The Model B and Model C are well-specified because the effective number of parameters

(pLOO; Vehtari et al., 2017) is smaller than the actual total number of parameters in the

models whilst Model A is misspecified due to failure to capture overdispersion. Bürkner et al.

(2020) show that elpd/looic estimates are overly optimistic because the future observation

has an influence to predictions of the past. Since the pLOO is the difference between elpd

and the non-cross-validated log posterior predictive density, thus the pLOO is overestimated

under any dynamic setting. The evidence is inconclusive to determine whether Model D and

E are well-specified or not. A further model validation procedure is required to check their

validity.

Model System equation looic pLOO

(A) Poisson log λkt = β0 + xktβ 103074.7± 2601.8 251.3

(B) NB log λkt = β0 + xktβ 35403.1± 165.4 9.0

(C) NB + spatial log λkt = β0 + xktβ + φk 33389.0± 180.9 20.6

(D) NB + dynamic log λkt = α log λk,(t−1) + xktβ 29180.6± 181.6 1053.7

(E) NB + spatial + dynamic log λkt = α log λk,(t−1) + xktβ + φk 29180.9± 182.5 1056.6

Table 1: Model performance by the LOO information criterion (looic), where pLOO is the

estimated effective number of parameters of the model.

4.2 Environmental and regional risk factors

Although models A, B and C possess lower looic value, compared to dynamic models, they

preserve a considerable explanatory power. Taking a closer look at the coefficient estimates

of Model C, the coefficient estimates in the form of relative risk (RR) is shown in Table

2. The covariate lag (Niño4, 6) and lag (Niño4, 10) have a strong positive relationship with

the disease, for each degree increase of the indices, the RRs increase by 46.87% and 8.44%

12

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 4, 2021. ; https://doi.org/10.1101/2021.09.22.21263997doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.22.21263997


respectively. Meanwhile, the Niño1+2 index of lag time 28 weeks decreases by 2.26% for

each degree increase. The pollutant ozone has a negative effect on the disease. For every 10

parts per billion increase in concentration level, there is 3.13% decrease in dengue incidence.

Kuala Lumpur has 40.40% expected cases lower than other regions. The local weather-

related variables have a lesser impact on the RR with only 0.90% and −3.83% for a unit

change in rainfall and temperature. The vertical velocity has a mild impact with only 3.61%

RR increment for each 0.01 unit increase. The Niño4 index is the dominant factor and a

negative temperature effect is seen as an adjustment to ENSO’s impact. With a positive

Niño4 and a negative Niño1+2 RR, although of different lag times, this is a shred of indirect

evidence that the central equatorial ENSO exerts a stronger impact on dengue disease than

the convention ENSO.

Table 2: Parameter estimates of RR for the negative binomial spatial model (Model C)

Credible Interval

RR 2.5% 97.5%

lag (Temp, 3) 0.9617 0.9471 0.9761

lag (Rain, 10) 1.0090 1.0067 1.0114

lag (Ozone, 7) (10ppb) 0.9687 0.9561 0.9813

lag (omega, 15) (0.01Pa s−1) 1.0361 1.0267 1.0456

lag (Niño12, 28) 0.9774 0.9602 0.9947

lag (Niño4, 6) 1.4687 1.3698 1.5733

lag (Niño4, 10) 1.0844 1.0081 1.1608

Capital 0.5960 0.1839 1.9244

4.3 Prediction for dengue epidemics and an early warning system

Four model validation criteria: root mean square error (RMSE), mean absolute error (MAE),

continuous ranked probability score (CRPS; Hersbach, 2000), coverage at 95% nominal level

(CVG; Sahu, 2021) are used for comparing out-of-sample model performance. The first two

criteria evaluate the model performance in terms of mean response. The latter two are

related to probabilistic forecasts. CRPS measures the discrepancy between the observations

and the whole predictive distributions whilst the CVG detects underfitting and overfitting if

the criterion drifts away to the nominal coverage probability of 95%. For the criteria RMSE,

MAE and CRPS, better predictions correspond to their corresponding lower values. All

these criteria values are calculated using the R package bmstdr developed by Sahu (2021).

Atmospheric model high resolution (HRES) provided by European Centre for Medium-

Range Weather Forecasts (ECMWF) generates up to 10 days forecast (Owens and Hewson,
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2018). In other words, replacing the daily mean temperature at lag time of 3 weeks by the

forecasts provided by ECMWF, an EWS will have a capacity to produce outbreak detection

signals at least four weeks in advance. One of the useful ways to disseminate outbreak

detection is to use a visualisation called epidemic channel (Runge-Ranzinger, 2016). Once

the predictive probability with a threshold level between 0.08 − 0.2 (Bowman et al., 2016)

for future dengue cases exceeds a certain alarm value (e.g.: cases above than two standard

deviation of the five-year average), an alarm signal forms when the weekly case numbers

enter the “alarm zone”.

An out-of-sample probability forecast for the weekly reported cases in 11 districts and

federal territories in the first four weeks in 2019 is generated from all model candidates.

Table 3 summarises the values of the four model validation criteria from the fitted models

using 2013-2018 data. Model D is the best model in terms of RMSE and MAE. Model E,

although not being optimal in the first three criteria, it appears to be the most adequate

model if we consider its CVG. The sensitivity and specificity (Bowman et al., 2016; Lowe et

al., 2016) represent the hit rate and true negative rate of an EWS. From a disease surveillance

point a view, a single miss of a disease outbreak is costly, in order to achieve the goal of

identifying potential outbreaks with high sensitivity, the probability threshold level is set to

a relatively small value. Setting the probability threshold level to 0.15, it means the posterior

predictive distribution at 85 percentile exceeds the predefined alarm values of the reported

cases greater than two standard deviations of the five-year average at each district driving

an alarm signal. Using the same out-of-sample probability estimates for model validation

statistics, Model E exhibits the highest sensitivity and a moderate specificity. A careful look

at both Model D and E shows that the differences among the models with regard to the

looic and model validation criteria are quite small. Model E appears to be a more preferable

model after evaluating the overall performance measures.

We found that the most important RR comes from Niño4. It makes a longer-term pre-

diction of dengue outbreaks feasible. Meng et al. (2020) shows that a complexity-based

approach allows us to forecast the magnitude of an ENSO event one year in advance. Ham

et al. (2019) utilise a convolution neural network (CNN) to predict zonal SST (in their ex-

ample, Niño3.4 region) by learning from historical simulations of a multi-model ensemble

(Bellenger et al., 2014). Ballpark figures generated from a simpler EWS with ENSO infor-

mation can be then assessed by the government agency. A longer-term climate uncertainty

analysis (Yip et al., 2011; Northrop and Chandler, 2014) can be easily plugged into a disease

mapping setting (e.g.: Baker et al., 2021).
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Table 3: Model validation statistics and performance measures of early warning system

derived from five models, A-E

Model RMSE MAE CRPS CVG Sensitivity Specificity

(A) Poisson 222.63 203.62 7.97 2.27% 52.94% 44.44%

(B) NB 151.86 91.88 40.62 81.82% 52.94% 51.85%

(C) NB + spatial 135.81 84.50 32.69 72.73% 5.88% 88.89%

(D) NB + dynamic 44.72 28.92 29.08 100.00% 94.12% 62.96%

(E) NB + spatial + dynamic 51.84 33.44 38.03 95.45% 94.42% 70.37%

5 Discussion

This paper presents a Bayesian spatio-temporal modelling framework leading to a full imple-

mentation of an EWS for dengue outbreaks from upstream data source to production. We

propose to utilise some global and regional climate observation and variables derived from

reanalysis data for a more accurate forecast. Exploratory data analysis methods show a long

range of lag times is required for some synoptic scale meteorological variables namely Niño12

and Niño4 indices. Our proposed holistic assessment goes beyond a single cross-validation

metric. The whole assessment consists of calculation of out-of-sample predictive accuracy

in multiple ways and alert signal evaluation. The methodology developed in this study can

potentially be used to build a similar EWS in other countries or regions in Malaysia.

Dissimilar to horizontal wind, the vertical motion is often neglected due to its unobserved

nature. In contrast to the environmental variables considered in previous studies, this study

also considers a vertical velocity of air motion derived from reanalysis data and reveals to

have a mild effect to the epidemics. Similar to many other studies, temperature and rainfall

are used in the regression formula. Contrary to the findings of other studies (e.g. Lowe et

al., 2016), the estimated coefficient of lagged temperature is negative. This appears to be a

case of a local adjustment to a larger scale regional effect dominated by ENSO. The estimate

of lagged ozone ties well with the biological argument based on Aedes’s gonotrophic cycle in

Wong et al. (2011).

The RR estimates from the Model C exhibit that strong lagged anomalous warming in

the Niño4 region has a strong positive effect on dengue hospitalisations. Consistent with our

present findings, Gagnon et al. (2001) also report a significant positive correlation between

El Niño and dengue epidemics in multiple countries. With a less-than-one RR for the lagged

Niño1+2 index, cooling in the eastern tropical Pacific contributes to the increased dengue.

This distinct relationship suggests that both El Niño and El Niño Modoki play a role in the

epidemics. A previous study by Petrova et al. (2019) mentions that dengue epidemics can

be associated with different teleconnections for different time lags. Dengue transmission is
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sensitive to the variability of rainfall due to its cumulative nature. A recent finding shows

that a strong positive IOD which leads to drought (Amirudin et al., 2020) can be linked

with the pre-existing El Niño Modoki with lead time up to one year (Doi et al., 2020). Our

results align to these claims.

Due to data limitations, the impact from spatio-temporal variations of virus serotype are

missing from the study. An anomalous upsurge happens twice in our study period, the first

one occurred in the 2013 summer is verified by microbiology evidence (Ng et al., 2015). The

second one observed in early 2019 is thought to be due to another serotype shift. A self-

service EWS received a user feedback that change of predominant serotype alone attains a

50% of sensitivity of outbreak detection (Hussain-Alkhateeb et al., 2018).

Although the transmission dynamics is proven to be temperature-dependent (e.g.: Chen et

al., 2012), the relationship between entomological parameters and the environment variables

has not yet been clearly studied. A recent article by Sun et al. (2021) study a residential-

block-level dengue vector population in Singapore. It is shown that the Aedes abundance

is heavily associated with the building age and managed vegetation cover. With modern

geographic information systems (GIS) technology, these information can be incorporated in

the future work.

Thanks to the flexibility of the modelling framework in this research article, joint mod-

elling on multiple diseases is a possible methodological extension. Caminade et al. (2017)

show the mosquito-borne transmission of Zika in South America is fueled by the El Niño

climate phenomenon. Funk et al. (2016) suggest, with their extensive sensitivity analysis,

models for dengue transmission can be useful for handling the dynamics of Zika transmis-

sion. Held et al. (2005) demonstrate that the joint modelling approach on multiple diseases

achieves a gain in precision of the RR estimates. Niriella et al. (2021) spot a sharp decrease

in dengue cases for the second quarter of 2020 compared with pre-COVID-19 peaks in Sri

Lanka. The drastic measures imposed by the Sri Lanka government regarding COVID-19

outbreaks help the reduction of hospitalisations. An identical pattern is also found during

the first five phrases COVID-19 lockdown in Malaysia (Ong et al., 2021). A vector autore-

gression component (VAR; Spencer, 1993) can be added to our current setup to incorporate

lagged effect dynamically from other variables. Implemented in Stan language (Carpenter

et al., 2017), conditional dependence such as spatial heterogeneity, temporal dynamics and

covariate structure can be simply introduced and modified under the hierarchical Bayesian

modelling paradigm, allowing for greater modelling flexibility.
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6 Conclusion

The SST anomalies with a lag time of six weeks in the central equatorial Pacific region is

the most crucial driver to the Central Region of Malaysia dengue hospitalisations. The EWS

built on a Bayesian spatio-temporal hierarchical model yields reliable forecasts to help out

dengue disease outbreak surveillance for at least four weeks in advance.
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Figure 1: Time series plots of dengue hospitalisations by year.
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Figure 2: Boxplots of weekly dengue hospitalisations in the Central Region, Malaysia, 2013

- 2019.
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Figure 3: Time series of (a) average DIR , (b) lagged four-week average of Niño4 index, (c)

lagged four-week average of Niño1+2 index in the Central Region, Malaysia for the period

2013-2019.

Figure 4: Pairwise scatter plots of the DIR along with the covariates used in the models.
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Figure 5: RR surface of dengue hospitalisations by six variables. The variable Temp is the

temperature, Rain is total precipitation, Ozone is the ground-level ozone concentration level,

omega is vertical velocity of air motion derived from omega equation, nino12 is the Niño1+2

index, nino4 is the Niño4 index.
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Figure 6: Mean weekly DIR, temperature, rainfall, ground-level ozone concentration level

from 2013 to 2019 by district.
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