Stimulant Use Interventions May Strengthen ‘Getting to Zero’ Initiatives in Illinois: Insights from a Modeling Study

Francis Lee1,2, Daniel Sheeler1,2, Anna Hotton1,2, Natascha Del Vecchio1,2, Rey Flores1,2, Kayo Fujimoto3, Nina Harawa4,5, John A. Schneider1,2, Aditya S. Khanna6,7

1Chicago Center for HIV Elimination, The University of Chicago
2Department of Medicine, The University of Chicago
3Center for Health Promotion and Prevention Research, The University of Texas Health Science Center at Houston (UTHealth)
4Department of Epidemiology, University of California at Los Angeles
5Department of Psychiatry and Human Behavior, Charles R. Drew University
6Center for Alcohol and Addiction Studies, Brown University School of Public Health
7Department of Behavioral and Social Sciences, Brown University School of Public Health

Research Support
This work was supported by NIH R01 DA 039934, R03 DA 049662, T32DA043469, and the Providence/Boston Center for AIDS Research (P30AI042853). NH received additional support from the California HIV/AIDS Research Program (CHRP) OS17-LA-003 (PI, Harawa), the UCLA Clinical and Translational Science Institute (CTSI) NIH/NCATS grant UL1-TR001881 (PI, Dubinett) and by the Center for HIV Identification, Prevention, and Treatment (CHIPTS) NIMH grant P30MH058107 (PI, Shoptaw). This work was completed in part with resources provided by the University of Chicago’s Research Computing Center and the Center for Computation and Visualization, Brown University.

Author for Correspondence and Reprints
Aditya S. Khanna, Ph.D.
aditya_khanna@brown.edu

Word Count
Abstract: 321
Manuscript: 3013 (excluding Figures, Tables, References)
Abstract:
Objective(s): Young Black men who have sex with men (YBMSM) are a key population identified in the Illinois Getting to Zero (GTZ) initiative who have experienced disproportionate HIV incidence. Rising stimulant use has been determined to impede the effectiveness of ART and pre-exposure prophylaxis for suppressing HIV transmission in populations. This modeling study explores the impact of stimulant use on HIV incidence among YBMSM – given the limited development of dedicated or culturally appropriate interventions for this population – and assesses the impact of these interventions on downstream HIV transmission in the context of achieving GTZ goals.

Methods: A previously developed agent-based network model (ABNM), calibrated using data for YBMSM in Illinois, was extended to incorporate the impact of stimulant use (methamphetamines, crack/cocaine, and ecstasy) on sexual networks and engagement in HIV treatment and prevention continua. The model simulated the impact of a residential behavioral intervention (BI) for reducing stimulant dependency and an outpatient biomedical intervention (mirtazapine) for treating methamphetamine dependence on improved engagement in the HIV treatment and prevention continua. The downstream impact of these interventions on population-level HIV incidence was the primary intervention outcome.

Results: Baseline simulated annual HIV incidence in the ABNM was 6.9 (95% CI: 6.83, 7.04) per 100 person years (py) and 453 (95% CI: 445.9, 461.2) new infections annually. A residential targeted to 25% of stimulant users yielded a 27.1% decline in the annual number of new infections. Initiating about 50% of methamphetamine users on mirtazapine reduced the overall HIV incidence by about 11%. A 25% increase in antiretroviral treatment (ART) and preexposure prophylaxis (PrEP) uptake in the non-stimulant using YBMSM population combined with a 25% uptake of BI for stimulant users produces an HIV incidence consistent with HIV elimination targets (about 200 infections/year) identified in the GTZ initiative.

Conclusions: Targeted behavioral and biomedical interventions to treat stimulant dependency are likely to provide additive benefits to expanding ART and PrEP uptake for everyone in accomplishing GTZ initiatives for HIV elimination.

Keywords
Substance-Related Disorders; HIV infections; pre-exposure prophylaxis; computer simulation; sexual and gender minorities; preventive medicine
INTRODUCTION

Getting to Zero (GTZ) Illinois is a HIV elimination strategy being implemented by a combination of state and county public health departments, academic medical centers, and community health organizations. GTZ Illinois assessments found that the overall declines in HIV incidence have not been experienced equally by sub-populations; younger (18-34 years) Black gay, bisexual and other MSM (YBMSM) have experienced relatively stable incidence rates over recent years.1,2The scale-up of antiretroviral treatment (ART) and preexposure prophylaxis (PrEP) use among YBMSM is a centerpiece of this elimination initiative and will require multi-level and combination-based interventions to realize the initiative goals.

The scale-up of ART and PrEP among YBMSM, however, is constrained because of the many psychosocial and healthcare barriers faced by YBMSM.3,4Substance use is one such barrier, and has been associated with suboptimal ART adherence and missed PrEP doses among MSM.5-11The use of stimulants – such as methamphetamines, crack/cocaine, and club drugs (e.g. ecstasy) – in particular, has been found to be associated with behaviors that may increase the risk of HIV transmission,12 particularly condomless insertive and receptive anal sex.13Black MSM living with HIV and not using methamphetamines have been found to be less likely to miss clinical visits for ART care than those who have used methamphetamines.14Emerging evidence also suggests that Black MSM who use social networking sites are often younger and more likely to have used methamphetamines and cocaine in the past 12 months compared to those who do not use such sites.15

Given the impact that stimulant use addiction plays in disengagement from HIV care, understanding some of the advances in treatment options available for stimulant use will be crucial to achieving GTZ policy goals. Mirtazapine, in particular, has been shown in clinical
trials to be an effective biomedical treatment for methamphetamine addiction.16,17 While no FDA approved treatment exists for treating cocaine addiction, other interventions such as residential rehabilitation have found moderate success in treating stimulant use disorders (including methamphetamines and cocaine).18–21 The success of these interventions have led to calls for integration of HIV care to maximize the public health impact of these interventions.22,23

The GTZ Illinois planning committee has explicitly identified addressing substance use as a key component of their policy planning efforts to reduce the number of incident HIV cases among Black MSM in Illinois to a “functional zero” incidence, currently defined as fewer than 200 new infections per year.24 Fewer studies, however, have examined the prevalence of stimulant use and its role in HIV transmission among Black MSM specifically.25 Transmission models that include the impact of stimulant use and sexual networks on the ART and PrEP continua can provide useful guidance for policy planning. One of the major challenges of addressing the stimulant epidemic among YBMSM is the development of culturally appropriate interventions for stimulant use treatment in this population, increasingly identified as a gap in the scientific literature and current public health policies in addressing psychosocial and structural barriers faced by Black populations.26–29

This study extends an existing agent-based network model (ABNM),30 parameterized largely with data collected in Illinois, to address the impact of stimulant use on the ART and PrEP continua and downstream HIV incidence among YBMSM. Interventions that are designed to treat stimulant use dependency (such as residential rehabilitation and medication-assisted treatment for methamphetamine use through mirtazapine) are thus likely to improve engagement in the HIV treatment and continua and are simulated to project their impact on HIV incidence and inform next steps in the GTZ planning efforts in Illinois.
METHODS

Agent-Based Network Model (ABNM) Development

The ABNM described below combines sexual network structure with a number of processes that impact HIV transmission. The sexual network structure was modeled using exponential random graph models (ERGMs), a statistically robust approach to model complex network evolution over time, and implemented using the statnet suite of packages in the R programming language. The ABM components were developed with the C++-based Repast HPC ABM toolkit. Parameters and computer code to reproduce results are available in a public GitHub repository.

Demographic, Network, Behavioral and Biological Data

The baseline model was parameterized with data sources that were representative of YBMSM in Illinois. Local data sources included cohort data on Chicago YBMSM from “uConnect” and the Young Men’s Affiliation Project (YMAP); both studies recruited participants in Chicago from 2013-2016 using systematic sampling schemes. Additional data on YBMSM were obtained from the National HIV Behavioral Surveillance (NHBS) survey in the Chicago Metropolitan Statistical Area. Other local and national sources, described below, were included where representative data from Illinois were not available. All procedures and protocols were approved by relevant institutional review boards.

Baseline Model

Baseline HIV transmission was simulated to capture existing epidemic features among younger adults (age 18 to 34 years), populated with 10,000 individuals at the start of the dynamic simulations, approximately consistent with the number of estimated YBMSM in Chicago. The substantive model components included arrivals, departures, dynamic sexual network structure,
the temporal evolution of CD4 counts and HIV RNA (“viral load”), HIV testing and diagnosis, dynamics of ART and PrEP use, external HIV infections, and HIV transmission dynamics (see Section A.4 of the Appendix for further detail).

Modeling Impacts of Stimulant Use

HIV Treatment and Prevention Continua. The model examined the impact of methamphetamines, crack/cocaine and ecstasy on HIV treatment and prevention continua. Population-based cohort data were used to estimate the usage rates of methamphetamines, crack/cocaine and ecstasy.\(^{36-39}\) The model was seeded with users of the three classes of substances in accordance with the estimated rates. Estimates of ART adherence among users of the three substances were also derived from the available cohort data. The PrEP continuum for stimulant users was modeled in terms of reduced initiation and retention relative to the general population, as estimated in the literature.\(^{5,41,42}\) The ART and PrEP parameters for stimulant users are presented in Appendix Section 4.7. The key model parameters are listed in Table 1.

Sexual Behavior. Stimulant users in the model, identified by indicator variables denoting methamphetamine, crack/cocaine and ecstasy use, were given a propensity to form partnerships cross-sectionally that was greater than that of a non-user. This increased propensity was estimated by computing the ratio of the number of partnerships in the past six months for users of each of the stimulants relative to the number of partnerships reported by the overall YBMSM population (Table 1).

Model Calibration

Model simulations proceeded in daily time steps. The model was calibrated over a 30-year period, using published HIV incidence and prevalence estimates as targets for calibration. Given the stochasticity in the model, each counterfactual setting was simulated 30 times to
quantify the uncertainty in each simulated model run.

Interventions

HIV incidence was measured over a 10-year period, where engagement in the HIV treatment and prevention continua and the sexual behavior of stimulant users were simulated as described above (Baseline Model). Comparing this outcome to HIV incidence in a hypothetical counterfactual with no stimulant use allowed for estimation of the impact of stimulant use on downstream HIV incidence (Figure 1).

A residential behavioral intervention (BI) for users of crack/cocaine, ecstasy and methamphetamine users was considered as an extension to the Baseline Model, similar to previous empirical studies that have demonstrated the impact of BIs on the sexual behavior of stimulant users. The impact of BI on stimulant dependency, which may improve downstream engagement in the HIV treat continua and its consequent impacts on population-level HIV incidence are less well-understood. In this study, we simulated an impact of a 3-month BI and its effects on engagement in the HIV treatment and prevention continua, consistent with typical durations of such interventions as implemented through a community rehabilitation program.

HIV-undiagnosed persons who receive BI through a residential program are tested for HIV at the time of enrollment in the residential behavioral intervention.

Scenarios considering targeted BI for stimulant users are simulated, with the proportion of stimulant users receiving residential BI varied in separate counterfactuals at 10%, 15%, 20%, and 25%. (We limited the proportion of stimulant users receiving residential BI because it is likely to be an expensive intervention and wider scale-up may be limited by its cost). In accordance with empirical data, 87% of persons receiving residential BI benefit from it. Thus, 87% of persons diagnosed with HIV who receive BI are assumed to be always adherent to ART
during their period of residential stay because directly administered treatment and other structures support adherence in this setting (see Table 1 for the levels of ART adherence in the model). Similarly, 87% of HIV-negative persons receiving the BI intervention are assumed to be maximally adherent (4+ doses/week) to PrEP during the course of the residential BI intervention. Upon completion of BI, agents return to their pre-intervention levels of engagement in the HIV treatment and prevention continua.

Additionally, a biomedical intervention, consisting of mirtazapine for treating methamphetamine dependency, was simulated. During the period of biomedical treatment, 48.5% of the mirtazapine users were assumed to receive a mirtazapine outpatient prescription for a period of 3 months, consistent with common treatment mirtazapine treatment regimes. These persons who take mirtazapine as prescribed optimally adhere to their HIV medications (ART or PrEP) resulting in a 95% reduction in transmission of or risk for acquisition of HIV infection for the duration of their mirtazapine treatment (sensitivity analyses presented in Appendix Section A.6 examine less than optimal engagement in the HIV treatment and prevention continua by the mirtazapine users). Those not adhering to mirtazapine as prescribed remained partially adherent (defined as an approximately 33% decline in infectivity or susceptibility) to their ART or PrEP prescriptions, respectively. Upon completion of the mirtazapine treatment, agents returned to their pre-treatment levels of methamphetamine use.

Outcomes and Uncertainty Quantification

The primary outcomes for both residential BI and mirtazapine interventions were the mean number of HIV infections in the full population and the mean HIV incidence rate in the tenth year after the implementation at varying levels of uptake (Table 2). HIV incidence among methamphetamine users receiving mirtazapine was estimated for the various levels of uptake.
(Table 3). Additionally, scenarios that examined scale-up of ART and PrEP uptake in accordance with GTZ Illinois guidance, along with targeted stimulant use interventions, were modeled to assess the impact of stimulant use interventions on overall GTZ achievement targets (Table 4).

Uncertainty in the HIV incidence projection estimates was quantified by using bootstrap estimates derived via simulation. To do this, the 30 simulation runs for each policy scenario at each time point were sampled 1,000 times with replacement. The mean for each of the resampled datasets was computed, and the 2.5% and 97.5% quantiles of these means were taken to obtain the 95% bootstrap confidence interval.

Sensitivity Analyses

For residential BI, sensitivity analyses examined uncertainty in the proportion of stimulant users who receive the intervention, considering scenarios in which 10%, 15%, 20%, and 25% of stimulant users received BI. For mirtazapine, sensitivity analyses considered varying proportions of methamphetamine users receiving mirtazapine treatment. Scenarios where 5%, 25%, 50%, 75%, and 100% of methamphetamine users are given mirtazapine were simulated.

Table 1: Parameters to Model HIV Transmission among young Black men who have sex with men (YBMSM), Illinois.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demography</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age range</td>
<td>[18 – 34) years</td>
<td>Defined population of interest</td>
</tr>
<tr>
<td>HIV prevalence among 18-year old persons at entry into the model</td>
<td>1%</td>
<td></td>
</tr>
<tr>
<td>Departures from simulated population</td>
<td>All agents achieving age > 34 years exit the population. At any time in the simulation, agents uninfected with HIV experience mortality rates estimated in accordance with age-specific mortality for Chicago. Agents infected with HIV experience mortality rates determined by their CD4 counts.</td>
<td></td>
</tr>
<tr>
<td>Stimulant Use</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rates of stimulant use (% of all simulated agents)</td>
<td>Methamphetamines: 4.0% Crack/cocaine: 9.2% Club drugs (e.g. ecstasy): 17.4%</td>
<td></td>
</tr>
<tr>
<td>Sexual Behavior</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean partnership</td>
<td>All agents</td>
<td></td>
</tr>
</tbody>
</table>
Results

Figure 1 provides the mean HIV incidence rate (per 100 person years) and the mean number of HIV infections in the ten years after the implementation of the BI intervention, with
color bands that demonstrate the bootstrap confidence intervals. The control case, with no targeted intervention for stimulant users and ART and PrEP uptake maintained at baseline levels, yielded an average of 453.3 (95% CI: 445.9, 461.2) new infections/year and a mean HIV incidence rate of 6.93 (95% CI: 6.83, 7.04) per 100 person years (py). In the tenth year, scaling up BI to 25% of stimulant users yielded a 27.1% decline in the number of new HIV infections to 330.5 (95% CI: 324.7, 337.3), and a 35.0% decline in the annual HIV incidence rate to 4.51 (95% CI: 4.42, 4.6) per 100 py (Table 2).

Figure 1 also shows the mean HIV incidence rate and the mean number of HIV infections in the full population ten years after the implementation of the mirtazapine intervention. The declines in overall HIV incidence are modest relative to the BI intervention: Providing mirtazapine to all meth users resulted in a 14.5% decline in the number of new HIV infections in the tenth year and a 20.1% decline in the HIV incidence rate (Table 2). This is not surprising because all stimulant users in the model (approximately 28% of the population) are eligible for BI, but a relatively smaller proportion (about 9% of the population) use methamphetamines and are therefore eligible for a mirtazapine prescription. In comparing the HIV incidence rate among methamphetamine users at various levels of uptake of BI and mirtazapine use, Table 3 shows that a 10% uptake of BI produces approximately the same HIV incidence as a 25% uptake of mirtazapine (about 7.2 per 100 person years). Similarly, comparable HIV incidence rates are produced among methamphetamine users when: (1) 15% of stimulant users receive the BI or 50% users of methamphetamines receive mirtazapine (about 6.3 per 100 py); and (2) 20% of stimulant users receive the BI or 75% users of methamphetamines receive mirtazapine (about 5.9 per 100 py and 5.7 per 100 py respectively).
Notably, stimulant use interventions are effective at achieving the functional zero HIV incidence target only when ART and PrEP is scaled up for everyone from the baseline uptake levels (Table 3). A 30% increase in ART and PrEP uptake in the general population combined with a 25% uptake of BI for stimulant users produces an HIV incidence of about 197 new infections per year. Additionally, a 30% increase in ART and PrEP uptake in the general population combined with a 20% uptake of BI for stimulant users, or a 20% increase in ART and PrEP uptake in the general population combined with a 25% uptake of BI for stimulant users, yields about 205 new infections per year, close to the target level of a functional zero HIV incidence.

Figure 1: Mean population-level HIV incidence rate after implementation of: (top panel) the residential behavioral intervention (BI) for increasing proportions of stimulant users; (bottom panel) the mirtazapine intervention for increasing proportions of meth users.
Table 2: Mean HIV incidence rate and the number of new HIV infections in the overall population in the tenth year after the implementation of the behavioral and biomedical interventions.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>10th year HIV Incidence in the full population (per 100 person years)</th>
<th>New HIV Infections in 10th Year (full population)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>6.93 (6.83,7.04)</td>
<td>453 (445,461)</td>
</tr>
<tr>
<td>Behavioral Intervention (BI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uptake 10%</td>
<td>5.39 (5.26,5.52)</td>
<td>379 (370,386)</td>
</tr>
<tr>
<td>Uptake 15%</td>
<td>5.12 (5.02,5.23)</td>
<td>365 (358,372)</td>
</tr>
<tr>
<td>Uptake 20%</td>
<td>4.84 (4.72,4.95)</td>
<td>348 (340,357)</td>
</tr>
<tr>
<td>Uptake 25%</td>
<td>4.51 (4.42,4.6)</td>
<td>330 (324,337)</td>
</tr>
<tr>
<td>Mirtazapine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uptake 25%</td>
<td>6.11 (5.96,6.25)</td>
<td>411 (402,421)</td>
</tr>
<tr>
<td>Uptake 50%</td>
<td>5.88 (5.74,5.99)</td>
<td>402 (394,410)</td>
</tr>
<tr>
<td>Uptake 75%</td>
<td>5.76 (5.64,5.88)</td>
<td>400 (391,409)</td>
</tr>
<tr>
<td>Uptake 100%</td>
<td>5.54 (5.43,5.66)</td>
<td>387 (380,396)</td>
</tr>
</tbody>
</table>

*Proportion of stimulant users who receive the behavioral intervention (BI)
**Proportion of methamphetamine users who receive mirtazapine prescriptions

Table 3: Mean HIV incidence rate and the number of new HIV infections among methamphetamine users in the tenth year after the implementation of the behavioral and biomedical interventions.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>10th year HIV Incidence among methamphetamine users (per 100)</th>
<th>New HIV Infections in 10th Year (methamphetamine users)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Behavioral Intervention (BI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uptake 10%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uptake 15%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uptake 20%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uptake 25%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mirtazapine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uptake 25%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uptake 50%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uptake 75%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uptake 100%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Proportion of stimulant users who receive the behavioral intervention (BI)
**Proportion of methamphetamine users who receive mirtazapine prescriptions
<table>
<thead>
<tr>
<th></th>
<th>HIV Incidence in 10th Year (per 100 person years)</th>
<th>New HIV Infections in 10th Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>4.63 (4.52, 4.75)</td>
<td>329 (321, 337)</td>
</tr>
<tr>
<td>Behavioral Intervention (BI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uptake</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3.12 (3.04, 3.21)</td>
<td>240 (234, 246)</td>
</tr>
<tr>
<td>15</td>
<td>2.97 (2.93, 3.03)</td>
<td>230 (225, 236)</td>
</tr>
<tr>
<td>20</td>
<td>2.74 (2.67, 2.82)</td>
<td>215 (209, 221)</td>
</tr>
<tr>
<td>25</td>
<td>2.6 (2.52, 2.68)</td>
<td>205 (199, 211)</td>
</tr>
<tr>
<td>Mirtazapine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uptake</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>3.86 (3.77, 3.94)</td>
<td>281 (276, 287)</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Proportion of stimulant users who receive the Behavioral Intervention (BI)

**Proportion of methamphetamine users who receive mirtazapine prescriptions
DISCUSSION

Our findings provide an assessment of the relative benefits of BI and mirtazapine for reducing HIV risk among people who use stimulants and the added benefits such policies can have in GTZ planning initiatives. On average, the residential BI implementation that at 10% uptake of all stimulant users (approximately 28% of the population) produced fewer new HIV infections annually than an outpatient mirtazapine intervention that reached all methamphetamine users (about 9% of the population). Approximately equal declines of HIV incidence among methamphetamine users are accomplished by a BI uptake of about 15% among users of any stimulants or a 50% uptake of mirtazapine among meth users.

Additionally, a 30% scale-up in ART and PrEP in the general population, combined with BI for stimulant users, has the potential to achieve a “functional zero HIV incidence” in 10 years. Previous modeling work has indicated that to get to a functional zero incidence of approximately 200 new HIV infections/year, ART and PrEP uptake in the overall population had to be scaled up by about 30% over 14 years. Here, we found that a targeted BI intervention of the type considered here may reduce that by four years.

Residential rehabilitation centers are likely to be expensive (approximately $215/day, according to some estimates) and could be implemented via drug diversion programs or increased funding for voluntary addiction treatment. In addition to reducing negative health, social, and economic consequences of stimulant addiction, increased funding for addiction treatment could have cost benefits considering the high cost of HIV treatment. Such analyses, however, are beyond the scope of this paper. Broader structural problems, such as food insecurity, housing instability, and mental illness comorbidities often impact the ability of stimulant users to engage in the ART and PrEP care continua. As residential drug rehabilitation facilities directly or indirectly address these problems while providing a structured environment,
it is not surprising that engagement in the HIV treatment and prevention continua has been found to be higher during stay in a rehabilitation center. This study demonstrates that the effectiveness of a residential BI, even when persons undergoing treatment return to their baseline levels of engagement in the HIV treatment and prevention continua upon leaving the rehabilitation facility. In real life, the PrEP and ART engagement upon release from the facility is likely to be more varied; thus, the estimated effectiveness is likely to be a lower bound. Continued efforts to address the many barriers that impact long-term engagement in the HIV care and treatment continua are needed. Computational modeling can continue to provide much needed data on the implementation of interventions to address these barriers before they are implemented in Getting to Zero contexts.

We note several limitations in this study. First, interventions utilized in this model have been developed for White populations and more culturally appropriate interventions among YBMSM are needed. We use a model that was developed for a YBMSM population, and future iterations of this work will consider the development and deployment of such interventions. Better contextual data on the association between stimulant use and engagement in the HIV prevention and treatment continua will be helpful in adapting these interventions for YBMSM. Second, this study modeled stimulant dependency as a binary variable. Future work might consider varying degrees of dependency among users of the stimulants that are considered here. Third, the financial costs of implementing behavioral and biomedical treatment programs for stimulant users, and the potential economic benefits of decarceration and rehabilitation were not examined here; such assessments will be important for future policymaking guidance. Fourth, future iterations of the model may consider contingency management and related interventions useful for treating stimulant dependency.
This work begins to test empirically interventions in a simulation model designed for YBMSM population. Future interventions, particularly culturally sensitive interventions for YBMSM who use stimulants are much needed, given their unique contexts of use, and the limited resources and safety nets for substance using YBMSM, relative to White populations. Achieving GTZ Illinois goal, for YBMSM may require addressing heterogeneities within YBMSM combined with a broad scale-up of biomedical prevention modalities and addressing the structural barriers that reduces the impact of such barriers. Direct treatment efforts to treat stimulant use, when implemented at scale, can help accomplish GTZ goals.

References

7. Wray TB, Chan PA, Kahler CW, Simpanen EM, Liu T, Mayer KH. Vulnerable Periods: Characterizing Patterns of Sexual Risk and Substance Use During Lapses in Adherence to HIV Pre-Exposure Prophylaxis among Men who have Sex with Men. *Journal of acquired immune deficiency syndromes (1999).* Published online November 2018:1. doi:10.1097/QAI.0000000000001914

49. Centers for Disease Control and Prevention. CDC Wonder.
