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Abstract 

Point-of-care assays offer a decentralised and fast solution to the diagnosis of SARS-CoV-2 and provide 

benefits for patients, healthcare workers, healthcare facilities and other environments. This technology 

has to potential to prevent outbreaks, enable faster adoption of life-changing measures and improve 

hospitalar workflow. While reviews regarding the performance of those assays exist, a review focused on 

the real-life clinical performance and point-of-care feasibility of those platforms was missing. Therefore, 

the objective of this study is to help end users (clinicians, healthcare providers and organisations) to 

understand the real-life performance of point-of-care assays, aiding in their implementation in 

decentralised, true point-of-care facilities, or inside hospitals. 871 studies were screened in 3 major 

databases and 51 studies were included, evaluating 20 antigen tests and 10 nucleic-acid amplification 

platforms. We excluded studies that used processed samples, pre-selected populations, archived samples 

and laboratory-only evaluations and strongly favored prospective trial designs in our inclusion criteria. 

We also investigated package inserts, instructions for use, comments on published studies and 

manufacturers websites in order to assess feasibility of POC placement and additional information of 

relevance to the end user. Apart from sensitivity and specificity, we present information on time to 

results, hands-on time, kit storage, machine operating conditions and regulatory status. To the best of our 

knowledge, this is the first review to systematically evaluate POC test performance in real-life clinical 

practice. We found the performance of tests in clinical practice to be markedly different from the 

manufacturers reported performance and laboratory-only evaluations in the majority of studies. Our 

findings may help in the decision-making process related to SARS-CoV-2 test in real-life clinical settings. 

Rationale for the review 

A review focused on the real-life clinical performance and point-of-care feasibility of SARS-CoV-2 

diagnostic platforms was missing, impairing the ability of individuals, healthcare providers and test 

providers to make informed decisions on the adoption of such platforms. 

Objective(s) or question(s) the review addresses: 

The objective of this study is to help clinicians, healthcare providers and organisations to understand the 

real-life performance of point-of-care assays, aiding in their implementation in decentralised, true point-

of-care facilities or in complex hospitalar environments.  

Introduction 

In December 2019, SARS-CoV-2 was first reported in Wuhan, China, and a pandemic was declared by 

the World Health Organization (WHO) in March, 2020. Reverse transcription-quantitative polymerase 

chain reaction (RT-qPCR) is the gold standard for diagnosis of SARS-CoV-2 infection. However, this 
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technique has disadvantages including the requirement of centralised facilities with specific equipment for 

testing conduction, the requirement of highly trained personnel and a long turnaround time between 

sample collection to results, approaching over 48 hours in some scenarios1. Driven by the need for 

diagnostic solutions during the pandemic, multiple new assays and platforms were created, including 

multiple fast molecular and antigen tests. The FIND SARS-COV-2 DIAGNOSTIC PIPELINE2, which 

collates an overview of commercially available SARS-CoV-2 tests in real time, shows over 1120 results 

for diagnostic solutions up to June 7th, 2021. 

Point-of-care (POC) diagnostic platforms are defined as diagnostic assays that can deliver results near 

patients, without the need for centralised laboratories or diagnostic facilities3. These platforms tend to 

deliver fast results, often within minutes to a few hours, enabling quicker medical decisions and 

facilitating timely interventions. POC diagnostic platforms are currently in use in health systems for 

different ends, from the bedside glucose test4 to the analysis of blood gases and electrolytes5. Besides 

being able to provide faster results, an important advantage of POC tests is to facilitate diagnosis in 

locations that previously could not have access to centralised diagnostic techniques. In the context of 

transmissible infectious diseases, some of these assays enable quick decisions regarding treatment and 

isolation requirements. Before the pandemic, POC platforms were already in use for the diagnosis of 

conditions such as influenza-like illnesses in different settings, including accident and emergency 

departments in hospitals and outpatient clinics6. Other assays focus on the diagnosis of sexually 

transmitted diseases like HIV7 and Chlamydia trachomatis8. As a consequence of the SARS-CoV-2 

pandemic and the need for more diagnostic solutions, not only centralised platforms but also POC 

diagnostic assays have had an unprecedent expansion, especially because time from sample collection to 

results is key to prevent further infections and speed up the workflow inside hospitals and healthcare 

organisations overall.  

However, POC tests can have limitations such as lack of accuracy, in the form of decreased sensitivity or 

specificity, increased costs, and a lower throughput compared to centralised laboratory facilities and 

techniques like PCR. Some tests also require a number of manual steps in preparation or computers for 

their execution, which can make platforms complex for true POC placement. Additionally, tests that are 

deemed inaccurate can have multiple consequences. False negative results can cause inadequate 

placement of patient in hospitals (e.g, moving a infectious patient to a ‘green ward’), causing new 

outbreaks in an already diseased population, and also deem a community patient not infectious, thus 

increasing the chances of propagating infection to contacts. False positive results can inversely place 

patients in high-risk environments in hospitals (e.g, inside a ‘red ward’) and cause unnecessary isolation 

and economic impact for in an outpatient setting. If a test is flagged as inaccurate and it is decided that 

this test needs confirmation before the results can be trusted, no clinical action can be taken until this 

confirmation is obtained, which defeats the purpose of a fast test.  

The regulatory aspect of novel tests during a pandemic scenario has been complex and the dimension of 

this process during the SARS-CoV-2 pandemic was unprecedented. Due to the urgent need for testing 

solutions, many abbreviated validation studies were accepted by the scientific community and by 

regulatory agencies such as the FDA with initial or partial evaluations, and few platforms have had their 

real-life performance assessed before being released to the market. Despite showing good accuracy in 

internal laboratory validations, multiple POC platforms for SARS-CoV-2 diagnosis had a lower-than-

expected performance once released for clinical use9. This topic was the subject of political and juridical 

debate10 and resulted in some previously approved tests being later revoked from the market11. There are 

many examples of disparities between manufacturer claims and laboratory-only evaluations and data from 

clinical trials. For instance, the platform ID Now (Abbott) claim a sensitivity of 100% and a specificity of 
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100% on the product’s package insert12, but clinical evaluations have showed sensitivities below 50%13 or 

75%14. Another example is the study conducted by Jokela et al15, where the Mobidiag Novodiag had 

93.4% (100/107) sensitivity in archived samples but only captured 60% (3/5) positive samples in a 

clinical setting (the clinical study could not obtain more positive samples due to a decline in prevalence). 

It is well known that results from laboratory-only evaluations differ from results of clinical studies. 

Usually, evaluating an intervention in patients in real-life scenarios has an increased level of complexity. 

In the particular situation of SARS-CoV-2 testing, there are many possible reasons for those 

discrepancies. The first group of differences stem from factors related to the patients themselves, such as 

tolerance to swabbing and the presence of inhibitors in the nasopharynx secretions. There has been debate 

regarding the reliability of viral load and Ct values16, suggesting that viral load may greatly vary not only 

with the stage of the disease but also depending on the quality of swab collection and elements like 

dilution of swabs in a buffer and the RNA extraction process; therefore, it appears to be important for a 

platform to have a low limit of detection regardless of the ‘average’ viral load in a group of patients to 

miss as little cases as possible. The presence of inhibitors on samples is also relevant, as many platforms 

describe interactions between food, beverages and medications and their amplification chemistry in their 

instructions for use or package inserts12. Once a sample is already known positive (with a known Ct value 

or an estimation of viral load) and has been selected in a panel for a comparison against other platform, 

this risk of poor-swabbing technique and inhibitors become non-existent, and therefore laboratory only 

evaluations may report higher sensitivity than what would be expected in a clinical setting.  

Another group of differences is related to the feasibility of the workflow of the proposed testing platform 

in a true POC scenario, including the technique of swab collection and the expertise needed to conduct 

testing (such as sample preparation, machine operation, and cleaning). Many tests that claim the 

possibility of use in a true POC setting would find resistance to adoption due to technical complications, 

as it is the case of most Loop mediated isothermal amplification (LAMP) assays (e.g, Yamazaki et al17). 

There are also factors related to the particularities of the pandemic scenario and the precautions needed to 

prevent cross-infections, including the desirable use of viral inactivation techniques in samples and the 

unfeasibility of amplification techniques that may end up releasing amplicons in a proper clinical setting, 

thus possibly increasing false-positive results. Furthermore, there are differences between laboratory 

evaluations and clinical settings; pre-selection of samples and repeating experiments is possible in a 

laboratory setting, but much harder inside a clinical workflow. On top of that, the risk of false-positives in 

hospitalar environments is elevated, especially in areas of high movement and turnover like emergency 

departments, outpatient settings and clinical wards. 

POC diagnosis plays an important role in SARS-CoV-2 management. Faster diagnosis speeds up isolation 

measures and therefore the prevention of new outbreaks. In the same way, faster confirmation of SARS-

CoV-2 absence helps avoiding unnecessary isolation for individuals and their contact groups, providing 

social and economic benefit. The workflow of patients inside a hospital can be greatly facilitated by using 

tests that are reliable and provide a fast result, aiding in the placement of patients inside red or green 

wards and preventing SARS-CoV-2 nosocomial spread while freeing up rooms and improving the 

capacity of emergency departments. For example, in the study conducted by Collier et al using the 

SAMBA platform18, mean length of stay on COVID-19 “holding” (or “amber”) wards was reduced by 

nearly 30h using the POC test. Additionally, timely interventions like the use of dexamethasone in 

patients requiring respiratory support19 or the use of interleukin-6 receptor antagonists in critically ill 

patients20 benefit from a fast diagnostic modality, especially considering the waiting-time for a centralised 

test result can be up to 48h in some centres. 
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In this review, we are going to address the POC platforms for SARS-CoV-2 diagnosis, which can be 

divided into molecular tests (that use some sort of nucleic acid amplification) and antigen tests (that target 

SARS-CoV-2 antigens), focusing especially on clinical trials of their performance in real life settings. Our 

criteria was rigidly tailored to exclude samples that were pre-selected and testing conducted in laboratory 

conditions with frozen samples. The objective of this study is to help clinicians, healthcare providers and 

organisations to understand the real-life performance of POC assays, aiding in their implementation in 

decentralised, true point-of-care facilities or in more complex healthcare environments with safety. 

Other reviews of point-of-care assays targeting SARS-CoV-2 exist and use different inclusion criteria for 

studies. Dinnes et al21 have published a review that includes 64 studies for 16 antigen platforms and 5 

molecular assays, with data up to September 2020. This study attempted to divide the studies between 

symptomatic and asymptomatic individuals, and also included laboratory-only evaluations and 

retrospective studies, which escapes our goal. Yoon et al22 conducted a study using the FDA Emergency 

Use Authorization (FDA-EUA) authorized point-of-care tests up to August, 2020, in which 26 studies 

were analysed. Hayer et al23 reviewed antigen tests but only included assays not needing a separate 

reader. Considering the novelty of the topic, we encourage readers to evaluate these and other studies to 

obtain a clearer picture of the field. Other POC diagnostic technologies that have been in use in the 

management of COVID-19 patients, like the use of POC ultrasound for patient follow-up after diagnosis, 

escape the scope of this work.  

1. Methodology 

This systematic review was conducted following Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses (PRISMA) guidelines. 

After debate between the authors, a broad search phrase was defined with the intention to capture a large 

number of studies, given the novelty of the field. Filtering results by date using the abovementioned 

algorithm was not necessary, since the name SARS-CoV-2 was coined after the identification of the 

pathogen in 2019. 

2.1 Search strategy 

MEDLINE database was searched on 04/04/2021 for 345 results. The algorithm used was “((point-of-

care) AND (SARS-CoV-2)) AND (performance) OR ((point-of-care) AND (SARS-CoV-2)) AND 

(evaluation)”.  

MedRxiv database was searched on 04/04/2021 for 365 results. The algorithm used was "((point-of-care) 

AND (SARS-CoV-2)) AND (performance) OR ((point-of-care) AND (SARS-CoV-2)) AND 

(evaluation)". 

BioRxiv database was searched on 04/04/2021 for 54 results. The algorithm used was: “((point-of-care) 

AND (SARS-CoV-2)) AND (performance) OR ((point-of-care) AND (SARS-CoV-2)) AND 

(evaluation)”. 

2.2 Exclusion criteria 

-Study is unrelated to point-of-care testing; 

-Platform is not point-of-care (e.g requires the use of centralised equipment); 

-Test main focus is not acute diagnosis (e.g antibody assays); 
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-Study is not a clinical trial (e.g proof of concepts, validations, studies conducted with frozen samples, 

test conducted in laboratory conditions); 

-Samples extracted from patients were processed before testing; 

-Population was fully pre-selected (e.g, only known positives were enrolled); 

2.3 Selection process 

2.31 Defining a point-of-care assay 

The definition of a point-of-care diagnostic assay is not straightforward, since there are no rigid criteria 

for reference. The defining factor is being able to provide a diagnostic solution near the patient, thus 

removing the need for a centralised processing facility. While some platforms are totally mobile, being 

able to travel to the patient’s location, and thus clearly defined as POC, others require the use of an 

energy source, centralised computers, or tablets. Other platforms require multiple preparation steps before 

test conduction (such as the need for RNA extraction, the use of a centrifuge, heating blocks or multiple 

pipetting steps), even though the final testing step can theoretically be conducted near the patient - this is 

the case of most LAMP platforms. On top of that, requirements for isolation and measures for preventing 

infection spread further complicated this definition during the SARS-CoV-2 pandemic. We therefore 

recognize the definition of a POC platform has level of subjectivity. Aligned with our objectives, in this 

review, we considered an outpatient community setting as our reference point. Therefore, assays that use 

reagents that require processing in a central laboratory or facility were excluded from our analysis. The 

rational for that is that these platforms could not be operational without such facilities in the vicinity and 

therefore could not be implemented in the community in a truly POC fashion. Based on the information 

available in publications and manufacturer manuals, platforms that are judged to be technically capable of 

community implementation will be included and have their potential limitations/considerations (e.g, the 

requirement for cold chain storage or the need for a desktop computer) described in the comments of our 

results table. 

2.32 Defining our target trials and comments about the criteria 

Because of the disruption and urgency caused by the pandemic, many studies have not followed rigid 

clinical trial designs, and a high level of heterogeneity between the methods and designs was noticed. 

Issues such as need for self-isolation, patient discomfort upon repeated swabbing, multi-platform 

evaluations and insufficient number of positive samples during low-incidence scenarios affect the 

feasibility of the studies and need to be taken into consideration when proposing a review. For instance, 

the study of Tu et al24 evaluating the ID NOW platform (Abbott) had an original design to enroll 200 

positive patients, but a prevalence drop made the study unaffordable. Given the heterogeneity of the trials, 

finding a rigid, unifying criteria for inclusion was difficult and would make this review impossible.  

In this work, as mentioned, our goal is reviewing the efficacy of the platforms in real life scenarios. 

Therefore, we included studies that tested platforms in real patients in a true point-of-care fashion and 

excluded laboratory-only evaluations. As a consequence, we have excluded from our analysis all proof-

of-concept papers and studies that used spiked samples. We have also excluded platforms that used solely 

pre-tested frozen samples, as we understand that these conditions are vastly different from conditions 

found in the field; as mentioned before, the selection of frozen samples may remove samples with 

inhibitors, invalid or borderline results, and with low viral-loads, fauvoring samples with high Ct values.  

Naturally, many trials used cooled or frozen samples at some point, especially when considering multi-

platform evaluations. We tended to consider time from sample collection to testing in our selection 
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criteria; while it was impossible to decide on a clear cut-off time, this was often informative. Samples that 

were stored for a brief period of time to allow testing with a POC platform were accepted. While this 

likely does not have the same value as immediate point-of-care testing, it is often a necessary 

accommodation for validation studies where a comparator assay is used. As an example, Lephart et al 

collected samples from 88 patients (13 of which were known positive), stored at 4 °C and tested within 

24h; this study was included in our table. On the other hand, studies using samples that were part of 

frozen panels tested in retrospect, often weeks after sample collection, tended to be excluded. As an 

example of our criteria, we did not include the work by Corman et al25 who have conducted a comparison 

of seven SARS-CoV-2 antigen tests available in Europe because processed samples were used and only 

negative swabs were collected from real patients. Therefore, we strongly favored prospective studies.  

Given the heterogeneity of designs and the conditions for studies, we debated between authors before 

inclusion when methods were not clear. For instance, Cerutti et al conducted a trial with 330 patients and 

only a minority of frozen samples was included (n = 13); this trial was included in our criteria26. In the 

other hand, a prospective study by Courtellemont et al27 was not included in analysis as known positive 

patients were pre-selected to enroll; therefore, operators knew the status of the patients beforehand. A 

similar situation happened in the study conducted by Ghofrani et al28, which conducted an comparison 

with known positive patients and selected eligible samples; the methodology of this study was not clear 

and the sensitivity, reported as 96.7%, is much higher than usually reported in literature for antigen 

assays29. 

The vast majority of studies used nasopharyngeal samples, although a few studies used nasal samples 

only. Studies evaluating point-of-care assays using saliva samples do exist30,31 and usually to show a 

decreased performance; for instance, Basso et al32 found a sensitivity of only 13% testing saliva on 

antigen tests; similarly, performance of saliva samples was inferior in the study by Agulló et al33 

evaluating the Panbio assay. We therefore reported the results for either nasopharyngeal or nasal swabs 

and (as per manufacturer’s advice) when they were part of an assessment with multiple samples. When 

collection methods were compared (e.g, sensitivity of self-swab against healthcare collection34,35), we 

reported the results obtained by professional swabbing. 

We also excluded studies where POC assays were compared to other POC assays, as we understand no 

proper gold-standard was employed in those situations. An example is the study conducted by Basu et 

al36, where Abbott ID Now COVID-19 was compared against the Cepheid Xpert Xpress SARS-CoV-2 

without a PCR standard. It is important to mention that the reliability of the gold-standard was questioned 

in some studies37; ideally, a reference standard would be built using more than one assay13, cross-checked 

clinical information, radiological evidence and other laboratory information (e.g antibody production, 

viral markers or inflammatory makers), but this is understandably complex and unfeasible in many 

scenarios.  

We also carefully considered the population type in the studies. Naturally, testing known-positive patients 

presents a bias. Due to challenges imposed by factors such as lockdowns, the urgency needed for results, 

different prevalence levels, differences in viral load between different days of disease and the size of the 

trials, some studies tested known positive populations in order to have statistically significant data for 

sensitivity. If a study was done solely in known positive patients, we tended to exclude it from our table. 

On the other hand, studies that complemented a prospective evaluation by testing positive populations in 

a randomized way were accepted, provided the proportion was reasonable. As an example, Basso et al 

tested antigen assays in 139 selected inpatients (this population had a 60% positivity rate) and 96 

outpatients prospectively (3% positivity rate); we included this study in our table. Some studies tested 

exclusively in a paediatric population, and were also included38.  
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Taking these factors into consideration, trials were judged on the overall level of heterogeneity in their 

methodology. In the study conducted by Osterman et al39 evaluating 2 antigen platforms, there was a 

significant variability between 2 sites as samples were collected in different time-frames (site 1 from 

March to October 2020 and site 2 between November-December 2020) and some samples in site 1 had 

different storage methods, with some being frozen for days before testing. After discussion, we decided to 

include this study in our table. Other studies like Marti et al40 were excluded due to a high level of 

heterogeneity in their methods, using both a POC and a centralised PCR as their standard and using 

different populations, including a population of known positive individuals. We attempted to include 

detailed explanations of the reasons for inclusion or exclusion of individual trials in the next section of 

this review. 

2.33 Technical information on platforms 

We investigated package inserts, instructions for use, comments on published studies and manufacturers 

websites in order to assess feasibility of POC placement and additional information that may be relevant 

to the end user. Apart from sensitivity and specificity, we included time to results, hands-on time, kit 

storage, machine operating conditions and regulatory status in the table. We also made comments on 

testing requirements and additional details that were deemed relevant. We opted to use publicly available 

information, such as the instructions for use in the FDA website12, when possible; when that information 

was unavailable, we attempted to obtain the package insert by contacting the manufacturers or looking at 

public information published by hospitals, government entities and other third-party institutions using the 

platform.   

2. Results 

 

Figure 1: identification, screening, eligibility, exclusion criteria and studies included in this review 

3.1 Excluded studies and studies debated between authors 
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Multiple studies were excluded in our final screening as tests were conducted using spiked or synthetic 

samples. The study by Zheng et al41 evaluating an unnamed lateral flow dipstick assay is one example. 

Another example is the work of Tanida et al42, evaluating the ARIES SARS-CoV-2 Assay; this study was 

excluded as the comparison was made against another POC assay (Xpert Xpress SARS-CoV-2) and used 

patient samples with defined copy numbers and synthetically spiked samples.  

As the case of most LAMP assays, the saliva LAMP assay proposed by Yamazaki et al17 was not deemed 

to be feasible in a true point-of-care scenario as it requires RNA extraction, a heat block and apparently 

multiple pipetting steps, and therefore a reasonable level of expertise. The assay was also tested with pre-

selected samples. The study by Yoshikawa et al43 is another example of an excluded study using LAMP 

technology. 

The study conducted by Peto et al44 regarding the LamPORE platform was not included in the analysis as 

the platform was not deemed to be POC. RNA needs to be extracted and primers have to be added and 

incubated with a thermocycler, followed by multiple manual steps. The trial also was conducted with pre-

selected, frozen samples. For similar reasons, the study by Singha et al45 using a glucose meter to detect 

SARS-CoV-2 was not included, as the test requires a centrifuge, a magnet, and incubation in water baths. 

This evaluation was also conducted with known positive samples only. 

Agulló et al evaluated nasopharyngeal, nasal only, and saliva samples against nasopharyngeal samples in 

the Cobas z 480 Analyzer (Roche). Because of this division, sample size ended up being small and 

heterogeneous. The concordance for positive results was 57.3% for nasopharyngeal samples and as low as 

23.1% in saliva; we included the results of the nasopharyngeal testing in our table. Studies conducted 

with frozen samples are available for this assay46, but as mentioned above, were not included in our 

review.  

Basso et al32 tested antigen assays in both saliva and NPS in a mixed population (139 inpatients, 96 

outpatients), providing individual figures of sensitivity and specificity for the NPS samples. Since the 

comparator gold-standard was also tested in saliva and NPS, the ultimate gold standard was unclear. In 

the case of antigen tests, the detailed number of individuals to give the figures for sensitivity and 

specificity were not provided in the study or in the supplementary material to the best of our knowledge. 

We decided to include this study in our table with a commentary pointing towards the fact that the 

number of individuals used to make the figures was an estimation made for practical purposes and was 

not provided in the original paper; therefore, it may reflect slightly different patient numbers. 

Halfon et al47 study was not included as samples were pre-selected based on symptom onset and Ct value. 

Similarly, the study conducted by Jääskeläinen et al48 evaluating 3 antigen platforms was not included due 

to the use of pre-selected, known-positive frozen samples.  

An unnamed antigen test by R-Biopharm was also evaluated by Toptan et al49 but this study was not 

included in our table given that testing was conducted in archived samples only. In line the same criteria, 

the evaluation of the SIENNA™ COVID-19 Antigen test by Bouassa et al50 was not included in our table 

as the comparison was made in the laboratory with frozen samples. The study by Mitchell and George51 

evaluating the ID NOW assay and the study by Assennato et al52 evaluating the SAMBA-II platform were 

excluded for the same reasons. The study by Stevens et al53 evaluating the Cepheid Xpert Xpress SARS-

CoV-2 assay was also not included given the analysis was made on frozen, pre-selected samples. 

Consequently, the study by Young et al54 assessing BD Veritor and the Sofia 2 SARS Antigen test was 

excluded as samples were shipped frozen and evaluations happened in a laboratory setting. Miscio et al55 

evaluated the bKIT Virus Finder COVID-19” (Hyris Ltd); this study used frozen samples which were 

further manipulated, and therefore was not included in our list of trials. 
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Hoehl et al56 study using the RIDA® QUICK SARS-CoV-2 (R-Biopharm) was not included as a minimal 

number of samples were tested with a confirmation method, and thus false negative results could not be 

determined.  

The study by Mlcochova et al57 was not included in our table because (1) the methodology used frozen 

pre-selected samples, (2) antibodies were evaluated together with NAAT tests, making the selected time-

frame for analysis questionable (NAAT was used to test samples up to 28 days after symptoms), (3) the 

criteria used for the reference standard was not entirely clear and (4) the number of samples was small 

(n=45). For similar reasons, the study by Veyrenche58 et al was not included in our list. 

The study by Micocci et al59 regarding the POCKIT™ Central Nucleic Acid Analyzer was not included as 

the low number of positives prevented the study from being a proper diagnostic accuracy study; the 

objective was to evaluate the feasibility of POC testing in care homes in England. 

After discussion between authors, the study by Olearo et al60 that evaluated 4 antigen tests was not 

included in the table for having openly deviated from the manufacturers recommended sample 

matrix/handling instructions and presenting a sensitivity between 49.4-54.9%%, which is on the lower 

side of what is expected for antigen tests.  

The methodology in the study by Hogan et al61 evaluating the Mesa Accula assay (now the Thermo 

Scientific™ Accula™ SARS-CoV-2 Test after acquisition by Thermo Fisher) was not totally clear, since 

there is no mention of frozen samples or time to test after sample collection. However, it appears that 

samples were pre-selected (N=100) and tested in a laboratory after being tested by a centralised PCR 

assay. We therefore believe that this study, which showed a sensitivity of 68% and a specificity of 100%, 

is unlikely to accurately reflect results in the field. 

A different methodology was used by Rastawicki et al62 evaluating the PCL COVID-19 Ag rapid 

fluorescent immunoassay (FIA); 4 swabs were collected in the course of 2 days and antibodies were also 

evaluated. We considered the comparison between RT-PCR and antigen test straightforward enough for 

the trial to be included in our table, despite the low number of patients enrolled. 

The study by Regev-Yochay63 could not be included as multiple antigen platforms were classified as a 

whole, and individual data for individual assays was not available. 

The study by Smithgall et al64 regarding the Cepheid Xpert Xpress and Abbott ID Now was not included 

as only remnant patient samples were tested; therefore, the platforms were not evaluated in a proper 

clinical environment. Loeffelholz et al65 study evaluating the Xpert Xpress SARS-CoV-2 was excluded as 

all but one site tested the platform with remnant frozen samples. The study by Wolters et al66 on the same 

platform was also excluded as it only evaluated diluted and processed sample panels in a laboratory 

setting. 

Jokela et al15 has made two different evaluations of the Novodiag by Mobidiag where, by our 

understanding, an initial phase was a laboratory evaluation and the second phase was a prospective 

clinical trial. However, there was a major drop in prevalence in the second phase of the study, which only 

enabled collection of 5 positive samples in a population of 362 individuals. We included the second phase 

of this trial in our table despite the low number of positive samples. 

Moeren et al67 study evaluating the BD Veritor antigen test had a mixed design, where 352 symptomatic 

adults were evaluated prospectively and known-positive individuals (n = 123) were added to the pool, 

visiting them at home within 72h of their RT-PCR positive result. Because the assay was tested in a true 

point-of-care fashion and this was necessary to obtain statistical significance, we decided to include this 
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study in our table. We also reported the specificity considering the 2 false-positive results obtained by the 

analyser, not considering the eye readings. 

3.2 Comments on reference standards, sensitivity, specificity, positive predictive value (PPV) and 

negative predictive value (NPV) 

POC tests have to be compared against a selected gold-standard in order to have their performance 

evaluated. This standard is PCR in the vast majority of the studies (as mentioned above, some studies 

used another POC platform as a comparison and were excluded from our analysis). It is important to 

understand that the performance numbers reflect values against a reference standard, which is not always 

necessarily better or more accurate than the object of study. Most studies used a third platform as a tie-

breaker in this context and the results of this full analysis were considered whenever the authors identified 

this was the case. As mentioned previously, if a clear reference standard was used using antibodies and/or 

clinical and radiological evidence, this was also taken into consideration. 

Positive predictive value (PPV) and negative predictive value (NPV) are useful to understand how much a 

result can be trusted given the prevalence of a disease in a certain time. Assays are always trialed in a 

setting with an estimated prevalence in a given time, and for diagnostic assays, the own study results with 

the reference method provide an estimation of the prevalence in the tested population. PPV and NPV 

change accordingly depending on the prevalence of the setting. For instance, the study of an antigen test 

by Peña et al68 reported a sensibility of 69.86%, a specificity of 99.61%, but a PPV of 94.44% and a NPV 

of 97.22% given the prevalence in that setting was 8.64%. In this work, we avoided using PPV and NPV 

projections whenever possible and aimed to report the provided ‘sensitivity’ and ‘specificity’ values, even 

though we recognize these values are intertwined. The decision to not use PPV and NPV projections was 

made because (1) in rapidly contagious diseases like SARS-CoV-2, an accurate real-time monitoring of 

prevalence parameters is difficult, in contrast to what is found for diseases with a clearly defined and 

predictable epidemiology; therefore the prevalence of SARS-CoV-2 infection in a given setting may 

change rapidly considering outbreaks, lockdowns, and new variants, (2) an accurate real time monitoring 

of SARS-CoV-2 regional prevalence is challenging even for developed countries, resulting in prevalence 

values that are often retrospective (3) an assay performance can be distorted using different prevalence 

levels and (4) an analysis including multiple PPV and NPV projections would make this study more 

speculative and less practical. We strongly suggest that the referenced trials are read in full for further 

information and clarification of performance as the term ‘sensitivity’ and ‘specificity’, as reported in this 

review, are always relative to prevalence in the particular setting of the study. 

3.3 Included studies 

We present the included studies in tables below. NAAT tests are grouped separately from antigen tests 

and have a column with testing requirements. While most manufacturers used viral RNA copies/ml in a 

dilution to assess platforms limit of detection, some manufacturers used plaque forming units (PFU) 

instead of viral RNA copies/ml. We presented the limit of detection in copies/ml if both information were 

available, but followed manufacturer’s instructions for use. The limit of detection of the different assays 

was converted into a copies/ml format when possible (for instance, if this value was given in copies/uL). 

We also did not include a claimed limit of detection for antigen assays. 

NUCLEIC ACID AMPLIFICATION POINT-OF CARE TESTS WITH REAL-LIFE CLINICAL 

EVALUATIONS (PART 1) 

 Cobas Liat 

(Roche) 

CovidNudge (DNA 

Nudge) 

Cue COVID-19 

(Cue) 

ID Now (Abbott) Novodiag 

(Mobidiag)  
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Testing 

requirements 

Requires strict 

temperature 

control for kit 

storage 

Requires disposable 

scissors (not 

provided by 

manufacturer), and 

an iPad; likely 

requires a 

refrigerator for kit 

storage 

 

Requires strict 

temperature 

control for kit 

storage 

- Requires 

strict 

temperature 

control for 

kit storage 

Sensitivity 100% (162/162)69 94% (67/71) 70 91.7% (22/24)71 48% (12/25) 13 

74.73% (139/186)14 

91% (30/33) 72 

91.3% (21/2)24 

60% (3/5)15 

Specificity 97.4% 

(190/195)69 

100% (315/315) 70 98.4% 

(239/243)71 

99.4% (336/338)14 

100% (63/63)13 

100% (151/151)72 

100% (762/762)24 

 

99.7% 

(355/356)15 

Claimed 

limit of 

detection  

12 copies/ml12 5000 copies/ml73 1300 copies/ml12 125 copies/ml12 313 

copies/ml74 

Time to 

results 

~20 minutes12 75 minutes73 25 minutes (post 

pre-heating)12 

13 minutes or less12 80 min75 

Hands on 

time 

1 minute12 1 minute73 1 minute12 2 min12 1 min74 

Kit storage 2-8oC12 25oC or less73 15-30oC12 2-30oC12 18-25oC74 

Machine 

operating 

conditions 

15-30oC12 16-30°C73 15-30oC12 15-30oC12 15-30oC74 

Regulatory 

status 

FDA EUA, CE12 N/A FDA EUA12 FDA EUA, CE12 CE75 

Additional 

Details 

For the only trial 

fitting criteria 

available for this 

platform, Invalid 

specimens on Liat 

testing were 

excluded (n = 3). 

FDA Issued risk 

of false positives 

from leaking 

tubes76 

 

Invalid rate of 5.7%. 

Report from March 

2021 from the UK’s 

government 

Department of 

Health and Social 

Care shows a 

sensitivity of 82.1% 

and a specificity of 

99.1% after 

evaluation in 11 

sites (details 

unpublished)77  

8.6% 

invalid/cancelled 

results 

(25/292)71 

 

- - 

N/A = not available 
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NUCLEIC ACID AMPLIFICATION POINT-OF CARE TESTS WITH REAL-LIFE CLINICAL 

EVALUATIONS (PART 2) 

 QIAstat-Dx 

(Qiagen) 

RapiPrep 

(MicrosensDx) 

SAMBA-II 

(Diagnostics for 

the Real World) 

VitaPCR 

(Credo) 

Xpert Xpress 

(Cepheid) 

Testing 

requirements 

Requires strict 

temperature 

control for kit 

storage 

Details unclear Requires a tablet 

for test conduction; 

relatively long time 

to results 

Requires strict 

temperature 

control for kit 

storage 

Likely requires a 

refrigerator for 

kit storage; it 

requires a 

computer for 

results delivery 

of results12.  

Sensitivity  100% (23/23)78 80% (8/10)79 96.9% (31/32)18 90% (126/140) 
80 

99.3% 

(155/156)37 

100% (25/25) 13 

Specificity  90% (18/20)78 73% (8/11)79 100% (117/117)18 94.7% 

(358/378) 37 

99% (98/99)80 

97% (60/62)13 

Claimed limit of 

detection 

500 copies/ml12 N/A 250 copies/ml81 2730 

copies/ml82 

0.0200 PFU/mL 

(plaque forming 

units)12 

Time to results 67 min12 25 min on 

average79 

86-101 min81 20 min82 30-45 min83 

Hands on time 1 min12 N/A 1 min81 1 min82 1 min83 

Kit storage 15-25oC12 N/A 2-37oC81 15-30oC82 2-28oC12 

Machine 

operating 

conditions 

15–30°C84 N/A 10-38oC81 10-38oC82 15-30oC12 

Regulatory status FDA, CE12 N/A CE81 CE82 FDA EUA, CE83 

Additional 

Details 

Multi-pathogen 

assay, tests 22 

pathogens12 

Test consists of 

extraction 

followed by RT-

LAMP; details 

are unclear85 

- - Gene E is not 

specific for 

SARS-CoV-2; 

samples 

exclusively 

positive for E 

gene need 

retesting 

(presumptive 

positive results)12 

N/A = not available 

 

ANTIGEN POINT-OF CARE TESTS WITH REAL-LIFE CLINICAL EVALUATIONS (PART 1) 

 AAZ-LMB BINAXnow PANBIO (Abbott)  mariPOC SARS-
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COVID-VIRO® 

(AAZ) 

(Abbott) CoV-2 

(ArcDia) 

Sensitivity 84.1% (116/138)86 77.4% (226/292)87 38.6% (39/101)88 

48.1% (38/79)89 

46.67% (7/15)90 

57% (76/132)33 

60.5% (118/195)91 

66% (58/88*)32 

66.4% (148/223)92 

71.4% (100/140)93 

73.3% (44/60)94 

74% (186/250)95 

77.7% (14/18)38 

79.6% (43/54)96 

82.1% (602/733)97 

84% (59/70*)98 

85.5% (106/124)99 

86.1% (101/122)86 

86.8% (92/106) 100 

86.1% (249/268)101 

90.5% (325/359)102 

 

92.3% (12/13) 103 

Specificity 100% (186/186)86 99.4% 

(2002/2016*)87 

98% (56/57*)98 

98.8% (592/599)102 

99% (145/146*)32 

99.1% (3420/3450)97 

99.5% (184/185)88 

99.61% (3146/3158)90 

99.8% (519/520)33 

99.8% (1220/1222)93 

99.9% (1000/1001)100 

99.9% (3738/3741)95 

99.9% (1341/1343)101 

100% (217/217)89 

100% (368/368)92 

100% (369/369*)96 

100% (422/422)38 

100% (195/195)94 

100% (709/709)91 

100% (149/149)86 

100% (411/411)99 

100% (198/198)103 

Time to results 15 min104 15 min12 15-20 min105 20-55 min106 

Hands on time 3 min104 1 min12 5 min105 N/A 

Kit storage 2-30 oC104 2-30oC12 2-30oC105 N/A 

Machine 

operating 

conditions 

Nil (cassette)104 Nil (antigen card)12 Nil (cassette)105 N/A 

Regulatory status CE104 FDA12 CE/WHO EUL105 CE106 

Additional Details - - Reagents must be brought 

to room temperature 30 

min before use when stored 

in a refrigerator105 

- 

N/A = not available 
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*numbers were calculated based on information on paper but not explicitly provided by authors. 

 

ANTIGEN POINT-OF CARE TESTS WITH REAL-LIFE CLINICAL EVALUATIONS (PART 2) 

 2019-CoV Ag 

Fluorescence Rapid 

Test Kit (Bioeasy) 

BD Veritor 

(BD) 

COVID-19 

antigen 
Respi-Strip 

(Coris) 

QuickNavi™

-COVID19 

(Denka) 

ESPLINE 

rapid test 

(Fujirebio) 

SARS-CoV-

2 Antigen 

(Innova) 

Sensitivity 66.7% (10/15)107 80.7% 

(112/140)*67 

37.1% 

(13/35)108 

50% (4/8)107 

50% 

(47/94)109 

86.7% 

(77/91)110 

48% (42/88*) 
32 

86.4% 

(242/280)111 

Specificity 93.1%(663/712)107 99.4% 

(330/332)67 

95.8% 

(392/409)107 

100% 

(328/328)108 

100% 

(44/44)109 

 

100% 

(1081/1081)11

0 

100% 

(146/146*)32 

95.1 

(426/448)%1

11 

Time to 

results 

10 min 15-20min12 15-30 min112 N/A 30 min113 20-30 min114 

Hands on 

time 

N/A N/A N/A N/A >5 min113 2 min114 

Kit storage N/A 2-30oC12 4-30oC112 N/A 2-30oC113 2-30oC114 

Machine 

operating 

conditions 

Nil (Ag cassete) 2-30oC12 Nil (Ag 

cassette) 

N/A Nil (Ag 

cassette) 

Nil (Ag 

cassette) 

Regulatory 

status 

N/A FDA12 CE112 N/A CE113 CE114 

Additional 

Details 

- - - - - - 

N/A = not available 

*numbers were calculated based on information on paper but not explicitly provided by authors. 

 

 

ANTIGEN POINT-OF CARE TESTS WITH REAL-LIFE CLINICAL EVALUATIONS (PART 3) 

 SARS-CoV-2 

Antigen Rapid 

Test Kit 

(Lepu 

Medical) 

LumiraDx 

SARS-CoV-2 

(LumiraDx) 

MEDsan® 

SARS-Cov-2 

(MEDsan) 

NADAL® 

COVID-19 

(Nal 

vonminden) 

PCL COVID-

19 Ag rapid 

(PCL) 
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Sensitivity 45.5% 

(46/101)88 

82.2% 

(120/146)115 

97.5% 

(39/40)116 

 

36.51% 

(23/63)90 

56.52% 

(13/23)90 

38.9% (14/36)62 

Specificity 89.2% 

(165/185)88 

99.3% 

(611/615)115 

97.7% 

(380/389*)116 

99.62% 

(1010/1014)90 

100% 

(783/783)90 

83% (38/46*)62 

Time to results 15 min117 12 min12 15-20min118 N/A 10min119 

Hands on time >5 min117 2 min12 2 min118 N/A N/A 

Kit storage 4-30oC117 2-30oC12 2-30oC118 N/A N/A 

Machine operating 

conditions 

Nil (Ag card) 15-30oC12 Nil (Ag 

cassette) 

N/A N/A 

Regulatory status CE117 CE, FDA12 CE118 N/A N/A 

Additional Details Recalled from 

market due to 

likely risk of 

false results120  

- - - - 

N/A = not available 

*numbers were calculated based on information on paper but not explicitly provided by authors. 

 

ANTIGEN POINT-OF CARE TESTS WITH REAL-LIFE CLINICAL EVALUATIONS (PART 4) 

 BIOCREDIT 

COVID-19 Ag 

(RapiGEN) 

SARS-CoV-2 Rapid 

Antigen Test 

(Roche) 

STANDARD Q 

COVID-19 Ag Test 

(SD Biosensor) 

CLINITEST® 

Rapid COVID-

19 Antigen 

Test (Siemens) 

SGTI-flex 

COVID-19 Ag 

(Sugentech) 

Sensitivity 56.4% (44/78)67 43.6% (44/101) 88 

50.3% (224/445)39 

45.4% (173/381)39 

62.3% (139/223)92 

69.86% (51/73)68 

70.6 % (77/109)26 

76.6% (36/47)107 

79.5% (31/39)35 

84.9% (158/186)121 

85% (34/40)34 

89% (170/191)99 

92.9% (104/122)86 

51.5% 

(52/101)88 

73.5% 

(78/106)*122 

52.6% 

(41/78)123 
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Specificity 100% (28/28)123 96.2% (178/185) 88 

97.7% (377/386)39 

97.8% (352/360)39 

99.1% (105/106)34 

99.3% (1207/1216)107 

99.5% (366/368)92  

99.5% (780/784)121 

99.6% (249/250)35 

99.61% (766/769)68 

99.7% (337/338)99 

100% (221/221)26 

100% (221/221)86 

98.4% 

(182/185)88 

100% 

(164/164)*122 

96.4% 

(26/27)123 

Time to 

results 
15-30 min124 15-30 min125 15-30 min126 15 min127 15 min128 

Hands on 

time 
>5 min124 2 min125 2 min126 >5min127 N/A 

Kit storage 1-40oC124 2-30oC125 2-30oC126 2-30oC127 N/A 

Machine 

operating 

conditions 

Nil (test device)124 Nil (Ag cassette)125 Nil (Test device)126 Nil (Ag 

cassette)127 

Nil (Ag 

cassette)128 

Regulatory 

status 
CE124 CE125 CE126 CE127 N/A 

Additional 

Details 
- - - - - 

N/A = not available 

*numbers were calculated based on information on paper but not explicitly provided by authors. 

 

3 Discussion 

We identified 20 antigen platforms and 10 NAAT platforms with clinical trials that fit our defined 

criteria. A total of 30 platforms were covered by 51 studies, with some studies covering more than one 

platform. To the best of our knowledge, this is the first review to systematically evaluate POC test 

performance in real-life clinical practice. Considering the high heterogeneity of methods and outcomes 

between studies, and also the unbalanced number of studies per platform, we opted not to conduct a meta-

analysis in this study. We have decided against providing an ‘average’ performance for platforms as this 

would likely be misleading and would potentially downplay the method discrepancies in the trials. 

NAAT platforms, on average, take longer to provide results and require more equipment for test 

conduction compared to antigen tests. However, their results have shown to be more reliable in clinical 

practice. Applying selection criteria specifically targeted at prospective studies, we noticed important 

differences between performance reported by manufacturers and laboratory evaluations and performance 

in real-life conditions. While this is true for both NAAT platforms and antigen assays, the discrepancies 

were more extreme in the antigen group. Healthcare facilities, individuals and test providers must be 

aware of the real-life performance of the platforms before deciding on their implementation. We hope this 

systematic review can help making informed decisions regarding SARS-CoV-2 testing. 

The accuracy of diagnostic tests is affected by numerous factors, including days since symptom onset, 

individual viral load, quality of sample collection, site of sample collection (nasopharyngeal, nasal only, 

pharyngeal only, saliva only) and test modality (nucleic acid amplification x antigen). As previously 

mentioned, all studies included were compared to PCR assays, considered the gold standard for SARS-

CoV-2 diagnosis. Our results suggest a strong tendency of antigen tests to be less accurate than NAAT 

tests in real-life clinical trials. This finding is aligned with findings of other reviews21.  
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We also noticed differences in prevalence within the same test. For instance, the sensitivity of the antigen 

assay STANDARD Q COVID-19 Ag Test (SD Biosensor) varied between 45%-92%, and the sensitivity 

of the antigen test PANBIO (Abbott) varied between 38-90%. The explanations for the phenomenon of 

high variability in results, particularly in sensitivity, are likely multifactorial, including differences in 

SARS-CoV-2 prevalence between studies and differences in sample size and methodology. One such 

factor may be testing transporting and storage, as most antigen tests need to be stored between 5-30Co. 

Haage et al129 assessed eleven antigen tests and identified reductions of up to 10 fold in sensitivity for 

46% of the assays after 10 minutes outside the ideal temperature range; this number grew to 73% if the 

exposure lasted three weeks. Pollock et al87 had similar findings evaluating the BinaxNOW test. This 

finding is significant and may partially explain false negative results, considering that many regions have 

oscillations in temperature outside the target range and some factors like stock storage and transportation 

are beyond the end-user control. Point-mutations generating changes in the SARS-CoV-2 nucleocapsid 

protein structures can also play a role; Bourassa et al uncovered a 1000-fold loss in sensitivity for the 

Sofia Antigen test (Quidel) which was associated with the D399N mutation130. It is also important to point 

out that the high variability range in results may reflect a publishing bias, as these two platforms were the 

only ones with a relevant number of published studies. 

Additionally, we found some evidence that the sensitivity of antigen tests increases if they are used within 

the first days of symptoms, but this is still significantly inferior to the average performance of NAAT 

tests. For instance, Bulilete at el reported that the sensitivity of the Panbio assay improved from 71.4% to 

77.2% if the test was conducted in the first 5 days of symptoms93. However, a division between 

asymptomatic and symptomatic individuals has a questionable value because a significant portion of the 

asymptomatic individuals are in fact pre-symptomatic and will develop symptoms in the future, but may 

already be in the shredding phase; this becomes even more important if the individual has had a high-risk 

contact. On top of that, the definition of being symptomatic is subjective and depends of factors such 

threshold of perception and the memory of the tested individual, which is not always reliable in settings 

such as care-homes and acute hospitalar settings and for population such as children and cognitively 

impaired individuals. Additionally, timely interventions such as the use of dexamethasone in patients 

requiring respiratory support depends on confirmation of SARS-CoV-2 presence19; this is usually a late 

clinical presentation and it is reasonable to expect a portion of patients to present late to services.  

Some studies also showcased the implications of using tests with suboptimal specificity in settings of low 

prevalence. Hoehl et al56 used an antigen test for the self-testing of teachers at home, with the goal to 

prevent clusters of infections; out of a population of 602 individuals, 5 were confirmed positive but 16 

false positive results were recorded. The same concern was voiced by Kriemler et al131 when using 

antigen tests to assess the point-prevalence of acute SARS-CoV-2 infections in school children. In a study 

by Colavita et al, of 73,634 individuals in international airports, 1176 were reported antigen positive but 

only 34.3% of the were actually positive after NAAT test confirmation. 

Regarding kit storage, most platforms will require the use of refrigerated facilities given the average 

upper storage limit was 30oC. Some of them deserve mention for requiring strict temperature control, 

particularly the Cobas Liat (2-8oC), the QIAstat-DX (15-25oC) and Novodiag (18-25oC). Only 3 platforms 

have a published kit storage temperature above 30oC: SAMBA-II (NAAT), VitaPCR (NAAT), and 

BIOCREDIT (antigen). 

Time to results was highly variable between NAAT platforms, ranging from ~13 minutes (ID Now) to 

~90 minutes (SAMBA-II). The time to results of antigen platforms was usually below 30 minutes. 
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Hands-on time, used in this context as the time needed to prepare test conduction (prepare samples, load 

machine, configure test conduction) was usually around 1 to 2 minutes, and rarely over 5 minutes across 

all platforms.  

Some platforms had little information available about them, despite our best efforts to obtain package 

inserts or instructions for use. This was especially true for antigen tests. These platforms include the 

NADAL® COVID-19 (Nal vonminden), PCL COVID-19 Ag rapid (PCL), QuickNavi™-COVID19 

(Denka), 2019-CoV Ag Fluorescence Rapid Test Kit (Bioeasy), SGTI-flex COVID-19 Ag (Sugentech) 

and mariPOC SARS-CoV-2 (ArcDia). We have therefore included information to the best of our 

knowledge and signalized the information we could not obtain by writing “not available” in the table. 

We encourage readers to read the original studies used as the basis to our table. We also encourage the 

reading of other reviews of point-of-care assays targeting SARS-CoV-2 for a clearer picture of the field.  

4.2 Other assays 

Assays other than NAAT and antigen tests have also been used. We found a few studies using the 

FebriDx device (Lumos diagnostics), which captures Myxovirus resistance protein A (MxA - a marker of 

interferon-induced antiviral host response) and C reactive protein (a well-known and widely used 

inflammatory marker in medical practice). In one study, the platform had a sensitivity of 93% and a 

specificity of 86%132 (with an estimated prevalence of 48% in the studied population). There are other 

studies available regarding this assay133,134,135 but a comprehensive analysis of this platform escapes the 

purpose of our review. As the markers are commonly elevated for a range of pathogens, the test has a low 

specificity and has limited use in settings with low prevalence. 

Few platforms had a satisfactory number of clinical studies, and in many situations the number of 

individuals enrolled was suboptimal. Further research and reviews of this topic are encouraged. 

4.3 Limitations 

One of the main limitations of this review is the selection criteria. Considering the high heterogeneity of 

methods and outcomes between studies, finding a clear-cut unified exclusion criteria was not possible. 

We debated between authors when in doubt, but a level of subjectivity was inevitable. 

For the same reasons of heterogeneity, we opted not to conduct a meta-analysis in this study. Authors 

have decided against providing an ‘average’ performance for platforms as this would likely be misleading 

and would potentially downplay the method discrepancies in the trials.  

5. Other information 

5.1 Registration 

This review was registered in the International prospective register of systematic reviews (PROSPERO) 

with registration number CRD42021260694. A protocol for this study can be assessed online. 

5.2 Conflicts of interest 

GHH and AH are employed by Diagnostics of the Real World, who has a molecular assay that was 

mentioned in this systematic review. 
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