Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Epidemic models characterize seizure propagation and the effects of epilepsy surgery in individualized brain networks based on MEG and invasive EEG recordings

View ORCID ProfileAna. P. Millán, Elisabeth C.W. van Straaten, Cornelis J. Stam, Ida A. Nissen, Sander Idema, Johannes C. Baayen, Piet Van Mieghem, Arjan Hillebrand
doi: https://doi.org/10.1101/2021.09.20.21263459
Ana. P. Millán
1Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ana. P. Millán
  • For correspondence: a.p.millanvidal@amsterdamumc.nl
Elisabeth C.W. van Straaten
1Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Cornelis J. Stam
1Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ida A. Nissen
1Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sander Idema
2Department of Neurosurgery, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Johannes C. Baayen
2Department of Neurosurgery, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Piet Van Mieghem
3Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Arjan Hillebrand
1Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

Abstract

Background Epilepsy surgery is the treatment of choice for drug-resistant epilepsy patients. However, seizure-freedom is currently achieved in only 2/3 of the patients after surgery. In this study we have developed an individualized computational model based on functional brain networks to explore seizure propagation and the efficacy of different virtual resections. Eventually, the goal is to obtain individualized models to optimize resection strategy and outcome.

Methods We have modelled seizure propagation as an epidemic process using the susceptible-infected (SI) model on individual functional networks derived from presurgical MEG. We included 10 patients who had received epilepsy surgery and for whom the surgery outcome at least one year after surgery was known. The model parameters were tuned in order to reproduce the patient-specific seizure propagation patterns as recorded with invasive EEG. We defined a personalized search algorithm that combined structural and dynamical information to find resections that maximally decreased seizure propagation for a given resection size. The optimal resection for each patient was defined as the smallest resection leading to at least a 90% reduction in seizure propagation.

Results The individualized model reproduced the basic aspects of seizure propagation for 9 out of 10 patients when using the resection area as the origin of epidemic spreading, and for 10 out of 10 patients with an alternative definition of the seed region. We found that, for 7 patients, the optimal resection was smaller than the resection area, and for 4 patients we also found that a resection smaller than the resection area could lead to a 100% decrease in propagation. Moreover, for two cases these alternative resections included nodes outside the resection area.

Conclusion Epidemic spreading models fitted with patient specific data can capture the fundamental aspects of clinically observed seizure propagation, and can be used to test virtual resections in silico. Combined with optimization algorithms, smaller or alternative resection strategies, that are individually targeted for each patient, can be determined with the ultimate goal to improve surgery outcome.

Competing Interest Statement

The authors have declared no competing interest.

Clinical Trial

All patients gave written informed consent and the study was performed in accordance with the Declaration of Helsinki and approved by the VUmc Medical Ethics Committee. No reules or procedures were imposed other than routine clinical care.

Funding Statement

Ana P. Millan and Ida A. Nissen were supported by ZonMw and the Dutch Epilepsy Foundation, project number 95105006. The funding sources had no role in study design, data collection and analysis, interpretation of results, decision to publish, or preparation of the manuscript.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

All patients gave written informed consent and the study was performed in accordance with the Declaration of Helsinki and approved by the Vrij Universiteit Medical Center Medical Ethics Committee

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

The data used for this manuscript are not publicly available because the patients did not consent for the sharing of their clinically obtained data. Requests to access to the datasets should be directed to the corresponding author. All user-developed codes are available from the corresponding author upon reasonable request.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.
Back to top
PreviousNext
Posted September 23, 2021.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Epidemic models characterize seizure propagation and the effects of epilepsy surgery in individualized brain networks based on MEG and invasive EEG recordings
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Epidemic models characterize seizure propagation and the effects of epilepsy surgery in individualized brain networks based on MEG and invasive EEG recordings
Ana. P. Millán, Elisabeth C.W. van Straaten, Cornelis J. Stam, Ida A. Nissen, Sander Idema, Johannes C. Baayen, Piet Van Mieghem, Arjan Hillebrand
medRxiv 2021.09.20.21263459; doi: https://doi.org/10.1101/2021.09.20.21263459
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Epidemic models characterize seizure propagation and the effects of epilepsy surgery in individualized brain networks based on MEG and invasive EEG recordings
Ana. P. Millán, Elisabeth C.W. van Straaten, Cornelis J. Stam, Ida A. Nissen, Sander Idema, Johannes C. Baayen, Piet Van Mieghem, Arjan Hillebrand
medRxiv 2021.09.20.21263459; doi: https://doi.org/10.1101/2021.09.20.21263459

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Neurology
Subject Areas
All Articles
  • Addiction Medicine (216)
  • Allergy and Immunology (495)
  • Anesthesia (106)
  • Cardiovascular Medicine (1096)
  • Dentistry and Oral Medicine (196)
  • Dermatology (141)
  • Emergency Medicine (274)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (500)
  • Epidemiology (9767)
  • Forensic Medicine (5)
  • Gastroenterology (480)
  • Genetic and Genomic Medicine (2308)
  • Geriatric Medicine (222)
  • Health Economics (462)
  • Health Informatics (1559)
  • Health Policy (736)
  • Health Systems and Quality Improvement (603)
  • Hematology (236)
  • HIV/AIDS (503)
  • Infectious Diseases (except HIV/AIDS) (11641)
  • Intensive Care and Critical Care Medicine (617)
  • Medical Education (237)
  • Medical Ethics (67)
  • Nephrology (257)
  • Neurology (2142)
  • Nursing (134)
  • Nutrition (336)
  • Obstetrics and Gynecology (427)
  • Occupational and Environmental Health (517)
  • Oncology (1176)
  • Ophthalmology (364)
  • Orthopedics (128)
  • Otolaryngology (220)
  • Pain Medicine (146)
  • Palliative Medicine (50)
  • Pathology (311)
  • Pediatrics (695)
  • Pharmacology and Therapeutics (300)
  • Primary Care Research (267)
  • Psychiatry and Clinical Psychology (2180)
  • Public and Global Health (4657)
  • Radiology and Imaging (778)
  • Rehabilitation Medicine and Physical Therapy (457)
  • Respiratory Medicine (623)
  • Rheumatology (274)
  • Sexual and Reproductive Health (225)
  • Sports Medicine (210)
  • Surgery (251)
  • Toxicology (43)
  • Transplantation (120)
  • Urology (94)